BP误差公式推导完全解析全解电子教案
- 格式:ppt
- 大小:510.50 KB
- 文档页数:20
基本介绍含有隐层的多层前馈网络能大大提高神经网络的分类能力,但长期以来没有提出解决权值调整问题的游戏算法。
1986年Rumelhart (鲁梅尔哈特)和McCelland (麦克勒兰德)等人提出并行分布处理(PDP )的理论,同时提出了多层网络的误差反向传播学习算法,简称BP 算法。
这种算法根据学习的误差大小,把学习的结果反馈到中间层次的隐单元,改变它的权系数矩阵,从而达到预期的学习目的,解决了多层网络的学习问题。
BP 算法从实践上证明神经网络的运算能力很强,可以完成许多学习任务,解决许多具体问题。
BP 网络是迄今为止最常用、最普通的网络。
BP 算法也称误差反向传播(Error Back Propagation, BP )算法。
BP 算法实质是求均方误差函数的最小值问题,这种算法采用非线性规划中的最速下降法,按误差函数的负梯度方向修改权系数。
网络结构o 1 … o k … o lW 1○ W k ○ W l ○y 1○ y 2○ … ○ y j … ○y mV 1 V m○ ○ ○ ○ ○x 1 x 2 … x i … x n-1 x nBP 网络结构模型的数学表达式输入向量: T n i x x x x X ),...,,...,,(21=隐层输出向量: T m j y y y y Y ),...,,...,,(21=输出层输出向量: T l k o o o o O ),...,,...,,(21=期望输出向量:T l k d d d d d ),...,,...,,(21=输入层到隐层之间的权值矩阵:),...,,...,,(21m J V V V V V =隐层到输出层之间的权值矩阵:),...,,...,,(21l k W W W W W =算法基本思想核心思想:将输出误差以某种形式通过隐层向输入层逐层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号。
学习过程由信号的正向传播与误差的反向传播两个过程组成。