齐次线性方程组解的判定、线性组合与线性相关1
- 格式:ppt
- 大小:377.00 KB
- 文档页数:18
线性方程组解的结构(解法)一、齐次线性方程组的解法【定义】r (A )=r <n ,若AX =0(A 为m n ⨯矩阵)的一组解为,,,n r -12ξξξ,且满足:(1),,,n r -12ξξξ线性无关;(2)AX =0的)任一解都可由这组解线性表示. 则称,,,n r -12ξξξ为AX =0的基础解系.称=X 齐次线性方程组的关键问题就是求通解,而求通解的关键问题是求基础解系【定理】(1)(2)(注:当注:1()n r A -2AX O = (1) 当(2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0A =; (3)当m n =且()r A n =时,若系数矩阵的行列式0A ≠,则齐次线性方程组只有零解; (4)当m n >时,若()r A n ≤,则存在齐次线性方程组的同解方程组;若()r A n >,则齐次线性方程组无解。
1、求AX =0(A 为m n ⨯矩阵)通解的三步骤(1)−−→A C 行(行最简形);写出同解方程组CX =0.(2)求出CX =0的基础解系,,,n r -12ξξξ;(3)写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…,k n-r 为任意常数.【例题1】解线性方程组12341234123412342350,320,4360,2470.x x x x x x x x x x x x x x x x +-+=⎧⎪++-=⎪⎨+-+=⎪⎪-+-=⎩解法一:将系数矩阵A 化为阶梯形矩阵显然有(r 解法二:2341A =注:【例题2解:可得()r A 12x x x =⎧⎨=-⎩令31x =令30x =令30x =,40x =,51x =,得125,6x x ==-, 于是得到原方程组的一个基础解系为112100ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,212010ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,356001ξ⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦.所以,原方程组的通解为112233X k k k ξξξ=++(1k ,2k ,3k R ∈).二、非齐次线性方程组的解法 求AX =b 的解(,()m n r r ⨯=A A )用初等行变换求解,不妨设前r 列线性无关1112111222221()0rn r n rrrn r r c c c c d c c c d c c d d +⎡⎤⎢⎥⎢⎥⎢⎥−−→⎢⎥⎢⎥⎢⎥⎢⎥A b 行其中0(1,2,,),ii c i r ≠=所以知1(1)r d +≠1(2)r d +=1(3)r d +=其通解为,,n r k -为任意常数。
说明:1.本总结只是把课本的重点知识总结了一下,我没有看到期末考试题,所以考着了算是侥幸,考不着也正常。
2.知识点会了不一定做的对题,所以还要有相应的练习题。
3.前后内容要贯穿起来,融汇贯通,建立自己的知识框架。
第一章行列式1.行列式的定义式(两种定义式)-->行列式的性质-->对行列式进行行、列变换化为上下三角(求行列式的各种方法逐行相加、倒叙相减、加行加列、递推等方法,所有方法是使行列式出现尽可能多的0为依据的)。
2.行列式的应用——>克拉默法则(成立的前提、描述的内容、用途,简单的证明可从逆矩阵入手)。
总结:期末第一章可能不再单独考,但会在求特征值/判断正定性等内容时顺便考察行列式的求解。
第二章矩阵1.矩阵是一个数组按一定的顺序排列,和行列式(一个数)具有天壤之别。
2.高斯消元法求线性方程组的解—>唯一解、无解、无穷解时阶梯型的样子(与第三章解存在的条件以及解的结构联系在一起)3.求逆矩阵的方法(初等变换法,I起到记录所有初等变换的作用)、逆矩阵与伴随矩阵的关系。
4.初等矩阵和初等变换的一一对应关系,学会由初等变换找出与之对应的初等矩阵。
5.分块矩阵(运用分块矩阵有时可以很简单的解决一些复杂问题)记得结论A 可逆,则)A -(1|A |A -1T T αααα=+。
第三章 线性方程组第三章从向量组的角度入手,把线性方程组的系数矩阵的每一列看作一个列向量,从而得到一个向量组假设为n 21,,,ααα ,右边常则看作一个向量β,1)若向量β被向量组n 21,,,ααα 表出唯一(即满足关系:n n n ==),,,,(r ),,,(r 2121βαααααα 时,因为只有向量组n 21,,,ααα 线性无关才表出唯一),则只有唯一解;2)若β不能由向量组n 21,,,ααα 线性表出(即满足条件),,,,(r 1),,,(r 2121βααααααn n =+时)则无解;3)若β由向量组n 21,,,ααα 表出不唯一(即满足条件n n n <=),,,,(r ),,,(r 2121βαααααα 时,只有n 21,,,ααα 线性相关才表出不唯一)有无穷解。
齐次线性方程组解的结构
在学习齐次线性方程组解的结构之前,我们先来学习一下概念:向量空间.
线性方程组的向量表示
设有齐次线性方程组,记:
,,
则方程组可写成向量形式: Ax=0.
若为此方程组的解,则称为该方程组的解向量.
定义:若S为此线性方程组的全体解向量的集合,可以证明有:
(1)若,则;(2)若,则.
所以集合S是一个向量空间,我们称S为该齐次线性方程组的解空间.
对于齐次线性方程组,其向量方程形式为:Ax=0,
它的解向量可用通式表示为:
=1,
,(其右端的都是解向量:若取k
1
其余的k为0,即可看出ξ
为解向量,...。
)
1
故我们可以说,Ax=0的解向量为某n-r个线性无关的解向量的线性组合。
(注:
对此我们不加证明)
定义:齐次线性方程组的任何n-r个线性无关的解向量都称为此齐次方程组的一组基础解系.
注:这任意n-r个线性无关的解向量是齐次线性方程组解空间中的一个最大线性无关组。
是解空间的一个基。
设为方程组的一个基础解系,则方程组的解可表示为:
,其中k
1,k
2
,...,k
n-r
为任意实数.这个式子称为方
程组的通解。
例:求解方程组:
解:因为,故原方程的解向量可由任意3-2=1个线性无关的解向量的线性组合表示.
通过解方程可知为此方程组的一解向量,故原方程组的通解为:(k为任意实数。
目录摘要: (I)关键词: (I)Abstract (II)Keywords: (II)1.前言 (1)2.预备知识 (1)2.1线性相关性的概念及性质 (1)2.1.1线性相关的概念 (1)2.1.2线性相关的性质 (2)3.向量组线性相关的判定方法 (3)3.1定义法 (3)3.2根据齐次线性方程组的解进行判定 (4)3.3利用矩阵的秩进行判定 (5)3.4利用行列式值进行判定 (6)3.5反证法 (7)3.6 数学归纳法 (7)3.7用线性变换的性质进行判定 (8)3.8利用朗斯基行列式来判定 (10)4.结束语 (11)参考文献 (12)致谢 (13)向量组的线性相关性的判定方法浅析摘要:本文总结综述了向量组线性相关性的判定方法,并阐述了不同判定方法适用的条件.关键词:线性相关;线性无关;判定方法.Several Methods of Judging the Linear Dependence of A VectorGroup is analysedAbstract:This article summarizes the judging methods of vector linear correlation, and expounds the different methods applicable conditions.Keywords:linear correlation; linear independence; judging methods .1.前言向量组的线性相关性在线性代数中起到贯穿始终的作用.线性相关性这个概念在许多数学专业课程中都有体现,如微分几何,高等代数和偏微分方程等等.它是线性代数理论的基本概念,它与线性空间(包括基,维数),子空间等概念有密切关系,同时在微分几何以及偏微分方程中都有广泛的应用.因此,掌握线性相关性这个概念有着非常重要的意义,也是解决其它问题的重要理论依据.向量组的线性相关与线性无关判定方法是非常灵活的。
线性代数N阶行列式定理1:任意一个排列经过对换后,其奇偶性改变。
推论:奇排列变成自然数顺序排列的对换次数为奇数,偶排列变成自然数顺序排列的对换次数为偶数。
定理2:n个自然数(n-1)共有n!个n级排列,其中奇偶排列各占一半。
行列式的性质性质1:行列式与它的转置行列式相等。
性质2:交换行列式的两行(列),行列式变号。
*注2:交换i,j两列,记为ri↔ri(ci↔cj)。
推论1:如果行列式中有两行(列)的对应元素相同,那么该行列式必为零。
性质3:用数k乘行列式的某一行(列),等于用k乘此行列式。
注3:第i行(列)乘以k,记为ri×k(ci×k)。
推论2:行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面。
推论3:在一个行列式中,如果有两行(列)元素成比例,则这个行列式必等于零。
性质4:如果将行列式的某一行(列)的每个元素都改写成两个数的和,则此行列式可写为两个行列式的和,且这两个行列式分别为所在行(列)对应位置的元素,其它元素不变。
#注4:上述结果可推广到有限个数和的情形。
性质5:将行列式的某一行(列)的所有元素都乘以数k后加到另一个行(列)对应位置的元素上,行列式的值不变。
注5:以数k乘第j行加到第i行上,记作ri+krj;以数k乘第j列加到第i列上,记作ci+kcj。
行列式按行(列)展开余子式:Mij 代数余子式:Aij=(-1)i+j Mij引理:一个n阶行列式D,若其中第i行所有元素除aij外都为0,则该行列式等于aij 与它代数余子式的乘积,即D=aijAij[定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和。
推论:行列式某一行(列)的每元素与另一行(列)对应元素的代数余子式乘积之和等于零。
k阶行列式:在n阶行列式D中,任意选定k行k列,位于这些行和列交叉处的k²个元素,按原来顺序构成一个k阶行列式M,称为D的一个k阶子式,划去这k行k列,余下的元素按原来的顺序构成一个n-k阶行列式,在其前面冠以符号(-1)的(i1+i2+…+i k+j1+j2+…+j k)次方,称为M的代数余子式,其中i1,i2,…,i k为k阶子式M在D中的各行标,j1,j2,…,j k为M在D 中的各列标。