—机架结构的设计
- 格式:ppt
- 大小:219.54 KB
- 文档页数:12
现代机械设计手册总目录(共6卷)化学工业出版社第1卷第1篇机械设计基础资料第1章常用资料和数据第2章法定计量单位和常用单位换算第3章优先数和优先数系第4章常用数学公式第5章常用力学公式第2篇零件结构设计第1章零件结构设计的基本要求和内容第2章铸件结构设计工艺性第3章锻压件结构设计工艺性第4章冲压件结构设计工艺性第5章切削件结构设计工艺性第6章热处理零件设计的工艺性要求第7章其他材料零件及焊接件的结构设计工艺性第8章零部件设计的装配及维修工艺性要求第3篇机械制图和几何精度设计第1章机械制图第2章尺寸精度第3章几何公差第4章表面结构第5章孔间距偏差第4篇机械工程材料第1章钢铁材料第2章有色金属材料第3章粉末冶金材料第4章复合材料第5章非金属材料第5篇连接件与紧固件第1章连接设计基础第2章螺纹连接第3章键、花键和销的连接第4章过盈连接第5章胀套及型面连接第6章焊、铆、粘连接第7章锚固连接第2卷第6篇轴和联轴器第1章轴第2章软轴第3章联轴器第7篇滚动轴承第1章滚动轴承的分类、结构型式及代号第2章滚动轴承的特点与选用第3章滚动轴承的计算第4章滚动轴承的应用设计第5章常用滚动轴承的基本尺寸及性能参数第8篇滑动轴承第1章滑动轴承的分类、特点与应用及选择第2章滚动轴承材料第3章不完全流体润滑轴承第4章液体动压润滑轴承第5章液体静压轴承第6章气体润滑轴承第7章箔片气体轴承第8章流体动静压润滑轴承第9章电磁轴承第9篇机架、箱体及导轨第1章机架结构设计基础第2章机架的设计与计算第3章齿轮传动箱体的设计与计算第4章机架与箱体的现代设计方法第5章导轨第10篇弹簧第1章弹簧的基本性能、类型及应用第2章圆柱螺旋弹簧第3章非线性特性线螺旋弹簧第4章多股螺旋弹簧第5章蝶形弹簧第6章环形弹簧第7章片弹簧及线弹簧第8章板弹簧第9章发条弹簧第10章扭杆弹簧第11章弹簧的热处理、强化处理和表面处理第12章橡胶弹簧第13章空气弹簧第14章膜片及膜盒第15章压力弹簧管第16章弹簧的疲劳强度第17章弹簧的失效及预防第11篇机构第1章结构的基本知识和结构分析第2章基于杆组解析法平面结构的运动分析和受力分析第3章连杆机构的设计及运动分析第4章平面高副结构设计第5章凸轮机构设计第6章其他常用机构第7章组合机构的设计第8章机构选型范例第12篇机械零部件设计禁忌第1章连接零部件设计禁忌第2章传动零部件设计禁忌第3章轴系零部件设计禁忌第3卷第13篇带、链传动第1章带传动第2章链传动第14篇齿轮传动(完整word版)现代机械设计手册总目录第1章渐开线圆柱齿轮传动第2章圆弧圆柱齿轮传动第3章锥齿轮传动第4章蜗杆传动第5章渐开线圆柱齿轮行星传动第6章渐开线少齿差行星齿轮传动第7章摆线针轮行星传动第8章谐波齿轮传动第9章活齿传动第10章塑料齿轮第15篇减速器、变速器第1章减速器设计一般资料第2章标准减速器及产品第3章机械无级变速器及产品第16篇离合器、制动器第1章离合器第2章制动器第17篇润滑第1章润滑基础第2章润滑剂第3章轴承的润滑第4章齿轮传动的润滑第5章其他元器件的润滑第6章润滑方法及润滑装置第7章典型设备的润滑第18篇密封第1章密封的分类及应用第2章垫片密封第3章密封胶及胶黏剂第4章填料密封第5章成形填料密封第6章油封第7章机械密封第8章真空密封第9章迷宫密封第10章浮环密封第11章螺旋密封第12章磁流体密封第13章离心密封第4卷第19篇液力传动第1章液力传动设计基础第2章液力变矩器第3章液力机械变矩器第4章液力耦合器第5章液黏传动第20篇液压传动与控制第1章常用基础标准、图形符号和常用术语第2章液压流体力学常用计算公式及资料第3章液压系统设计第4章液压基本回路第5章液压工作介质第6章液压缸第7章液压控制阀第8章液压泵第9章液压马达第10章液压辅件与液压泵站第11章液压控制系统概述第12章液压伺服控制系统第13章电液比例控制系统第21篇气压传动与控制第1章气压传动技术基础第2章气动系统第3章气动元件的造型及计算第4章气动系统的维护及故障处理第5章气动元件产品第6章相关技术标准及资料第5卷第22篇光机电一体化系统设计第1章光机电一体化系统设计基础第2章传感检测系统设计第3章伺服系统设计第4章机械系统设计第5章微机控制系统设计第6章接口设计第7章设计实例第23篇传感器第1章传感器的名词术语和评价指标第2章力参数测量传感器第3章位移和位置传感器第4章速度传感器第5章振动与冲击测量传感器第6章流量和压力测量传感器第7章温度传感器第8章声传感器第9章厚度、距离、物位和倾角传感器第10章孔径、圆度和对中仪第11章硬度、密度、粉尘度和黏度传感器第12章新型传感器第24篇控制元器件和控制单元第1章低压电器第2章单片机第3章可编程控制器(PLC)第4章变频器第5章工控机第6章数控系统第25篇电动机第1章常用驱动电动机第2章控制电动机第3章信号电动机和微型电动机第6卷第26篇机械振动与噪声第1章概述第2章机械振动基础第3章机械振动的一般资料第4章非线性振动与随机振动第5章机械振动控制第6章典型设备振动设计实例第7章轴系的临界转速第8章机械振动的作用第9章机械振动测量第10章机械振动信号处理与故障诊断第11章机械噪声基础第12章机械噪声测量第13章机械噪声控制第27篇疲劳强度设计第1章机械零部件疲劳强度与寿命第2章疲劳失效影响因素与提高疲劳强度的措施第3章高周疲劳强度设计方法第4章低周疲劳强度设计方法第5章裂纹扩展寿命估算方法第6章疲劳实验与数据处理第28篇可靠性设计第1章机械失效与可靠性第2章可靠性设计流程第3章可靠性数据及其统计分布第4章故障模式、效应及危害度分析第5章故障树分析第6章机械系统可靠性设计第7章机械可靠性设计第8章零件静强度可靠性设计第9章零部件动强度可靠性设计第10章可靠性评价第11章可靠性试验与数据处理第29篇优化设计第1章概述第2章一维优化搜索方法第3章无约束优化算法第4章有约束优化算法第5章多目标优化设计方法第6章离散问题优化设计方法第7章随机问题优化设计方法第8章机械模糊优化设计方法第9章机械优化设计应用实例第30篇反求设计第1章概述第2章反求数字化数据测量设备第3章反求设计中的数据预处理第4章三维模型重构技术第5章常用反求设计软件与反求设计模第6章反求设计实例第31篇数字化设计第1章概述第2章数字化设计系统的组成第3章计算机图形学基础第4章产品的数字化造型第5章计算机辅助设计技术第6章有限元分析技术第7章虚拟样机技术第32篇人机工程与产品造型设计第1章概述第2章人机工程第3章产品造型设计第33篇创新设计第1章创新的理论和方法第2章创新设计理论和方法第3章发明创造的情景分析与描述第4章技术系统进化理论分析第5章技术冲突及其解决原理第6章技术系统物-场分析模型第7章发明问题解决程序—-ARIZ法。
54| 电梯工业一般顶层高度足够时,门机在机架体梁投影的下方时是满足GB7588-2003标准要求的,但是碰到一些特殊情况,导致门机与承重梁的距离不能满足标准要求时,就需要在机架体梁的布置方式、结构上去创新,以寻求最佳解决方案。
方案一、利用主导轨和对重导轨作为受力载体,结构如图1所示。
1—机架体 2—对重导轨连接件 3—对重导轨4—主导轨 5—主导轨连接件 6—连接件图1 导轨受力结构图2 主导轨与墙体共同受力(a)俯视图 (b)侧视图随着社会的不断发展,客户的需求越来越多样化,对无机房电梯的需求也越来越多,同时,无机房电梯的布置方式也更多样化,结构更趋紧凑。
现针对本人设计过程中碰到的一些情况做简单介绍。
方案二、利用主导轨、侧墙体、后墙体作为受力载体,结构如图2所示。
案三、采用对重后置,结构如图3所示。
此种方案机架梯材料成本低,结构、工艺简单,对重导轨一般采用空心导轨,较方案一能节约导轨成本。
此方案也需考虑导轨的沉降,导轨下端一般要落在导轨座底面上。
此种方案常用于小载重、低速电梯。
此种方案机架体材料成本低,结构、工艺简单,但是主导轨、对重导轨均需采用实心导轨,导轨下端一般要落在导轨座底面上。
此方案应考虑实心、空心导轨的沉降及沉降是否均匀,此种方案主机机架安装比较独立,无需在墙体上开槽,常用于小载重、低速电梯。
浅谈无机房电梯机架体结构设计T alking about the structural design of the machine room of the machine room文 | 余海波 夏伟恒达富士电梯有限公司关键词:摘 要:无机房电梯井道结构各异,本文通过对设计过程碰到的非标结构进行分析,从而得出了一些设计解决方案。
无机房 电梯 机架体 设计一、门机在机架体梁投影下方时 的情况ELEVATOR INDUSTRY | 55图3 对重后置结构此种方案轿厢绳头梁布置在高点位置,可以满足与门系统的安全距离要求。
棉花秧苗移栽机的结构设计
棉花秧苗移栽机是一种用于农业种植的机械设备,其结构设计
通常包括以下几个方面:
1. 机架结构,棉花秧苗移栽机的机架结构通常由钢材或铝合金
制成,具有足够的强度和稳定性,以支撑整个设备的运行和作业。
机架结构的设计需要考虑到设备的重量和稳定性,以及操作过程中
的振动和冲击。
2. 输苗装置,棉花秧苗移栽机通常配备有输苗装置,用于从苗
床中取出棉花秧苗并移栽到指定的地块上。
输苗装置的设计需要考
虑到对苗苗的轻柔处理,以避免损坏苗苗,同时也需要考虑到移栽
的准确性和效率。
3. 移栽装置,移栽装置是棉花秧苗移栽机的关键部件,通常采
用机械手臂或其他机械装置,用于将棉花秧苗从输苗装置中取出并
精准地移栽到土壤中。
移栽装置的设计需要考虑到对苗苗的轻柔处理,以及移栽的深度和角度等参数。
4. 动力系统,棉花秧苗移栽机通常由柴油发动机或电动机驱动,
动力系统的设计需要考虑到对移栽机各个部件的动力传递和控制,以及对整个设备的动力输出和能耗的合理设计。
5. 控制系统,棉花秧苗移栽机通常配备有电气控制系统或液压控制系统,用于控制移栽机的运行和作业。
控制系统的设计需要考虑到对移栽机各个部件的精准控制,以及对作业过程中的安全和稳定性的保障。
综上所述,棉花秧苗移栽机的结构设计需要考虑到机架结构、输苗装置、移栽装置、动力系统和控制系统等多个方面,以确保设备具有良好的稳定性、精准性和高效性。
自动化设备机架结构设计方法1. 引言自动化设备机架是工业生产中常见的组件,用于支撑和固定各种设备和仪器。
机架的结构设计对于设备的稳定性、安全性和可靠性至关重要。
本文将介绍自动化设备机架结构设计的方法和原则,包括设计流程、材料选择、结构分析等方面。
2. 设计流程自动化设备机架的设计流程可以分为以下几个步骤:2.1 确定需求在开始设计之前,需要明确设备的使用需求。
包括设备类型、尺寸、重量、使用环境等方面的要求。
这些信息将有助于确定机架的结构形式和承载能力。
2.2 材料选择根据设备的重量和使用环境,选择合适的材料作为机架的主要构造材料。
常见的材料有钢板、铝合金等。
考虑到机架需要具有一定的强度和刚度,一般选择具有良好强度-重量比和刚性-重量比的材料。
2.3 结构布局根据设备尺寸和形状,进行机架的结构布局。
合理的布局应考虑到设备的安装和维修便捷性,以及机架在运行过程中的稳定性。
2.4 结构设计根据机架的结构布局,进行详细的结构设计。
包括各个零部件的尺寸和连接方式。
在设计过程中,需要考虑到机架的强度、刚度和稳定性等方面要求。
2.5 结构分析进行机架结构的强度和刚度分析。
可以使用有限元分析等方法对机架进行模拟和计算,评估其在不同载荷下的应力和变形情况。
根据分析结果,对机架进行必要的调整和优化。
2.6 制造加工根据设计图纸进行机架的制造加工。
制造过程中需要注意材料选择、焊接工艺、表面处理等方面要求,确保机架具有良好的质量和外观。
3. 材料选择自动化设备机架常用的材料有钢板、铝合金等。
以下是常见材料在机架设计中的特点:3.1 钢板钢板具有较高的强度和刚度,适用于承载较大的载荷。
同时,钢板具有良好的可塑性和焊接性,便于加工和制造。
但钢板的重量较大,可能会增加设备的总重量。
3.2 铝合金铝合金具有较高的强度和良好的耐腐蚀性,同时具有较低的密度,重量轻。
铝合金机架在减轻设备重量、提高运动速度等方面具有优势。
然而,铝合金的成本较高。
机柜结构件设计规范1. 机柜材料选择:机柜结构件应采用高质量的冷轧钢板制作,厚度不少于1.2mm,以确保足够的强度和稳定性。
2.组装结构:机柜结构件采用螺栓连接,可以灵活拆卸和安装,便于维护和更换部件。
3. 机柜尺寸:一般情况下,机柜高度为42U或47U,宽度为600mm,深度为900mm。
机柜的尺寸应根据实际需求进行调整,以适应不同大小的设备安装。
4.机柜加强结构:为了增加机柜的承重能力和稳定性,在柜体的四个角落应设置加强件。
加强件的材料应与机柜一致,并固定牢固。
5.机柜门设计:机柜的前门和后门应采用可换嵌或开门式设计,方便设备的安装、布线、维护和检修。
6.通风散热设计:机柜的顶部、底部和两侧应设置通风孔,以保证设备的散热和保持良好的空气流通。
7.安全锁设计:机柜的门应采用防盗设计,配备锁和锁芯,以确保设备的安全。
8.电源配线设计:机柜的顶部或底部应设置有电源配线槽,方便进行电源线的布线和管理。
9.地线连接设计:为了保证机柜和设备的安全,机柜的底部应设置有地线连接点,以便于连接地线。
10.消音降噪设计:对于有噪音的设备,应考虑采用消音降噪材料,或者设计附加的消音装置,以减少噪音的传播。
11.标识标牌设计:机柜的正面应设有清晰可见的标识标牌,标明机柜的编号、设备类型、机柜内设备的编号等信息。
12.可调节支脚设计:机柜底部应设有可调节高度的支脚,以适应不同地面的高低差,保持机柜的稳定平衡。
13.导向管理设计:机柜内部应设置有导向管理装置,以方便设备布线,并保持布线的整齐和有序。
总之,机柜结构件的设计规范主要涉及材料选择、尺寸要求、强度和稳定性、通风散热、安全锁、电源配线、地线连接等多个方面,以确保机柜能够满足设备的安装、布线、维护和管理的需求,同时提高设备的可靠性和安全性。
060河南电力2020年增刊220kV 变电站预制舱式二次组合设备机架式结构设计方案郭放(国网河南省电力公司经济技术研究院,河南郑州450000)作者简介:郭放(1989-),男,硕士,工程师,主要研究方向:电力系统继电保护、自动化系统及智能变电站的设计。
摘要:针对当前预制舱空间利用率低、施工周期长、线缆敷设不规范等问题,提出了由舱外到舱内分层嵌套式的机架结构设计方案,通过三层结构的嵌套组合,并行施工,有利于节约舱内空间,缩短施工工期;设计了机架内设备的标准化布置方式,并以某220kV 线路间隔为例,实现了舱内设备的标准化布置;提出了优化舱内线缆敷设的三种措施,实现舱内光电缆分离走线,提高施工效率。
关键词:预制舱;分层嵌套式;标准化;设计中图分类号:TM762文献标识码:B文章编号:411441(2020)01-0060-030前言目前,新建智能变电站的二次设备多放置在配电装置区的预制舱内。
舱体生产完毕后,由二次设备厂家进舱安装、调试,施工过程较为复杂、繁琐。
一个典型的220kV 智能变电站往往需要设置2个预制舱,一个220kV 预制舱,一个110kV 预制舱,两个舱均采用Ⅱ型舱,尺寸为6200mm ˑ2800mm ˑ3300mm 。
Ⅱ型舱内能放置19面尺寸为800mm ˑ600mm ˑ2260mm 的屏柜,舱内空间利用率低。
为解决当前智能变电站预制舱模式建设过程中的突出问题,本文提出采用机架式预制舱的模式,从优化预制舱结构、舱内设备布置、光电缆走线等方面对预制舱进行整体设计,从而达到减少施工工期、提高空间利用效率等的目的。
1分层嵌套式机架结构方案机架式结构在方案设计中,将二次设备承载结构视为预制舱体结构的一部分,在舱体结构的大背景下,自顶向下层次化设计。
1.1嵌套式安装结构第一层考虑到预制舱本体为热轧型钢,整体焊接成型,如果将长方形片状垂直构件直接安装在预制舱体内,对机架的安装精度影响较大,不利于工程实施。