成因矿物学(矿物的标型性)2
- 格式:ppt
- 大小:7.17 MB
- 文档页数:52
问答题1、简述石英族矿物的分类及成因产状。
(7分)答案要点:分类:α-石英,β-石英,α-磷石英,β-磷石英,α-方石英,β-方石英,柯石英,斯石英成因:α-石英各种地质作用下均可形成,β-石英酸性火山岩,α-磷石英β-磷石英,α-方石英,β-方石英,酸性火山岩,柯石英,斯石英陨石,高压成因。
2、简述层状硅酸盐矿物的结构型式及形态物性特点。
(8 分)答案要点:在层状硅酸盐矿物中,按八面体片中阳离子数目不同,可分为两种结构型式。
在四面体片与八面体片相匹配中,[SiO4]四面体所组成的六方环范围内有三个八面体与之相适应。
当这三个八面体中心位置均为二价离子(如Mg2+)占据时,所形成的结构为三八面体型结构;若其中充填的为三价离子(如Al3+),为使电价平衡,这三个八面体位置将只有两个为离子充填,有一个空着的,这种结构称为二八面体型结构。
若二价离子和三价离子同时存在,则可形成过渡型结构。
本亚类矿物的形态和许多物理性质常与其层状结构密切相关。
形态上,多呈单斜晶系,假六方板、片状或短柱状。
物理性质上,一般具一组极完全的底面解理;低的硬度;薄片具弹性或挠性,少数具脆性;相对密度较小。
玻璃光泽,珍珠光泽。
3、试述矿物的分类及分类依据,并举例说明(15 分)答案要点:大类:化合物类型,类:阴离子和络阴离子种类,亚类:络阴离子结构,族:晶体结构型和阳离子性质,亚族:阳离子种类和结构对称性,种一定的晶体结构和化学成分,亚种:完全类质同象中的端元组分比例,异种(变种)形态物性成分稍异,例如含氧盐大类,硅酸盐类,链状硅酸盐亚类,辉石族,单斜辉石,普通辉石钛辉石。
4、简述辉石族和角闪石族矿物在成分、结构、性质和成因上有何共同和不同之处?(15 分)答案要点:辉石族矿物(1)化学成分和分类辉石族矿物的化学通式可表示成XY[T2O6]。
其中:X=Na+、Ca2+、Mn2+、Fe2+、Mg2+、Li+等,在晶体结构中占据M2位置,Y=Mn2+、Fe2+、Mg2+、Fe3+、Cr3+、Al3+、Ti4+等,在晶体结构中占据M1位置,T=Si4+、Al3+,少数情况下有Fe3+、Cr3+、Ti4+等,占据硅氧骨干中的四面体位置(2)晶体结构在辉石族矿物的晶体结构中,[SiO4]四面体各以两个角顶与相邻的[SiO4]四面体共用形成沿c轴方向无限延伸的单链。
《矿物岩石学》课程笔记第一章:绪论第一节概念一、矿物岩石学的定义矿物岩石学是地球科学的一个重要分支,它涉及对地球物质的研究,特别是对构成地壳的矿物和岩石的组成、结构、性质、成因以及它们在地质历史中的演化过程的研究。
二、矿物的基本概念1. 矿物的定义:矿物是自然界中具有一定化学成分和晶体结构的均匀固体。
2. 矿物的特征:包括颜色、硬度、光泽、解理、比重等。
三、岩石的基本概念1. 岩石的定义:岩石是由一种或多种矿物组成的自然集合体。
2. 岩石的分类:根据成因,岩石可分为三大类——岩浆岩、沉积岩和变质岩。
第二节矿物岩石学的研究方法一、宏观研究方法1. 地质调查:通过野外实地考察,收集岩石和矿物的露头信息,进行地质填图和剖面测量。
2. 遥感技术:利用卫星或航空摄影获取地球表面的图像,分析岩石和矿物的分布特征。
3. 地球物理勘探:通过重力、磁法、电法等方法探测地下岩石和矿物的分布情况。
二、微观研究方法1. 显微镜观察:使用光学显微镜和电子显微镜观察矿物的形态、结构等特征。
2. X射线衍射分析:通过X射线衍射技术确定矿物的晶体结构。
3. 化学分析:采用原子吸收光谱、电感耦合等离子体质谱等方法分析矿物的化学成分。
4. 同位素分析:利用质谱仪等设备测定矿物的同位素组成,以研究矿物的来源和形成时代。
第三节矿物岩石学的发展简史一、古代矿物岩石学1. 古希腊和古罗马时期:人们对矿物和岩石有了初步的认识,如泰勒斯的水成论和普林尼的《自然史》。
2. 我国古代:古籍如《山海经》和《本草纲目》记载了丰富的矿物岩石知识。
二、近代矿物岩石学1. 17世纪:显微镜的发明使矿物学进入微观领域,矿物学家开始研究矿物的内部结构。
2. 18世纪:矿物分类学得到发展,如德国矿物学家亚伯拉罕·维尔纳提出的矿物分类体系。
3. 19世纪:地质学三大理论的建立,为矿物岩石学的发展提供了理论基础。
三、现代矿物岩石学1. 20世纪:矿物岩石学各分支学科的形成,如矿物物理学、岩石学、地球化学等。
黄铁矿-毒砂矿物标型特征地球科学学院资勘6班邱雄,何宇,刘磊,李晨伟,胡宁宁目录一、前言 (2)二、基本概念 (2)2.1 矿物标型性 (2)2.2 标型矿物 (2)2.3 矿物标型特征 (2)三、黄铁矿-毒砂矿物标型特征 (2)3.1 物理标型特征 (2)3.1.1 颜色标型特征 (2)3.1.2 形态标型特征 (3)3.1.3 硬度值 (3)3.1.4 比重值 (4)3.1.5 反射率 (4)3.1.6 热电性标型特征 (5)3.1.7 电子顺磁共振(EPR ) 波谱 (5)3.2 化学成分标型特征 (6)3.2.1 主要成分、微量元素及稀元素的标型特征 (6)3.2.2 稳定同位素标型特征 (6)3.3 晶体形态、结构及晶胞参数标型特征 (7)四、结语 (7)主要参考文献 (8)一、前言矿物标型特征属于找矿矿物学研究的范畴。
所谓找矿矿物学是指,在地质找矿中运用矿物标型学说,应用成因矿物学理论进行找矿实践的新兴学说。
几乎所有金矿床中的毒砂都含Au,毒砂和黄铁矿一样都是“不可见金”的主要载体矿物。
不可见Au通常优先富集于毒砂中。
因此探讨毒砂的标型特征多以金矿床中的毒砂为例,故本文中所介绍的毒砂的标型特征仅以金矿床中的毒砂为例。
二、基本概念2.1 矿物标型性矿物标型性包括标型特征、标型矿物、标型组合等方面。
标型组合是指在特定形成条件下形成的矿物组合,可以标志一定温度、压力、介质条件等。
在每一种地质作用中。
由于具体地质介质条件差异。
可以形成其特有的矿物组合。
2.2 标型矿物矿物标型性包括标型特征、标型矿物、标型组合等方面。
标型组合是指在特定形成条件下形成的矿物组合,可以标志一定温度、压力、介质条件等。
在每一种地质作用中。
由于具体地质介质条件差异。
可以形成其特有的矿物组合。
2.3 矿物标型特征矿物标型特征是指在不同地质时期和地质作用条件下,形成在不同地质体中的同一种矿物,其各种性质所表现出的差异,强调矿物的复成因性。
推荐:黄铁矿成因矿物讨论黄铁矿是地壳中分布最广泛的硫化物,也是金矿床中最重要的载金矿物,特别是在热液型金矿床中更加广泛存在,前人对其标型特征做了大量的工作(徐国风,1980;Коробеиников,1985;史红云,1993;李红兵,2005)。
不同物理化学条件下形成的黄铁矿的形态、成分等特征都有较大的差异(宋焕斌,1989)。
黄铁矿的化学式是FeS2,硫化物是地球化学相中还原相的代表,研究它对了解早期成岩阶段的环境特征和变化有重要意义。
主要采用的测试方法有:1、首先,在立体显微镜镜下观察黄铁矿形态特征。
2、其次,用扫描电镜观察黄铁矿表面微形貌特征。
3、再次,采用激光剥蚀电感耦合等离子质谱分析黄铁矿中微量元素及稀土元素的分布特征。
4、最后,测试样品中黄铁矿的热电性标型特征。
一.黄铁矿形成阶段黄铁矿在矿床中分布广,含量高,黄铁矿的形成从成矿早期一直延续到成矿后期,根据矿化蚀变期次及矿物共生组合,本矿区的黄铁矿可分为三个世代:第一世代黄铁矿(PyⅠ):黄铁矿呈稀疏浸染状产出,可见少量立方体晶形。
第二世代黄铁矿(PyⅡ):石英呈细脉状穿插充填原岩,黄铁矿在石英脉中呈细脉浸染状。
第三世代黄铁矿(PyⅢ):黄铁矿呈斑状、团块状分布于绿泥石﹑绿帘石、石英及方解石细脉、网脉或团粒之中。
二.产出特征黄铁矿在形成上经历了不同的成矿阶段,是金属矿物中占绝对优势的硫化物,也是最主要的载金矿物,黄铁矿在形成过程中经历了5个形成阶段。
具体特征如下:Ⅰ、黄铁绢英岩阶段:为早期的脉侧蚀变岩阶段,黄铁矿主要呈星散浸染状产出。
Ⅱ、黄铁矿-石英阶段,主要呈浸染状、条带状产出。
Ⅲ、石英-黄铁矿阶段:主要以条带、团块、脉状形式产出,为主成矿期的产物。
Ⅳ、石英-多金属硫化物阶段:黄铁矿颗粒大小不一,条带状产出,主要以条带、团块、脉状形式产出。
Ⅴ、石英-碳酸盐阶段,为成矿晚期产物,黄铁矿颗粒较大,主要呈浸染状、网脉状产出。
三.工作原理矿物热电性是金属或半导体矿物在温差条件下产生热电效应的反应(苏文超,1997),主要受温度和微量元素组分等条件制约。
88管理及其他M anagement and other矿物标型特征及其对不同成矿作用的标识——以金红石为例李佳俊(成都理工大学地球科学学院,四川 成都 610059)摘 要:矿物的标型特征是指能够反映矿物或地质体一定成因特点的矿物学标志,本文选取金红石为研究对象,系统总结金红石的化学标型、结构标型、形态标型和物理性质标型及其地质意义。
金红石是自然界中重要的副矿物,其形态,成分和其他特征对于指示来源,来源和矿化非常重要。
在本文中,作为研究对象,主要从不同来源的金红石矿床中选出金红石,并对与不同矿化作用有关的金红石形态,大小和组成的特征进行统计分析。
最后,对金红石特征如形状、粒度、发生情况、组成等的系统在一定程度上进反映出了金红石的成因极其相关信息。
关键词:金红石;标型特征;成矿特征;成矿阶段中图分类号:P619.2 文献标识码:A 文章编号:11-5004(2020)23-0088-2 收稿日期:2020-12作者简介:李佳俊,男,生于1995年,汉族,四川资阳人,硕士学历,研究方向:矿床学。
1 金红石概述金红石的矿物学分类,是属于氧化物分类当中的链状氧化物,其理论学的组成成分为:Ti 含量为60%;O 含量为40%,并且在其中还常常伴有Fe 2+、Fe 3+、Ta 5+、Nb 5+、Cr 3+等成分混入到矿物当中。
其中主要以Fe 含量的黑色矿物称之为铁金红石。
Fe 2+可和2Nb 5+或Ta 5+与3Ti 4+构成异价类质同像置换。
当Nb 大于Ta 时,称铌铁金红石;当Ta 大于Nb 时,称钽铁金红石(王琪,2019)。
金红石的矿体结构属于四方型的晶体体系。
其浸提的结构基本为[TiO6]配位八面体。
[TiO6]配位八面体是沿C 轴进行排列,下[TiO6]配位八面体以链状排列,并且链通过[TiO6]配位八面体的角顶点连接。
以{110}作为双晶平面,同时形成双膝状,三胞胎或环形六边形。
骨料通常是密集的和块状的。