一类拟线性方程组的可解性
- 格式:pdf
- 大小:356.70 KB
- 文档页数:7
一阶偏微分方程根本知识这一章我们来讨论一阶线性偏微分方程和一阶拟线性偏微分方程的解法,因为它们都可以化为常微分方程的首次积分问题,所以我们先来介绍常微分方程的首次积分。
一阶常微分方程组的首次积分首次积分的定义从第三章我们知道,n阶常微分方程y n fx,y',y'', ,y n1,〕在变换yy,yy',L,ynyn112〕之下,等价于下面的一阶微分方程组dy1f1x,y1,y2,L,yn,dxdy2f2x,y1,y2,L,y n,dxMMMMdy nf n x,y1,y2,L,y n.dx〔〕在第三章中,已经介绍过方程组〔〕通解的概念和求法。
但是除了常系数线性方程组外,求一般的〔〕的解是极其困难的。
然而在某些情况下,可以使用所谓“可积组合〞法求通积分,下面先通过例子说明“可积组合〞法,然后介绍一阶常微分方程组“首次积分〞的概念和性质,以及用首次积分方法来求解方程组〔〕的问题。
先看几个例子。
例1求解微分方程组--WORD格式--可编辑--dx yxx2y21,dy xyx2y2 1.dt dt〔〕解:将第一式的两端同乘x,第二式的两端同乘y,然后相加,得到x dx y dy x2y2x2y21,dt dt1dx2y2x2y2x2y21dt。
2这个微分方程关于变量t和x2y2是可以别离,因此不难求得其解为x2y21e2t C1,x2y2〔〕C1为积分常数。
〔〕叫做〔〕的首次积分。
注意首次积分〔〕的左端V x,y,t作为x,y,和t的函数并不等于常数;从上面的推导可见,当xx(t),y y(t)时微分方程组〔〕的解时,Vx,y,t才等于常数C1,这里的常数C1应随解而异。
因为式〔〕是一个二阶方程组,一个首次积分〔〕缺乏以确定它的解。
为了确定〔〕的解,还需要找到另外一个首次积分。
将第一式两端同乘y,第二式两端同乘x,然后用第一式减去第二式,得到y dx x dy x2y2,dt dt即x dy y dx x2y2,dt dt亦即d arctan yx。
《高等代数》课程教学大纲一、教学大纲说明(一)课程的性质、地位、作用和任务《高等代数》是数学专业本科学生的三门主要基础课程之一。
它不仅是代数学的基础,也是其它数学课程必要的前提。
该课程是为大学一年级的学生开设的,总课时144学时,开设时间为一年。
通过本课程的教学,使学生掌握为进一步提高专业知识水平所必需的代数基础理论和基本方法。
本课程的任务是使学生系统地掌握基本的、系统的代数知识和抽象的严格的代数方法,为后继课程如近世代数、常微分方程、概率论与数理统计、泛函分析、计算方法等提供必须具备的代数知识,也为进一步学习数学与应用数学专业的各门课程所需要的抽象思维能力提供一定的训练。
(二)教学目的和要求通过本课程的学习,使学生掌握高等代数的基本概念、基本理论与基本方法,熟悉代数的语言、工具、方法,具有一定理解问题、分析问题、解决问题的能力。
为今后的学习打下扎实的基础。
1.熟练掌握:集合、映射、单射、满射、双射的概念,第一、第二数学归纳法,带余除法,不可约多项式,线性方程组的消元法,矩阵的行(列)初等变换,矩阵的秩,初等矩阵的性质,可逆矩阵,向量空间的基、维数,线性相关与线性无关,齐次线性方程组的基础解系,线性变换,矩阵特征值、特征向量的概念与求法,内积的定义,正交变换与正交矩阵,二次型的概念及与其矩阵的对应关系。
2.掌握:整数的整除性、素数的性质,集合的表示与运算,辗转相除法,综合除法,多项式的互素,根与系数的关系,重因式及其判定,行列式的性质,行列式的展开,矩阵的乘法,矩阵的行列式,子空间的交与和,坐标,过渡矩阵,线性方程组的特解与通解,线性变换的运算及其形成的向量空间,线性变换的向量空间与矩阵的向量空间的同构,矩阵的相似,几类向量空间的内积,Cauchy不等式,正交基与正交化,三维空间中的几种正交变换,正交变换与正交矩阵的关系,二次型的矩阵的合同及其求法,对称矩阵合同于对角矩阵,复数域上的二次型的规范形、实数域上二次型的惯性定理、规范形、分类,正定二次型的判定。
1.3 一阶线性偏微分方程的通解法1.3.1 (3),1.3.2 (3),1.3.3(2)通解法:对某些偏微分方程,通过积分先求出通解,再由定解条件定出特解的解法。
1.3.1 两个自变量的一阶线性偏微分方程(,)(,)(,)(,)0.1(,),(,),(,),(,)D (,),(,)u ua x yb x yc x y u f x y x y a x y b x y c x y f x y a x y b x y ∂∂++=∂∂()其中,为平面区域上的连续函数,且不同时为0.1D (,)0,(,)0,(,)(,)(,)(,)(,)(,)(,)(,)=exp -exp ()0.3(,)(,)(,)()a x y b x y u c x y f x y u y b x y b x y x c x y c x y f x y u x y dy dy dy g x b x y b x y b x y g x C ≡≠∂+=∂⎡⎤⎛⎞⎛⎞+⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎣⎦∫∫∫若在上,则(0.2)可看做含参数的常微,其通解.(其中,为任意函数。
)D (,)(,)0,=,)(,)(,)(,)0(,)a x y b x y x y x y xyJ x y xyξϕηψϕϕϕψϕψψψ≠⎧⎨=⎩∂∂∂∂∂==≠∂∂∂∂∂若在上,则方程(0.2)不能直接积分求解。
试作变量代换((0.4)要求其雅可比行列式(保证新变量的独立性)利用链式法则++(,)=((,,(,)(,.=,)(,)(,)=0u u u u u ux x x y y y u x y u u x y u u u a b a b cu f xy x y x y a x y b x y x y ϕψϕψξηξηξηξηξηϕϕψψξηξϕϕϕ∂∂∂∂∂∂∂∂∂∂==∂∂∂∂∂∂∂∂∂∂=⎛⎞⎛⎞∂∂∂∂∂∂++++=⎜⎟⎜⎟∂∂∂∂∂∂⎝⎠⎝⎠∂∂+∂∂,的方程(0.1)变成)))的新方程(0.5)若取(是一阶齐次线性偏微分方程(0.6)的解,则新(,(,)u a b cu f xy u u ψψηηξη⎛⎞∂∂∂++=⎜⎟∂∂∂⎝⎠方程(0.5)成为(0.2)型的方程,(0.7)对积分即可求出其通解),代回原自变量即得通解。
《线性代数》教案一、教学目标1. 知识与技能:(1)理解线性代数的基本概念,如向量、矩阵、行列式等;(2)掌握线性方程组的求解方法,如高斯消元法、矩阵的逆等;(3)熟悉线性代数在实际问题中的应用。
2. 过程与方法:(1)通过实例讲解,培养学生的空间想象能力;(2)运用数学软件或工具,提高学生解决实际问题的能力;(3)引导学生运用线性代数的知识,分析、解决身边的数学问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)感受数学在生活中的重要性,培养学生的应用意识;(3)引导学生树立正确的数学观念,克服对数学的恐惧心理。
二、教学内容1. 第一章:向量(1)向量的概念及几何表示;(2)向量的线性运算;(3)向量的数量积与向量垂直;(4)向量的坐标表示与运算。
2. 第二章:矩阵(1)矩阵的概念与运算;(2)矩阵的行列式;(3)矩阵的逆;(4)矩阵的应用。
3. 第三章:线性方程组(1)线性方程组的解法;(2)高斯消元法;(3)矩阵的逆与线性方程组的解;(4)线性方程组的应用。
4. 第四章:矩阵的特征值与特征向量(1)特征值与特征向量的概念;(2)矩阵的特征值与特征向量的求解;(3)矩阵的对角化;(4)矩阵的特征值与特征向量的应用。
5. 第五章:二次型(1)二次型的概念;(2)二次型的标准形;(3)二次型的判定;(4)二次型的应用。
三、教学方法1. 采用启发式教学,引导学生主动探索、思考;2. 结合实例讲解,培养学生的空间想象能力;3. 利用数学软件或工具,提高学生解决实际问题的能力;4. 组织课堂讨论,促进学生交流与合作;5. 注重练习与反馈,巩固所学知识。
四、教学评价1. 平时成绩:课堂表现、作业、小测验等;2. 期中考试:检测学生对线性代数知识的掌握程度;3. 期末考试:全面考察学生的线性代数知识、技能及应用能力。
五、教学资源1. 教材:《线性代数》;2. 辅助教材:《线性代数学习指导》;3. 数学软件:如MATLAB、Mathematica等;4. 网络资源:相关在线课程、教学视频、练习题等。
线性方程组的几种解法线性方程组形式如下:常记为矩阵形式其中一、高斯消元法高斯(Gauss)消元法的基本思想是:通过一系列的加减消元运算,也就是代数中的加减消去法,将方程组化为上三角矩阵;然后,再逐一回代求解出x向量。
现举例说明如下:(一)消元过程第一步:将(1)/3使x1的系数化为1 得再将(2)、(3)式中x1的系数都化为零,即由(2)-2×(1)(1)得由(3)-4×(1)(1)得)1(32)2(......3432=+xx)1(321)1(......23132=++xxx第二步:将(2)(1)除以2/3,使x 2系数化为1,得再将(3)(1)式中x 2系数化为零,即 由(3)(1)-(-14/3)*(2)(2),得第三步:将(3)(2)除以18/3,使x 3系数化为1,得经消元后,得到如下三角代数方程组:(二)回代过程由(3)(3)得 x 3=1, 将x 3代入(2)(2)得x 2=-2, 将x 2 、x 3代入(1)(1)得x 2=1 所以,本题解为[x]=[1,2,-1]T(三)、用矩阵演示进行消元过程第一步: 先将方程写成增广矩阵的形式第二步:然后对矩阵进行初等行变换初等行变换包含如下操作(1) 将某行同乘或同除一个非零实数(2) 将某行加入到另一行 (3) 将任意两行互换第三步:将增广矩阵变换成上三角矩阵,即主对角线全为1,左下三角矩阵全为0,形)3(3)3(......1-=x )2(3)3( (63)18-=x )2(32)2(......02=+x x )1(32)3( (63)10314-=--x x示例:(四)高斯消元的公式综合以上讨论,不难看出,高斯消元法解方程组的公式为1.消元(1)令a ij(1) = a ij , (i,j=1,2,3,…,n)b i(1) =b i , (i=1,2,3,…,n)(2)对k=1到n-1,若a kk(k)≠0,进行l ik = a ik(k) / a kk(k) , (i=k+1,k+2,…,n)a ij(k+1) = a ij(k) - l ik * a kj(k), (i,j= k+1,k+2,…,n)b i(k+1) = b i(k) - l ik * b k(k), (i= k+1,k+2,…,n)2.回代若a nn(n) ≠0x n = b n(n) / a nn(n)x i = (b i(i) – sgm(a ij(i) * x j)/- a ii(i),(i = n-1,n-2,…,1),( j = i+1,i+2,…,n )(五)高斯消元法的条件消元过程要求a ii(i) ≠0 (i=1,2,…,n),回代过程则进一步要求a nn(n) ≠0,但就方程组Ax=b 讲,a ii(i)是否等于0时无法事先看出来的。
线性系统分析中的若干问题探讨线性系统分析是一种重要的研究领域,它可以让我们从一系列线性方程中总结出有关某个系统的准确信息。
它的研究射线从基本的理论延伸到实际的应用,可以帮助我们更好地理解和控制系统。
本文主要探讨线性系统分析中的几个问题,以方便我们更好地理解线性系统。
首先,我们来看一下可解性问题,即要求一系列线性方程组的可解性。
在这里,我们要考虑一组方程是否有解,以及如果有,如何解决这个问题。
其次,我们要考虑解的唯一性和稳定性问题。
只有当解的唯一性和稳定性得到保证,才能有效地求解线性系统中的问题。
然后,我们还要考虑系统精度的问题,即系统能够根据输入信息以及计算结果的精度来输出准确的结果。
最后,我们要考虑线性系统分析在实际应用中的问题,即如何利用线性系统分析理论来解决实际问题,并完成实际应用。
首先,我们讨论可解性问题。
关于可解性问题,线性系统分析需要考虑系统方程组是否可被解出。
它可以用齐次线性方程组中的边界条件、其它条件和约束条件来判断可解性。
它可以通过Gauss-Jordan 法,Cramer法,LU分解等方法求解齐次线性方程组的解。
当系统方程没有解时,可以采用近似解法。
如果系统方程带有约束条件,还可以采用最优化算法求解。
其次讨论解的唯一性和稳定性问题。
在这里,我们需要考虑一个系统的解是否唯一,以及解是否收敛。
为此,需要考虑系统的条件数,即方程的未知数的个数与方程的个数相比较。
当条件数大于或等于方程的个数时,有唯一解,否则就没有唯一解。
另外,系统的稳定性还要取决于系统的解的数学特征,如系统的特征值,特征向量和傅里叶变换等。
再接下来,我们来谈谈系统精度的问题。
系统精度指系统对输入信息和计算结果的准确程度。
在系统精度方面,我们需要考虑精度有多少,是否有噪声影响,精度的调整以及系统的参数匹配等问题,以便实现可靠的结果输出。
最后要谈到的是线性系统分析在实际应用中的问题。
线性系统分析可以应用于很多领域,包括控制系统设计、金融市场分析、计算机网络和通信系统等。