光学第六章
- 格式:ppt
- 大小:1.58 MB
- 文档页数:83
第六章像差计算6.1 光学系统的像差这里将提供像差的数值计算。
掌握各种像差的基本概念.特别是初级像差。
以及各种表面和薄透镜的三级像差贡献。
光学计算通常要求6位有效数字的精度,这取决于光学系统的复杂程度、仪器精度和应用的领域。
三角函数应在小数点后面取6位数,这相当于0.2弧秒。
这样的精度基本上满足了绝大多数使用要求。
当然,结构尺寸较大的衍射极限光学系统要求的精度比这还要向些。
光学计算所花费的时间明显地取决于设计者的技巧和所使用的计算设备的先进程度。
计算技术发展到今天,就是使用普通的个人计算机,光学计算所需的时间也已经很少了。
但要对一个复杂的系统进行优化设计,特别是全局优化设计时.还是要花费一定的时间的。
关于如何进行光学设计,一直有两种观点。
一种观点主张以像差理论为基础,根据对光学系统的质量要求,用像差表达式,特别是用三级像差表达式来求解光学系统的初始结构,然后计算光线并求出像差,对其结果进行分析。
如果不尽人意,那么就要在像差理论的指导下,利用校正像差的手段(弯曲半径,更换玻璃、改变光焦度分配等),进行像差平衡,直到获得满意的结果。
如果最后得不到满意的结果,那么就要重新利用像差理论求解初始结构,而后再重复上述的过程,直到取得满意的结果。
另一种观点是从现存的光学系统的结构中找寻适合于使用要求的结构,这可从专利或文献中查找,然后计算光线,分析像差,采用弯曲半径,增加或减少透镜个数等校正像差的手段,消除和平衡像差,直到获得满意的结果。
对于常规物镜,如Cooke三片,双高斯、匹兹瓦尔物镜等.常采用这种方法。
这种方法需要计算大量的光线(计算机发展到今天。
这已不成问题),同时需要光学设计者有较丰富的设计经历和经验.以便对设计结果进行评价。
通常我们可以把二者结合起来,以像差理论为指导,进行像差平衡。
特别是计算机发展到今天,光学计算已经不是干扰光学设计者的问题了。
对于常规镜头,通常不再需要像以前那样从求解初始结构开始,而是根据技术指标和使用要求、从光学系统数据库或专利目录中找出合适的结构,然后进行计算和分析。
第6章波动光学6.1基本要求1.理解相干光的条件及获得相干光的方法.2.掌握光程的概念以及光程差和相位差的关系,了解半波损失,掌握半波损失对薄膜干涉极大值和极小值条件的影响。
3.能分析杨氏双缝干涉条纹及薄膜等厚干涉条纹的位置4.了解迈克耳孙干涉仪的工作原理5.了解惠更斯-菲涅耳原理及它对光的衍射现象的定性解释.6.了解用波带法来分析单缝夫琅禾费衍射条纹分布规律的方法,会分析缝宽及波长对衍射条纹分布的影响.7.了解衍射对光学仪器分辨率的影响.8.掌握光栅方程,会确定光栅衍射谱线的位置,会分析光栅常数及波长对光栅衍射谱线分布的影响.9.理解自然光与偏振光的区别.10.理解布儒斯特定律和马吕斯定律.11.了解线偏振光的获得方法和检验方法.6.2基本概念1.相干光若两束光的光矢量满足频率相同、振动方向相同以及在相遇点上相位差保持恒定,则这两束光为相干光。
能够发出相干光的光源称为相干光源。
2.光程光程是在光通过介质中某一路程的相等时间内,光在真空中通过的距离。
若介质的折射率为n,光在介质中通过的距离为L,则光程为nL。
薄透镜不引起附加光程差。
光程差∆与相位差ϕ∆的关系2πϕλ∆=∆。
3.半波损失光在两种介质表面反射时相位发生突变的现象。
当光从光疏介质(折射率较小的介质)射向光密介质(折射率较大的介质)时,反射光的相位较之入射光的相位跃变了π,相当于反射光与入射光之间附加了半个波长的光程差,所以称为半波损失。
4.杨氏双缝干涉杨氏双缝干涉实验是利用波阵面分割法来获得相干光的。
用单色平行光照射一窄缝S ,窄缝相当于一个线光源。
S 后放有与其平行且对称的两狭缝S 1和S 2,两缝之间的距离很小。
两狭缝处在S 发出光波的同一波阵面上,构成一对初相位相同的等强度的相干光源,在双缝的后面放一个观察屏,可以在屏幕上观察到明暗相间的对称的干涉条纹,这些条纹都与狭缝平行,条纹间的距离相等。
5.薄膜干涉薄膜干涉是利用分振幅法来获得相干光的。
《第六章常见的光学仪器》知识点归纳第六章主要介绍了常见的光学仪器,涵盖了显微镜、望远镜、光谱仪、干涉仪、分光计等。
以下是该章节的知识点归纳:
1.显微镜:
-显微镜通过放大物体的图像来观察微观结构。
-光学显微镜使用透镜来放大物体的图像。
-透射电子显微镜和扫描电子显微镜使用电子束来放大物体的图像。
-相差显微镜和荧光显微镜是常见的光学显微镜。
2.望远镜:
-望远镜用于观察远处的天体。
-折射望远镜使用透镜将入射光线折射来放大图像。
-反射望远镜使用反射镜将入射光线反射来放大图像。
-天文望远镜和光学望远镜是常见的望远镜类型。
3.光谱仪:
-光谱仪用于分析物质的光谱特征。
-分光仪通过将入射光分散成不同波长的光束来进行光谱分析。
-分光光度计通过测量不同波长光的吸收或发射来定量分析物质。
-红外光谱仪和紫外-可见光谱仪是常见的光谱仪。
4.干涉仪:
-干涉仪用于测量光的干涉现象。
-杨氏双缝干涉实验是干涉仪的基本原理。
-干涉仪可以用来测量波长、折射率、薄膜厚度等。
-迈克尔逊干涉仪和迪克逊干涉仪是常见的干涉仪。
5.分光计:
-分光计用于测量和分析光线的色散性质。
-分光计通过将入射光线经过光栅或棱镜分散来进行测量。
-分光计可以用来测量物质的光谱特性、波长、频率等。
-分光光度计和偏振分光计是常见的分光计。
以上是第六章常见的光学仪器的知识点归纳。
通过学习这些仪器,我们可以更好地了解光学原理,应用于不同领域的科学研究和实验中。