误差传递公式
- 格式:doc
- 大小:134.00 KB
- 文档页数:3
误差传递公式的原理和计算方法一、误差传递公式的原理。
1.1 误差传递的基本概念。
误差传递啊,就是说在进行一系列的测量或者计算的时候,一个量的误差会对最终结果产生影响,而且这种影响不是孤立的,就像多米诺骨牌一样,一个倒了会牵连其他的。
比如说我们测量一个物体的体积,是通过长、宽、高的测量值计算的,如果长的测量有误差,那这个误差就会传递到体积的计算结果里。
这就好比是“牵一发而动全身”,一个小环节出问题,整个结果都可能受到波及。
1.2 原理的直观理解。
从本质上讲呢,误差传递公式是基于函数关系的。
想象一下,我们有一个函数,比如说y = f(x₁, x₂, x₃...),这里的x₁, x₂, x₃等是自变量,y是因变量。
每个自变量都有自己的误差,这些误差就像调皮的小捣蛋鬼,在函数这个大舞台上开始捣乱,让y的值也变得不那么准确了。
误差传递公式就是要搞清楚这些小捣蛋鬼是怎么影响y的,就像是要摸清一场混乱背后的规律一样。
二、误差传递公式的计算方法。
2.1 简单函数的误差传递。
对于一些简单的函数,像y = ax + b这种线性函数(这里a和b是常数)。
如果x有一个误差Δx,那么y的误差Δy就可以通过公式Δy = aΔx来计算。
这就像一加一等于二那么直白。
举个例子,假如你去买苹果,每个苹果2元(a = 2),你本来打算买x个,但是你数错了,多或者少了Δx个,那你花费的钱y就会多或者少2Δx 元。
这就是简单函数误差传递在生活中的一个小体现,简单得就像“小菜一碟”。
2.2 复杂函数的误差传递。
当函数变得复杂起来,比如说y = x₁² + sin(x₂)这种。
那误差传递公式就稍微复杂点了。
一般来说,我们会用到偏导数的概念。
先分别求出y对x₁和x₂的偏导数,然后根据误差传递公式Δy = (∂y/∂x₁)Δx₁+(∂y/∂x₂)Δx₂。
这就像是要在一个错综复杂的迷宫里找到出路,得小心翼翼地分析每个岔路口(偏导数)对最终结果(误差)的影响。
误差传递公式的推导设间接测得量N = f (X i ,X 2,X 3),式中X i , X 2, X 3均为彼此相互独立的直接测得量, 每 直接测得量为等精度多次测量,且只含随机误差,那么间接测得量 均值N 表示)为①算术合成法求误差传递公式绝对误差传递公式:相对误差传递公式:②方和根合成法求标准偏差传递公式标准偏差传递公式:相对偏差传递公式:4m2 ,其中 m 二m - m , d 二d -, h = h - h ,求h 的平均值和 ■d h误差传递公式。
N 的最可信赖值(用平.X 1-XX 3::ln"F lnf■X 21 2 3;讦 ■■■2S:::ln fS : +2fl.I2I %丿CX 3丿S 2X3CZ石 :z<Z cz 1 △a + — A b 十—A c = A a + A b 十一 A c 。
cc .:bL X 24m2 ■ 二d h对公式—两边取自然对数::d h4In — In In m -21 nd -In h ,In r分别对各直接量求一阶偏导数:◎In P 1 £ln P 2 £ln P 1.:m m :d d;:h h得误差传递公式:1 - - -例3:已知“a ye,其中a=a_S a,b-bg,co S c,准偏差传递公式。
准偏差传递公式。
解:■ d h1 —— _例1 :已知z = a • b c ,其中a = a _ . a,b = b - b,c = c - c,求z的平均值和3误差传递公式。
1 —解:平均值:z = a • b c ;3z分别对各直接量求一阶偏导数:「z _ :z z 1——=1,——=1,——=,ca cb cc 3得误差传递公式:4In = In Inm -2Ind -1nh,n:£ln P _ 1 创n P __2 剖n P __1:m m ;:d d : h hAP;:In T.:m .:d::In ?:d:h=-l :m - . :d - :h。
误差传递公式的推导设间接测得量N 二f (X i ,X 2,X 3),式中X i ,X 2,X 3均为彼此相互独立的直接测得量, 每 直接测得量为等精度多次测量,且只含随机误差,那么间接测得量 N 的最可信赖值(用平均值N 表示)为 N = f (X i ,X 2,X 3)①算术合成法求误差传递公式绝对误差传递公式:相对误差传递公式:②方和根合成法求标准偏差传递公式标准偏差传递公式:S N =相对偏差传递公式:2fl. I 2 I 0X2 丿1 — — —"“-丁,其中,b = b 「b ,-c 」c ,求z 的平均值和 误差传递公式。
1 - z = a b - c ; 3 ;z 分别对各直接量求一阶偏导数: 「z _ :z z 1 1, 1, ca cbcc 3得误差传递公式: :f -X 2.:f.X 2-X 2例1 :已知z解:平均值: △z =旦 A a + ca;blIn 「分别对各直接量求一阶偏导数:得误差传递公式: 1 - - -例 3:已知 z=a b c ,其中 a=a_S a , b = b_S b ,c=c_S c ,3准偏差传递公式。
准偏差传递公式。
解:■ d hIn Q = In In m -2In d -In h ,JI / In 「1 :In :2 -Tn 「 1 .:mm ;:d d ;:hh4m— 例2:已知2 ,其中m = m 二、:m , d 二, h = h 二■■: h ,求h 的平均值和误差传递公式。
解:平均值:T 4m4m厂两边取自然对数: :d h4 In Q = In In m - 2ln d 一 In h , .:m m::In 2In .:d .:h::ln ?.:m .:dIn . 1 . 2 . 1 . -h m d h 。
求z 的平均值和标 解:z 1 - =a b c ;3 ;—,J .a-z.:b S z 「A .A.::Sc 二 S ; V [S i 。
标准误差传递公式cos
误差传递公式的推导设间接测得量,式中均为彼此相互独立的直接测得量,每一直接测得量为等精度多次测量,且只含随机误差,那么间接测得量的最可信赖值(用平均值表示)为:
①算术合成法求误差传递公式绝对误差传递公式:相对误差传递公式:②方和根合成法求标准偏差传递公式标准偏差传递公式:相对偏差传递公式:::例1:已知,其中…求的平均值和误差传递公式。
解:平均值:分别对各直接量求一阶偏导数:…得误差传递公式:。
例2:已知,其中…求的平均值和误差传递公式。
解:…平均值:;对公式两边取自然对数:,分别对各直接量求一阶偏导数:得误差传递公式:。
例3:已知,其中…求的平均值和标准偏差传递公式。
解:例4:已知,其中…求的平均值和标准偏差传递公式。
解:…。
标准误差传递公式
标准误差(Standard Error,SE)传递公式是用来估计一个函数的标准误差,而该函数涉及多个随机变量。
标准误差传递公式的一般形式可以通过泰勒级数展开来表示。
s考虑一个函数Y=f(X1,X2,…,Xn),其中X1,X2,…,Xn是随机变量,每个都有它们各自的均值μi和标准差σi。
函数f是这些随机变量的某个组合。
标准误差传递公式可以近似表示为:
其中,∂Xi∂f是函数f对Xi的偏导数,SEXi是Xi的标准误差。
这个公式基于对函数进行泰勒级数展开,通过对每个变量的贡献进行加权来估计函数的标准误差。
这个公式通常在统计学和实验设计中使用,以评估一个函数的不确定性。
需要注意的是,这个公式的有效性取决于对函数的高次导数的忽略是否合理,以及变量之间的相关性等因素。
-标准误差传递公式标准误差传递公式(formula for error propagation)是一种数学方法,用于估计测量结果的不确定性。
它通过将不确定性从已知量传递到未知量,提供了一种计算复合函数误差的有效方式。
在本文中,我们将介绍标准误差传递公式的原理、推导过程和应用示例。
I.原理和推导标准误差传递公式是基于线性近似方法的一种推导过程。
该方法假设,若每个参与的变量随机误差相对较小且无相关性,则使用泰勒级数展开到一阶项可得到一个近似解。
具体来说,设一些函数 f(x₁, x₂, ..., xn)满足可微分性要求,其中 x₁, x₂, ..., xn 表示已知量。
我们希望计算该函数的标准误差,即δf。
根据泰勒级数展开,我们有:f(x₁+δx₁, x₂+δx₂, ..., xn+δxn) ≈ f(x₁, x₂, ..., xn) +∂f/∂x₁ δx₁ + ∂f/∂x₂ δx₂ + ... + ∂f/∂xn δxn其中∂f/∂x₁, ∂f/∂x₂, ..., ∂f/∂xn 表示函数 f 对各个变量 x₁,x₂, ..., xn 的偏导数。
我们将上述近似表达式重写为以下形式:f(x₁+δx₁, x₂+δx₂, ..., xn+δxn) ≈ f(x₁, x₂, ..., xn) + ∑ (∂f/∂xᵢ) δxᵢ根据误差传递公式的定义,我们希望计算δf。
由于已知每个变量 xᵢ的误差为δxᵢ,我们将δf 定义为δf = f(x₁+δx₁, x₂+δx₂, ...,xn+δxn) - f(x₁, x₂, ..., xn)。
将这个定义代入上述表达式,我们可以得到标准误差传递公式的最终形式:δf≈∑(∂f/∂xᵢ)δxᵢ这就是标准误差传递公式的推导过程。
它表明了函数f的误差δf与各个变量xᵢ的误差δxᵢ之间的关系。
II.应用示例让我们通过一个实际的应用示例来演示标准误差传递公式的使用。
假设有一个计算机程序用于计算圆柱体的体积V。
标准误差传递公式标准误差(Standard Error)是统计学中一个重要的概念,它用来衡量样本均值与总体均值之间的差异。
在实际应用中,我们经常需要计算标准误差,并且需要了解标准误差是如何传递的。
本文将介绍标准误差传递的公式及其应用。
首先,我们来了解一下标准误差的定义。
标准误差是对样本均值的不确定性的一种度量,它的计算公式为样本标准差除以样本容量的平方根。
标准误差越小,表示样本均值与总体均值之间的差异越小,反之亦然。
在实际应用中,我们经常需要计算一些复杂变量的标准误差,这时就需要用到标准误差传递公式。
标准误差传递公式是用来计算复杂变量函数的标准误差的公式,它可以帮助我们在进行复杂变量计算时,准确地传递标准误差。
标准误差传递公式的一般形式如下:SE(Y) = sqrt(∑(∂Y/∂X_i)^2 SE(X_i)^2)。
其中,SE(Y)表示函数Y的标准误差,∂Y/∂X_i表示函数Y对变量X_i的偏导数,SE(X_i)表示变量X_i的标准误差。
这个公式告诉我们,当我们计算函数Y的标准误差时,需要考虑到各个自变量的标准误差,以及它们与因变量的偏导数。
在实际应用中,我们经常需要使用标准误差传递公式来计算复杂变量的标准误差。
比如,在金融领域中,我们需要计算投资组合的收益率的标准误差,这时就需要用到标准误差传递公式。
又如,在医学研究中,我们需要计算一些生物指标的标准误差,同样也需要用到标准误差传递公式。
除了上述的一般形式,标准误差传递公式还有一些特殊情况的应用。
比如,当函数Y是两个变量X和Z的线性组合时,标准误差传递公式可以简化为:SE(Y) = sqrt(SE(X)^2 (∂Y/∂X)^2 + SE(Z)^2(∂Y/∂Z)^2 + 2 COV(X,Z) ∂Y/∂X ∂Y/∂Z)。
其中,COV(X,Z)表示变量X和Z的协方差。
这个简化形式的标准误差传递公式在实际应用中也有着重要的作用。
总之,标准误差传递公式是统计学中一个重要的工具,它可以帮助我们在计算复杂变量的标准误差时,准确地传递标准误差。
设间接测得量),,(321x x x f N =,式中321,,x x x 均为彼此相互独立的直接测得量,每一直接测得量为等精度多次测量,且只含随机误差,那么间接测得量N 的最可信赖值(用平均值N 表示)为
),,(321x x x f N =
①算术合成法求误差传递公式
绝对误差传递公式:
33
2211x x f x x f x x f N ∆∂∂+∆∂∂+∆∂∂=∆ 相对误差传递公式:
33
2211ln ln ln x x f x x f x x f N N ∆∂∂+∆∂∂+∆∂∂=∆
②方和根合成法求标准偏差传递公式
标准偏差传递公式: 22
3222221321x x x N S x f S x f S x f S ⎪⎪⎭
⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂= 相对偏差传递公式: 223222221321ln ln ln x x x N S x f S x f S x f N S ⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+⎪⎪⎭⎫ ⎝
⎛∂∂=
例1:已知c b a z 31-
+=,其中a a a ∆±=,b b b ∆±=,c c c ∆±=,求z 的平均值和误差传递公式。
解:平均值:c b a z 3
1-+=; z 分别对各直接量求一阶偏导数:
1=∂∂a z ,1=∂∂b z ,3
1-=∂∂c z , 得误差传递公式:
c b a c c z b b z a a z z ∆+∆+∆=∆∂∂+∆∂∂+∆∂∂=
∆3
1。
例2:已知h
d m 24πρ=,其中m m m ∆±=,d d d ∆±=,h h h ∆±=,求h 的平均值和误差传递公式。
解:平均值:h d m 24πρ=
; 对公式h
d m 24πρ=两边取自然对数: h d m ln ln 2ln 4ln ln --+=π
ρ, ρln 分别对各直接量求一阶偏导数:
m m 1ln =∂∂ρ,d d 2ln -=∂∂ρ,h h 1ln -=∂∂ρ, 得误差传递公式:
h h d d m m h h d d m m ∆+∆+∆=∆∂∂+∆∂∂+∆∂∂=∆121ln ln ln ρρρρρ。
例3:已知c b a z 31-
+=,其中a S a a ±=,b S b b ±=,c S c c ±=,求z 的平均值和标准偏差传递公式。
解:c b a z 3
1-+=; 1=∂∂a z ,1=∂∂b z ,3
1-=∂∂c z , 22222291c b a c b a z S S S S c z S b z S a z S ++=⎪⎭
⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=。
例4:已知h
d m 24πρ=,其中m S m m ±=,d S d d ±=,h S h h ±=,求h 的平均值和标准偏差传递公式。
解:h d m
24πρ=;
h d m ln ln 2ln 4
ln ln --+=πρ,
m m 1ln =∂∂ρ,d d 2ln -=∂∂ρ,h
h 1ln -=∂∂ρ
2222222ln ln ln ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=h S S d m S S h S d S m S h d m h d m ρρρρρ。