汽车气制动管路系统
- 格式:ppt
- 大小:36.22 MB
- 文档页数:107
铁路车辆空气制动系统研究铁路车辆的制动系统是保证行车安全的重要部件之一。
其中,空气制动系统是目前主流的制动方式。
本文将对铁路车辆空气制动系统的研究进行分析探讨。
一、空气制动系统的概念和原理空气制动系统是铁路车辆制动系统中的一种。
它是利用制动风缸内气压力的变化来控制制动鞋或制动体以达到制动目的的一种制动方式。
通俗点讲,就是利用空气压缩来实现车辆的制动。
该系统由制动阀组、制动管路组、制动设备组等组成。
制动阀组是控制制动操作的控制中心,它接收制动指令,控制主风管和制动风管的开关,从而控制制动。
二、空气制动系统的分类根据不同的分类标准,空气制动系统可分为多种类型。
常见的分类方式有以下几种:1.按照控制方式分类:(1)直接控制制动系统。
(2)间接控制制动系统:又称为C-IBS制动系统,是目前主流的制动系统。
该系统通过制动指令来控制车辆前部和末部的阀组,以实现车辆制动。
2.按照制动方式分类:(1)手动空气制动系统。
(2)自动空气制动系统:该系统可分为自重应答式自动空气制动和计程应答式自动空气制动。
其中,计程应答式自动空气制动是目前使用最广泛的一种自动制动系统。
3.按照在车辆中的位置分类:(1)行车制动系统:又称为本车制动,是控制车辆自身制动的装置。
(2)列车制动系统:控制车辆之间的制动,以保证列车行车安全。
三、空气制动系统的优缺点分析空气制动系统作为目前主流的制动方式,具有如下优缺点:优点:1.制动响应迅速,制动效果好。
2.系统结构简单,维护方便。
3.适用范围广,可用于多种类型的车辆。
缺点:1.依赖空气作为动力源,空气泄漏引起制动失灵的风险较大。
2.制动器使用寿命(即制动摩擦片的耐磨程度)不长,需要频繁更换。
四、空气制动系统的应用和发展随着时代的发展,铁路车辆制动系统的技术不断改进和升级。
未来,空气制动系统在以下方面有望得到进一步改进和应用:1.应用新型材料,提高制动器的使用寿命。
2.应用新型控制技术,提高控制精度。
MANUFACTURING AND PROCESS | 制造与工艺关于汽车制动系统性能分析及优化设计探讨郝孟军 梅容芳 宫涛 刘福华 刘良 周彬宜宾职业技术学院 四川省宜宾市 644003摘 要: 我国汽车产业发展的速度在不断的加快,同时得到了我国有关部门的重视,在这种情况下,汽车产业的安全问题也是人们非常重视的问题。
在汽车的安全系统中,汽车制动系统是非常关键的作用。
汽车制动系统的主要作用是要确保车辆在进行制动的过程中有比较稳定的减速过程。
本文对汽车制动系统的性能进行了深入的分析,并提出相应的优化设计。
关键词:汽车制动系统 性能分析 优化设计1 引言汽车制动系统的作用主要是在制动时对车辆进行可靠的减速,同时确保车辆在制动过程中不受地面坡度的干扰,使车辆能够平稳地行驶。
汽车制动系统中最常见的制动方法是电子制动以及气动动力制动。
在本文中,主要分析汽车的制动系统工作原理,分析了制动系统的主要功能,并提出了相应的优化设计。
2 汽车制动系统的主要工作原理2.1 电子制动系统的工作原理一般来说,汽车的电子制动系统的原理主要包括以下几点:如果车辆在进行行驶时,需要进行紧急制动,驾驶员需要用力通过制动踏板进行制动信号的发送,信号经三环调速系统有效调节后通过机电制动系统,同时,确保直流无刷力矩发动机直接接收输出铠装的电压,然后运用旋转发动机轴把需要输出的转速信号传输到传动机构中,通过减速以及扭矩把转速信号转换成螺杆的位移,在这个制动过程中,汽车机电制动系统的工作过程是非常速度的,只有0.1s。
2.2 汽车气动制动系统的工作原理目前,许多车辆主要采用气动制动系统。
为了更好的提升气压制动系统的安全性,应总结和分析气压制动系统的工作原理和特点,提升气制动系统的工作效率。
当驾驶员安全驾驶时,汽车空气制动系统不使用汽车空气制动系统。
在此过程中,车辆的气动制动系统是处于待机的状态,气动制动系统的气动阀和快速释放阀完全失效,车辆气动制动系统的前后制动气室与室外空气的气压是处于相同的状态,但气室没有与储气罐中的压缩空气进行有效地连接,当车辆遇到紧急的情况时,需要进行紧急制动,司机需要做好车辆气动制动系统的制动阀,能够及时的踩下车辆的制动踏板。
车辆制动系统开发方案随着汽车的普及和城市化的快速发展,车辆的制动系统安全性也变得越来越重要。
本篇文档将介绍车辆制动系统开发方案,内容包括制动系统的基本原理、开发流程、实现方法和测试方法等,以期为相关从业人员提供一些参考。
制动系统的基本原理制动系统是汽车的重要组成部分之一,其主要任务是在驾驶员使用制动踏板时,且为确定一个安全的制动时间内,将车辆迅速停止,保证车辆和乘客的安全。
制动系统主要包括制动器、制动液、制动管路、制动踏板、制动辅助器等。
制动器通过摩擦或压缩空气等方式,将车轮的动能转换为热能散发出来,从而实现车辆的停止。
常见的几种制动器包括盘式制动器、鼓式制动器、液压制动器和气压制动器等。
制动液是制动系统的输液介质,其主要作用是传递驾驶员的制动信号,并在制动器内产生压力。
制动管路是连接制动器和制动踏板的管道,通过液压或气压力传递制动信号。
制动辅助器则提供制动信号的放大器功能,增加制动信号的力度。
开发流程车辆制动系统的开发流程包括需求分析、系统设计、开发实现、测试验证和上线发布等阶段。
需求分析需求分析是车辆制动系统开发的第一步,该阶段要求对用户需求进行深入了解。
在需求分析过程中,需要了解车辆型号、驾驶习惯、市场要求、法规标准等相关信息,以便为后续的制动系统设计提供指导。
系统设计系统设计是车辆制动系统开发的核心阶段。
在该阶段,需要根据需求分析的结果,开发设计制动系统的架构、功能模块、信号处理流程、安全逻辑等,并进行相关的软硬件设计,确定开发计划与开发进度。
开发实现在完成系统设计之后,需要实现设计的方案。
在开发实现的过程中,需要根据设计方案,完成各项具体功能的实现工作。
开发实现阶段的重点是代码编写、系统测试、性能优化以及维护等工作。
测试验证测试验证是车辆制动系统开发的重要环节。
该阶段需要对开发实现阶段的所有功能进行测试,对测试结果进行分析评估,确定是否满足系统要求。
本阶段需要进行全方位的测试,包括单元测试、模块测试、性能测试、压力测试、安全测试、稳定性测试等。
汽车制动系统工作原理详解为了确保行车安全,汽车制动系统成为车辆中最为关键的部件之一。
它负责控制和减缓车辆速度,使车辆能够稳定地停下或减速。
本文将详细解析汽车制动系统的工作原理,包括液压制动和刹车片的协同作用,以及制动过程中的主要部件。
一、液压制动系统的作用及构成部分液压制动系统是汽车制动系统的重要组成部分,通过将驾驶员的制动操作转化为液压信号,从而实现刹车效果。
它由主缸、助力器、制动管路以及刹车器等几个关键部分构成。
1. 主缸:主缸位于驾驶舱内,通过驾驶员的制动踏板操作来产生制动信号。
当驾驶员踏下制动踏板时,主缸内液体压力增加,将制动信号传递给制动器。
2. 助力器:助力器旨在减轻驾驶员的制动操作力度。
它通过感应驾驶员的制动踏板力度变化,产生相应的助力信号,从而降低制动的难度。
3. 制动管路:制动管路是液压制动系统中连接主缸、助力器和刹车器的管道。
它起到传递制动信号和液压力的作用。
4. 刹车器:刹车器负责把液压力转换为制动力,并施加在车轮上,从而减速或停车。
它由制动卡钳、刹车盘和刹车鼓构成。
二、刹车片的作用和工作原理刹车片是汽车制动系统中非常关键的部件,它通过与刹车盘或刹车鼓的摩擦来产生制动力。
常见的刹车片包括盘式刹车片和鼓式刹车片。
1. 盘式刹车片:盘式刹车片主要应用于轿车和一些商用车上。
当驾驶员踏下制动踏板时,制动系统会产生液压力,使得刹车盘固定在车轮轴上的刹车卡钳夹紧刹车盘。
同时,刹车片与刹车盘之间的摩擦力产生制动力,使车辆减速或停车。
2. 鼓式刹车片:鼓式刹车片常用于汽车的后轮制动系统。
它由鼓式刹车盘、刹车鼓和刹车片组成。
当制动信号传递到刹车器时,刹车鼓会扩张开,使刹车片与刹车鼓内壁之间产生摩擦力,从而减速或停车。
三、制动过程中的关键部件除了液压制动和刹车片,汽车制动系统中还有一些关键部件,它们也对制动效果发挥重要作用。
1. 刹车盘和刹车鼓:刹车盘和刹车鼓是车轮中心固定的圆盘或圆筒形零件,它们承载着制动片对刹车器施加的摩擦力。
汽车制动系统布置指南
1. 制动系统总体布置
- 制动蹄总成应安装在车轮附近,以确保最佳制动效果。
- 制动液储液罐应布置在易于检查和加注的位置。
- 真空助力器和制动力传感器应靠近制动踏板,以缩短传动距离。
2. 制动管路布置
- 制动管路应尽可能采用直线布置,减少不必要的弯曲和扭转。
- 制动管路应远离高温部件,避免受热影响制动液性能。
- 制动管路应固定牢靠,防止振动和磨损。
3. 制动总泵和真空助力器布置
- 制动总泵应安装在发动机舱内,靠近真空助力器。
- 真空助力器应靠近制动踏板,减小连接管路长度。
- 真空管路应远离热源,防止真空度下降。
4. 驻车制动系统布置
- 驻车制动拉索或钢丝绳应布置在车身下方,避免与其他部件干涉。
- 驻车制动操作手柄应布置在驾驶员易于操作的位置。
5. 安全和维护考虑
- 制动系统的各个部件应便于检查和维护。
- 制动液储液罐应有足够的容量,并设有液位指示。
- 制动管路应采用耐腐蚀和耐高温的材料。
以上是汽车制动系统布置的一般指南,具体布置还需结合车型和空间限制进行优化设计。
汽车气制动管路系统课件 (一)
汽车气制动管路系统是汽车制动系统中非常重要的一部分,它能够保证汽车在行驶过程中出现紧急情况时能够快速停车,避免安全事故的发生。
下面,就让我们来详细了解一下汽车气制动管路系统课件。
一、汽车气制动管路系统原理
汽车气制动管路系统是基于气压原理来设计的。
当我们踩下制动踏板时,压力被转换为气压信号传送至主气缸,主气缸将气压信号通过制动管路传递至制动鼓或制动盘,以实现制动作用。
二、汽车气制动管路系统的构成
1.主气缸:主气缸是制动踏板与制动管路的连接部分。
主气缸通过气压原理将制动信号传递至制动器。
2.制动管路:制动管路由气管、接头和气管支架等部件组成,负责将主气缸传来的气压信号传递至制动器。
3.制动器:制动器主要由制动鼓、制动盘、制动钳、制动片等部件组成,负责制动车轮。
4.气路接头:气路接头主要用来连接气路管路各个部件之间的连接,保证信号传递的畅通。
5.制动灯:在制动时,制动灯会发出红色警示灯,提醒后车注意。
三、汽车气制动管路系统检查
汽车气制动管路系统是汽车行驶中不可或缺的部件,因此必须定期检
查其是否正常工作。
检查的方法主要有以下几点:
1.检查制动液油位和质量,保证不低于规定标准。
2.检查制动管路是否破损、漏气等情况。
3.检查制动盘和制动鼓是否磨损,避免制动失灵。
四、总结
综上所述,汽车气制动管路系统是汽车制动系统中非常重要的一部分,它能够保证汽车在行驶过程中出现紧急情况时能够快速停车,避免安
全事故的发生。
在使用过程中,我们需要遵循相关安全规定,以避免
因疏漏而造成不必要的损失。
气压制动的工作原理
气压制动是一种常用于汽车和大型货车的制动系统,它通过利用气压来实现制动操作。
其工作原理如下:
1. 压缩空气产生
气压制动系统利用了车辆发动机压缩空气产生的气压。
当发动机运转时,它会压缩进入汽缸内的空气,并将其推送到气压制动系统中的空气压缩机。
2. 储气罐储存气压
空气压缩机将压缩空气推送到储气罐中,以便将气压储存起来。
储气罐通常位于车辆底盘或车身的一个安全位置,并且可以容纳足够多的气压,以供汽车在需要的时候使用。
3. 制动器激活
当驾驶员踩下制动踏板时,气压制动系统中的气压会被释放出来,通过气压管路进入制动器。
4. 制动力产生
制动器内的气压通过活塞或其他机械装置产生力量,使制动盘或制动鼓受到压力。
这会导致制动盘或制动鼓与车轮接触,从而产生摩擦力,减低车辆的速度或使其停止。
5. 气压回收
当驾驶员释放制动踏板时,气压制动系统中的气压会自动回收。
气压回收装置会将气压回收到储气罐中,以便下一次制动时继续使用。
需要注意的是,气压制动系统需要保持正常的气压才能正常工作。
为了确保制动系统的可靠性,车辆需要定期检查气压,及时修理和更换相关的部件,以保持制动系统的良好状态。
车辆工程技术49车辆技术1 前言 对于一辆汽车来说,制动系统与其主要的动力系统控制系统在使用过程当中都是同等重要的,而制动系统直接关系到车辆行驶的安全,制动系统的关键也是一门学问。
首先是需要满足相应的安全需求,这还要与整体车体不能发生干涉,工装格局需要牢靠,同时也要考虑到成本拆卸和安装方面等多方面因素。
本文将对于制动系统设计一些基本原理和常用材料进行相关的介绍以供大家进行设计时提供参考。
2 制动管路的材料选择 设备常用的制动材料,基本上来说可以分为钢管,胶管,尼龙管三种类型,但三者之间有着不同的优缺点,需要根据实际情况进行具体的选择和安排。
所以要在进行相应的设计之前,我们需要对于各种材料的优缺点有一定的了解,并熟悉它各自的所适应的范围。
合理的使用和利用不同材料的特性,可以有效的发挥各种管线的各自身优势,同时也可以降低整车的制造成本。
(1)钢管的适用范围。
钢管具有金属普遍的优点,具有较好的耐磨,耐高温,使用寿命长等优点,其管壁也比光滑制动液流动阻力较小,制动液可以顺利地流动,散热性能好。
但对于工艺的要求较高,安装后管路两端不可拆卸,对于日后的检测是不利的。
因此钢管主要用于制动阻钢和汽车底盘的一部分,其强度较高,变形较小的优势能够得到充分的发挥,并且由于底盘可能受到的冲击力较大,钢管能够有较好的抗冲击,抗变形的能力。
从而在异常情况下能够保护相应的制动液,不发生泄漏现象,影响制动系统的使用。
(2)胶管的应用范围。
胶管明显的优势在于是可以弯曲,并可以在一定范围内进行旋转,能够让制动液快速流动,制动效果比较好,但比起尼龙管来说更有耐磨性,但是在使用久后会存在疲劳现象,耐热性也不如钢管,一般常用于汽车底盘与前桥左右轮边的制动器上面进行连接,当汽车在行驶过程当中发生转向时,制动器上的管线也可以随之运动。
(3)尼龙管的应用范围。
尼龙管相对于上述两种材料来说,在轻量化、快速拆卸、成本优势、耐化学性、便于整车空间布置方面都有优势,可以根据不同的装车环境进行布置管路,两边采用快插接头形式便于拆卸,更换检查容易,在维修时相对于其他的管线设计来说,具有较大的灵活性,而且有较好的密封性。
一、管路按汽车行业标准可分为如下系统:制动系统(35系列):液压制动硬管、液压制动软管、气压制动硬管、气压制动软管、真空管传动系统(16系列):离合硬管、离合软管转向系统(34系列):高压油管、吸油管、回油管燃油系统(114系列):供回油管、碳罐油管冷却系统(133系列):冷却水管、出气管进气系统(119系列):空压机进气管、中冷器管二、管路质量特性定义及分类质量特性由产品的规格、性能和结构所决定,并影响产品的适用性,是设计传递给工艺、制造和检验的技术要求和信息。
它包含有尺寸、公差与配合、功能、寿命、互换性、环境污染、人身安全及执行政府有关法规和标准的情况。
根据影响产品使用性能和对人身安全、环境污染的重要程度将质量特性分为关键特性、重要特性和一般特性。
如发生故障,会发生人身事故、丧失产品的主要功能、严重影响产品使用性能和降低产品寿命、对环境产生违反法规的污染,以及必然会引起使用者申诉的特性。
关键特性用【A】表示。
具有关键特性的零部件叫关键件,我厂生产的制动管路系列、转向管路系列、燃油管路系列、真空管系列产品均为关键件。
如发生故障,会影响产品使用性能和寿命,使用者可能提出申诉的特性。
重要特性用【B】表示。
不具有关键特性但具有重要特性的零部件称为重要件。
我厂生产的离合管路、中冷器管路产品为重要件。
如发生故障,对产品的使用性能及寿命影响不大、不致引起使用者申诉的特性。
一般特性用【C】表示,通常不标注。
既不具有重要特性、也不具有关键特性的零部件称为一般件。
三、安全件的定义:因零部件发生损坏或出现故障,可能导致人员伤亡,危害人身安全,或可能导致重大事故,造成重大经济损失等,以及国家强制性标准或技术法规等文件明确规定的涉及安全的零部件。
安全件用表示。
我厂生产的关键件均属于安全件。
产品责任原则有:本厂安全性产品一旦造成顾客利益重大损失,本厂将承担被告责任,有关部门的责任人将承担主要责任。
安全性产品的制造过程应体现当今的技术状态,对于安全性产品的每一道工序都要严格把关,做好记录确保产品质量。
气路系统结构及工作原理气压系统由空压机、干燥器、滤清器、自动排水器、防冻器及各类控制阀件组成,压缩空气经多级净化处理后,供底盘行驶及车上作业使用。
一.结构特点气压系统主要由以下组成:☐压缩空气气源☐动力系统控制气路☐底盘气路☐绞车气路☐司钻控制压缩空气气源整车共用,底盘气路和绞车气路均为相对独立管路,并相互锁定;分动箱的动力操作手柄在切换发动机动力时,同时切换压缩空气气源,钻机车在行驶状态接通底盘气路,钻修作业接通绞车气路。
当二者其一管路接通压缩空气气源时,另外一路则被切断压缩空气气源,确保设备操作安全,减少气路管线泄漏。
方框图如下:二.压缩空气气源1.空气压缩机,往复活塞结构,4缸V形排列;2台,分别安装在2台发动机右侧前部,由曲轴端皮带轮驱动;强制水冷,润滑,冷却管线与发动机冷却水道相连,润滑管线与发动机润滑系统相连。
2.调压阀,安装在空气压缩机缸体侧部,调定控制气压系统空气压力,调定值0.8±0.05 MPa,当系统气体压力升高,达到调定值时,调压阀动作发出气动信号,分两路,一路信号接通两台空气压缩机卸荷阀,顶开各气缸进气阀门,空压机置空负荷运转状态,停止向气压系统供气;另一路信号接通两台干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,吸附干燥剂层的水份,迅速排出干燥器体外,使其干燥剂再生。
系统压力低于调定值,调压阀气信号消失,空压机卸荷阀复位,空压机重新进入正常工作状态,继续向系统供应压缩空气,同时,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。
3.干燥器,吸附再生式结构,2台,各自连接在空气压缩机的输出气路处。
内装干燥剂,当湿空气流过时吸附水份,输出干燥空气。
当系统压力达到调定值时,调压阀发生指令,打开干燥器排泄口,干燥器储气室内的干燥空气迅速反向流动流,经干燥剂层,吸附其中的水份,并排出干燥器,使其干燥剂再生。
系统压力低于调定值,调压阀气信号消失,干燥器排泄口关闭,干燥器重新开始工作,吸附干燥系统压缩空气。
空气制动系统的组成空气制动系统是一种常见的制动系统,广泛应用于大型车辆和重型机械设备中。
它采用压缩空气作为能源,通过控制气压来实现制动功能。
空气制动系统由多个部件组成,包括压缩机、储气罐、阀门、管路和制动器等。
下面将详细介绍空气制动系统的组成。
一、压缩机压缩机是空气制动系统的核心部件,它负责将大气中的空气压缩成高压气体,供给整个系统使用。
常见的压缩机有活塞式和螺杆式两种。
活塞式压缩机通过活塞在缸内往复运动将空气压缩,而螺杆式则是通过两个相互啮合的螺杆来实现。
二、储气罐储气罐是一个用于存放高压空气的容器,通常位于车辆底盘上方或后部。
它可以平衡整个系统中的气体流量和压力波动,并提供一定量的备用能量以应对突发情况。
三、阀门阀门是控制系统中各个部件之间气体流动的关键部件。
常见的阀门包括手动阀、自动阀和安全阀等。
手动阀通过手动操作控制气体流量,自动阀则根据系统压力自动调节气体流量,而安全阀则在系统压力超过一定范围时自动打开,以保护整个系统不受过高压力的损害。
四、管路管路是连接各个部件的管道系统,它将高压空气从储气罐输送到制动器中。
通常采用钢管或铝合金管制作,具有较高的耐压性和耐腐蚀性。
五、制动器制动器是空气制动系统中最重要的部件之一,它将空气能转化为机械能,实现车辆或设备的制动功能。
常见的制动器有鼓式制动器和盘式制动器两种。
鼓式制动器通过摩擦力将刹车鼓转速降低从而实现制停效果,而盘式制动器则是通过摩擦片夹紧车轮轮毂上的刹车盘来实现。
六、其他部件除了以上几种主要部件外,空气制动系统还包括一些其他部件,如制动踏板、制动缸、制动鼓和刹车片等。
这些部件都是为了保证整个系统的正常运行而设计的。
总结:空气制动系统是一种高效可靠的制动系统,它由压缩机、储气罐、阀门、管路和制动器等多个部件组成。
这些部件密切配合,共同实现了车辆或设备的安全停车和行驶控制功能。
在日常维护中,需要对各个部件进行定期检查和维护,以确保其正常运行并延长使用寿命。
小型大众朗逸汽车制动系统的工作原理
小型大众朗逸汽车的制动系统工作原理主要是通过将汽车的动
能通过摩擦转换成热能来实现制动效果。
制动系统分为液压制动和气压制动两种类型。
在液压制动系统中,制动总泵以制动液为传动介质,通过制动管路将制动液输送到每个制动分泵,从而产生制动效果。
而在气压制动系统中,以高压气体为制动介质,再通过管路输送到各个制动分泵,达到制动效果。
制动系统的主要作用是使行驶中的汽车按照驾驶员的要求进行
强制减速甚至停车,以及使已停驶的汽车在各种道路条件下保持稳定。