确定抛物线y=ax2+bx+c平移、翻折、
- 格式:pptx
- 大小:170.72 KB
- 文档页数:5
二次函数是一种常见的代数函数,其一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
在数学中,二次函数通常用来描述抛物线的形状,而平移变换则是在二次函数的图像上进行位置的移动。
本文将围绕二次函数和平移变换展开讨论,以深入探究二次函数与平移变换之间的关系。
一、二次函数的基本形式1.1 二次函数的一般形式二次函数的一般形式为y=ax^2+bx+c,其中a、b、c为常数,且a≠0。
其中,a决定了抛物线的开口方向和形状,而b则决定了抛物线在x轴方向上的平移,c则决定了抛物线在y轴方向上的平移。
1.2 二次函数的图像特点当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
抛物线在x轴方向上的平移量由b决定,当b>0时向右平移,当b<0时向左平移。
而在y轴方向上的平移量由c决定,当c>0时向上平移,当c<0时向下平移。
二、二次函数的平移变换2.1 x轴方向的平移变换对于二次函数y=ax^2+bx+c,当x发生变换x→(x-h)时,抛物线将沿x轴方向平移h个单位。
平移后的二次函数为y=a(x-h)^2+b(x-h)+c,其图像在横轴上右移h个单位。
2.2 y轴方向的平移变换对于二次函数y=ax^2+bx+c,当y发生变换y→(y-k)时,抛物线将沿y轴方向平移k个单位。
平移后的二次函数为y=a(x^2+bx+(c-k)),其图像在纵轴上上移k个单位。
三、二次函数与平移变换之间的关系3.1 平移变换对二次函数的影响平移变换可以改变二次函数的图像位置,使其整体在坐标平面上发生移动。
x轴方向的平移变换可以改变抛物线的水平位置,而y轴方向的平移变换可以改变抛物线的垂直位置。
平移变换对二次函数的图像产生了显著的影响。
3.2 二次函数的平移变换示例举例而言,对于二次函数y=x^2,当x发生变换x→(x-2)时,即为将y=x^2的图像沿x轴方向右移2个单位,变为y=(x-2)^2。
专题05二次函数中的平移、旋转、对称(五大题型)通用的解题思路:1.二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x–h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.3.二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
4.二次函数图象的翻折与旋转y=a(x-h)²+k绕原点旋转180°y=-a(x+h)²-k a、h、k 均变号沿x 轴翻折y=-a(x-h)²-k a、k 变号,h 不变沿y 轴翻折y=a(x+h)²+ka、h 不变,h 变号题型一:二次函数中的平移问题1.(2024•牡丹区校级一模)如图,在平面直角坐标系xOy 中,抛物线21(0)y ax bx a a=+-<与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示).(2)当B 的纵坐标为3时,求a 的值;(3)已知点11(,2P a-,(2,2)Q ,若抛物线与线段PQ 恰有一个公共点,请结合函数图象求出a 的取值范围.【分析】(1)令0x =,求出点A 坐标根据平移得出结论;(2)将B 的纵坐标为3代入求出即可;(3)由对称轴为直线1x =得出212y ax ax a =--,当2y =时,解得1|1|a a x a ++=,2|1|a a x a-+=,结合图象得出结论;【解答】解:(1)在21(0)y ax bx a a =+-<中,令0x =,则1y a =-,∴1(0,)A a-,将点A 向右平移2个单位长度,得到点B ,则1(2,)B a-.(2)B 的纵坐标为3,∴13a-=,∴13a =-.(3)由题意得:抛物线的对称轴为直线1x =,2b a ∴=-,∴212y ax ax a=--,当2y =时,2122ax ax a=--,解得1|1|a a x a ++=,2|1|a a x a-+=,当|1|2a a a -+≤时,结合函数图象可得12a ≤-,抛物线与PQ 恰有一个公共点,综上所述,a 的取值范围为12a ≤-.【点评】本题考查二次函数的图象及性质;熟练掌握二次函数图象上点的特征,数形结合讨论交点是解题的关键.2.(2024•平原县模拟)已知抛物线212:23C y ax ax a =++-.(1)写出抛物线1C 的对称轴:.(2)将抛物线1C 平移,使其顶点是坐标原点O ,得到抛物线2C ,且抛物线2C 经过点(2,2)A --和点B (点B 在点A 的左侧),若ABO ∆的面积为4,求点B 的坐标.(3)在(2)的条件下,直线1:2l y kx =-与抛物线2C 交于点M ,N ,分别过点M ,N 的两条直线2l ,3l 交于点P ,且2l ,3l 与y 轴不平行,当直线2l ,3l 与抛物线2C 均只有一个公共点时,请说明点P 在一条定直线上.【分析】(1)根据抛物线的对称轴公式直接可得出答案.(2)根据抛物线2C 的顶点坐标在原点上可设其解析式为2y ax =,然后将点A 的坐标代入求得2C 的解析式,于是可设B 的坐标为21(,)2t t -且(2)t <-,过点A 、B 分别作x 轴的垂线,利用4ABO OBN OAM ABNM S S S S ∆∆∆=--=梯形可求得t 的值,于是可求得点B 的坐标.(3)设1(M x ,1)y ,2(N x ,2)y ,联立抛物线与直线1l 的方程可得出12x x k +=-,124x x =-.再利用直线2l 、直线3l 分别与抛物线相切可求得直线2l 、直线3l 的解析式,再联立组成方程组可求得交点P 的纵坐标为一定值,于是可说明点P 在一条定直线上.【解答】解:(1)抛物线1C 的对称轴为:212ax a=-=-.故答案为:1x =-.故答案为:1x =-.(2) 抛物线1C 平移到顶点是坐标原点O ,得到抛物线2C ,∴可设抛物线2C 的解析式为:2y ax = 点(2,2)A --有抛物线2C 上,22(2)a ∴-=⋅-,解得:12a =-.∴抛物线2C 的解析式为:212y x =-.点B 在抛物线2C 上,且在点A 的左侧,∴设点B 的坐标为21(,)2t t -且(2)t <-,如图,过点A 、B 分别作x 轴的垂线,垂足为点M 、N .ABO OBN OAM ABNMS S S S ∆∆∆=-- 梯形2211111()()22(2)(2)22222t t t t =⨯-⨯-⨯⨯-⨯+⨯--32311122424t t t t =--++++212t t =+,又4ABO S ∆=,∴2142t t +=,解得:13t +=±,4(2t t ∴=-=不合题意,舍去),则2211(4)822t -=-⨯-=-,(4,8)B ∴--.(3)设1(M x ,1)y ,2(N x ,2)y ,联立方程组:2122y xy kx ⎧=-⎪⎨⎪=-⎩,整理得:2240x kx +-=,122x x k ∴+=-,124x x =-.设过点M 的直线解析式为y mx n =+,联立得方程组212y xy mx n⎧=-⎪⎨⎪=+⎩,整理得2220x mx n ++=.①过点M 的直线与抛物线只有一个公共点,∴△2480m n =-=,∴212n m =.∴由①式可得:221112202x mx m ++⨯=,解得:1m x =-.∴2112n x =.∴过M 点的直线2l 的解析式为21112y x x x =-+.用以上同样的方法可以求得:过N 点的直线3l 的解析式为22212y x x x =-+,联立上两式可得方程组2112221212y x x x y x x x ⎧=-+⎪⎪⎨⎪=-+⎪⎩,解得1212212x x x y x x +⎧=⎪⎪⎨⎪=-⎪⎩,12x x k +=- ,124x x =-.∴(,2)2k P -∴点P 在定直线2y =上.(如图)【点评】本题考查了抛物线的对称轴、求二次函数的解析式、解一元二次方程、一元二次方程的根的情况、求直线交点坐标等知识点,解题的关键是利用所画图形帮助探索解法思路.3.(2024•和平区一模)已知抛物线21(y ax bx a =+-,b 为常数.0)a ≠经过(2,3),(1,0)两个点.(Ⅰ)求抛物线的解析式;(Ⅱ)抛物线的顶点为;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线.【分析】(Ⅰ)利用待定系数法即可求解;(Ⅱ)根据抛物线的顶点式即可求得;(Ⅲ)利用平移的规律即可求得.【解答】解:(1) 抛物线21y ax bx =+-经过(2,3),(1,0)两个点,∴421310a b a b +-=⎧⎨+-=⎩,解得10a b =⎧⎨=⎩,∴抛物线的解析式为21y x =-;(Ⅱ) 抛物线21y x =-,∴抛物线的顶点为(0,1)-,故答案为:(0,1)-;(Ⅲ)将抛物线向右平移1个单位长度,向下平移2个单位长度,就得到抛物线2(1)12y x =---,即2(1)3y x =--.故答案为:2(1)3y x =--.【点评】本题考查了待定系数法求二次函数的解析式,二次函数的性质,二次函数图象与几何变换,熟练掌握待定系数法是解题的关键.4.(2024•礼县模拟)如图,在平面直角坐标系中,抛物线23y ax bx =++交y 轴于点A ,且过点(1,2)B -,(3,0)C .(1)求抛物线的函数解析式;(2)求ABC ∆的面积;(3)将抛物线向左平移(0)m m >个单位,当抛物线经过点B 时,求m的值.【分析】(1)用待定系数法求函数解析式即可;(2)先求出点A 的坐标,然后切成直线BC 的解析式,求出点D 的坐标,再根据ABC ABD ACD S S S ∆∆∆=+求出ABC ∆的面积;(3)由(1)解析式求出对称轴,再求出点B 关于对称轴的对称点B ',求出BB '的长度即可;【解答】解:(1)把(1,2)B -,(3,0)C 代入23y ax bx =++,则933032a b a b ++=⎧⎨-+=⎩,解得1212a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数解析式为211322y x x =-++;(2) 抛物线23y ax bx =++交y 轴于点A ,(0,3)A ∴,设直线BC 的解析式为y kx n =+,把(1,2)B -,(3,0)C 代入y kx n =+得230k n k n -+=⎧⎨+=⎩,解得1232k n ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+,设BC 交y 于点D,如图:则点D 的坐标为3(0,)2,33322AD ∴=-=,113()(31)3222ABC ABD ACD C B S S S AD x x ∆∆∆∴=+=-=⨯⨯+=,(3)211322y x x =-++ ,∴对称轴为直线122b x a =-=,令B 点关于对称轴的对称点为B ',(2,2)B ∴',3BB ∴'=,抛物线向左平移(0)m m >个单位经过点B ,3m ∴=.【点评】本题主要考查待定系数法求二次函数的解析式,二次函数图象与几何变换、二次函数的性质、三角形面积等知识,关键是掌握二次函数的性质和平移的性质.5.(2024•珠海校级一模)已知抛物线223y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)化成顶点是即可求解;(2)根据平移的规律得到2(1)4y x m =-+-+,把原点代入即可求得m 的值.【解答】解:(1)2223(1)4y x x x =+-=+- ,∴抛物线的顶点坐标为(1,4)--.(2)该抛物线向右平移(0)m m >个单位长度,得到的新抛物线对应的函数表达式为2(1)4y x m =+--, 新抛物线经过原点,20(01)4m ∴=+--,解得3m =或1m =-(舍去),3m ∴=,故m 的值为3.【点评】本题考查了二次函数的性质,二次函数图象与几何变换,二次函数图象上点的坐标特征,求得平移后的抛物线的解析式是解题的关键.6.(2024•关岭县一模)如图,二次函数212y x bx c =++与x 轴有两个交点,其中一个交点为(1,0)A -,且图象过点(1,2)B ,过A ,B 两点作直线AB .(1)求该二次函数的表达式,并用顶点式来表示;(2)将二次函数212y x bx c =++向左平移1个单位,得函数2y =;函数2y 与坐标轴的交点坐标为;(3)在(2)的条件下,将直线AB 向下平移(0)n n >个单位后与函数2y 的图象有唯一交点,求n 的值.【分析】(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式即可求出b 、c 值,再转化为顶点式即可;(2)根据抛物线平移规则“左加右减”得到2y 解析式,令20y =求出与x 轴的交点坐标即可;(3)利用待定系数法求出直线AB 解析式,再根据直线平移法则“上加下减”得到直线平移后解析式,联立消去y ,根据判别式为0解出n 值即可.【解答】解:(1)将点(1,0)A -,点(1,2)B 坐标代入抛物线解析式得:2022b c b c -+=⎧⎨++=⎩,解得11b c =⎧⎨=-⎩,∴抛物线解析式为2219212()48y x x x =+-=+-.∴抛物线解析式为:21192()48y x =+-.(2)将二次函数1y 向左平移1个单位,得函数22592()48y x =+-,令20y =,则2592(048x +-=,解得112x =-,22x =-,∴平移后的抛物线与x 轴的交点坐标为1(2-,0)(2-,0).故答案为:22592()48y x =+-,1(2-,0)(2-,0).(3)设直线AB 的解析式为y kx b =+,将(1,0)A -,点(1,2)B 代入得:02k b k b -+=⎧⎨+=⎩,解得11k b =⎧⎨=⎩,∴直线AB 解析式为:1y x =+.将直线AB 向下平移(0)n n >个单位后的解析式为1y x n =+-,与函数2y 联立消去y 得:2592(148x x n +-=+-,整理得:22410x x n +++=,直线AB 与抛物线有唯一交点,△1642(1))0n =-⨯+=,解得1n =.【点评】本题考查了二次函数的图象与几何变换,熟练掌握函数的平移法则是解答本题的关键.7.(2024•温州模拟)如图,直线122y x =-+分别交x 轴、y 轴于点A ,B ,抛物线2y x mx =-+经过点A .(1)求点B 的坐标和抛物线的函数表达式.(2)若抛物线向左平移n 个单位后经过点B ,求n 的值.【分析】(1)由题意可得点A 、B 的坐标,利用待定系数法求解二次函数的表达式即可解答;(2)根据二次函数图象平移规律“左加右减,上加下减”得到平移后的抛物线的表达式,再代入B 的坐标求解即可.【解答】解:(1)令0x =,则1222y x =-+=,(0,2)B ∴,令0y =,则1202y x =-+=,解得4x =,(4,0)A ∴,抛物线2y x mx =-+经过点A ,1640m ∴-+=,解得4m =,∴二次函数的表达式为24y x x =-+;(2)224(2)4y x x x =-+=--+ ,∴抛物线向左平移n 个单位后得到2(2)4y x n =--++,经过点(0,2)B ,22(2)4n ∴=--++,解得2n =±,故n 的值为2-2+【点评】本题考查待定系数法求二次函数解析式、一次函数图象上点的坐标特征、二次函数的图象与几何变换,二次函数图象上点的坐标特征等知识,熟练掌握待定系数法求二次函数解析式是解答的关键.8.(2024•巴东县模拟)已知二次函数2y ax bx c =++图象经过(2,3)A ,(3,6)B 、(1,6)C -三点.(1)求该二次函数解析式;(2)将该二次函数2y ax bx c =++图象平移使其经过点(5,0)D ,且对称轴为直线4x =,求平移后的二次函数的解析式.【分析】(1)运用待定系数法即可求得抛物线解析式;(2)利用平移的规律求得平移后的二次函数的解析式.【解答】解:(1)把(2,3)A ,(3,6)B 、(1,6)C -代入2y ax bx c =++,得:4239366a b c a b c a b c ++=⎧⎪++=⎨⎪-+=⎩,解得:123a b c =⎧⎪=-⎨⎪=⎩,∴该二次函数的解析式为223y x x =-+;(2)若将该二次函数2y ax bx c =++图象平移后经过点(5,0)D ,且对称轴为直线4x =,设平移后的二次函数的解析式为2(4)y x k =-+,将点(5,0)D 代入2(4)y x k =-+,得2(54)0k -+=,解得,1k =-.∴将二次函数的图象平移后的二次函数的解析式为22(4)1815y x x x =--=-+.【点评】本题考查了待定系数法求解析式,抛物线的性质,熟知待定系数法和平移的规律是解题的关键.9.(2024•郑州模拟)在平面直角坐标系中,抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B .(1)求抛物线的解析式;(2)直线y x m =+经过点A ,判断点B 是否在直线y x m =+上,并说明理由;(3)平移抛物线2y x bx c =-++使其顶点仍在直线y x m =+上,若平移后抛物线与y 轴交点的纵坐标为n ,求n 的取值范围.【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求得直线y x m =+的解析式,然后代入点B 判断即可;(3)设平移后的抛物线为2()1y x p q =--++,其顶点坐标为(,1)p q +,根据题意得出2221511()24n p q p p p =-++=-++=-++,得出n 的最大值.【解答】解:(1) 抛物线2y x bx c =-++经过点(1,2)A ,(2,1)B ,∴12421b c b c -++=⎧⎨-++=⎩,解得21b c =⎧⎨=⎩,∴抛物线的解析式为:221y x x =-++;(2)点B 不在直线y x m =+上,理由:直线y x m =+经过点A ,12m ∴+=,1m ∴=,1y x ∴=+,把2x =代入1y x =+得,3y =,∴点(2,1)B 不在直线y x m =+上;(3)∴平移抛物线221y x x =-++,使其顶点仍在直线1y x =+上,设平移后的抛物线的解析式为2()1y x p q =--++,其顶点坐标为(,1)p q +, 顶点仍在直线1y x =+上,11p q ∴+=+,p q ∴=,抛物线2()1y x p q =--++与y 轴的交点的纵坐标为21n p q =-++,2221511(24n p q p p p ∴=-++=-++=-++,∴当12p =-时,n 有最大值为54.54n ∴ .【点评】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.10.(2024•鞍山模拟)已知抛物线2246y x x =+-.(1)求抛物线的顶点坐标;(2)将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,求m 的值.【分析】(1)将二次函数的解析式改写成顶点式即可.(2)将抛物线与x 轴的交点平移到原点即可解决问题.【解答】解:(1)由题知,2222462(21)82(1)8y x x x x x =+-=++-=+-,所以抛物线的顶点坐标为(1,8)--.(2)令0y =得,22460x x +-=,解得11x =,23x =-.又因为将该抛物线向右平移(0)m m >个单位长度,平移后所得新抛物线经过坐标原点,所以30m -+=,解得3m =.故m 的值为3.【点评】本题考查二次函数的图象与性质,熟知利用配方法求二次函数解析式的顶点式及二次函数的图象与性质是解题的关键.11.(2023•原平市模拟)(1)计算:3211()(5)|2|3--+---⨯-;(2)观察表格,完成相应任务:x3-2-1-012221A x x =+-21-2-1-①72(1)2(1)1B x x =-+--721-2-②2任务一:补全表格;任务二:观察表格不难发现,当x m =时代数式A 的值与当1x m =+时代数式B 的值相等,我们称这种现象为代数式B 参照代数式A 取值延后,相应的延后值为1:换个角度来看,将代数式A ,B 变形,得到(A =③2)2-,22B x =-将A 与B 看成二次函数,则将A 的图象④(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式P =⑤.【分析】(1)先算乘方,负整数指数幂,绝对值,再算乘法,最后算加减法即可求解;(2)①把1x =分别代入代数式A ,B 即可求得;②根据代数式B 参照代数式A 取值延后,相应的延后值为1,即可得出二次函数A 、B 平移的规律是向右平移1个单位,据此即可得出代数式P 参照代数式A 取值延后,延后值为3的P 的代数式.【解答】解:(1)原式19(5)2=-+--⨯19(10)=-+--1910=-++18=;(2)任务一:将1x =代入2212A x x =+-=;代入2(1)2(1)11B x x =-+--=-,故答案为:①2,②1-;任务二:将代数式A ,B 变形,得到2(1)2A x =+-,22B x =-将A 与B 看成二次函数,则将A 的图象向右平移1个单位(描述平移方式),可得到B 的图象.若代数式P 参照代数式A 取值延后,延后值为3,则代数式22(13)2(2)2P x x =+--=--.故答案为:①2;②1-;③1x +;④向右平移1个单位;⑤2(2)2P x =--.【点评】本题考查二次函数图象与几何变换,二次函数图象上点的坐标特征,理解题意,能够准确地列出解析式,并进行求解即可.12.(2024•南山区校级模拟)数形结合是解决数学问题的重要方法.小明同学学习二次函数后,对函数2(||1)y x =--进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:【观察探究】:方程2(||1)1x --=-的解为:;【问题解决】:若方程2(||1)x a --=有四个实数根,分别为1x 、2x 、3x 、4x .①a 的取值范围是;②计算1234x x x x +++=;【拓展延伸】:①将函数2(||1)y x =--的图象经过怎样的平移可得到函数21(|2|1)3y x =---+的图象?画出平移后的图象并写出平移过程;②观察平移后的图象,当123y时,直接写出自变量x 的取值范围.【分析】(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数21(|21)3y x =---+的图象,根据图象即可得到结论.【解答】解:(1)观察探究:①由图象可知,当函数值为1-时,直线1y =-与图象交点的横坐标就是方程2(||1)1x --=-的解.故答案为:2x =-或0x =或2x =.(2)问题解决:①若方程2(|1)x a --=有四个实数根,由图象可知a 的取值范围是10a -<<.故答案为:10a -<<.②由图象可知:四个根是两对互为相反数.所以12340x x x x +++=.故答案为:0.(3)拓展延伸:①将函数2(||1)y x =--的图象向右平移2个单位,向上平移3个单位可得到函数21(|2|1)3y x =---+的图象,②当123y 时,自变量x 的取值范围是04x .故答案为:04x.【点评】本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.13.(2023•花山区一模)已知抛物线2y x ax b =++的顶点坐标为(1,2).(1)求a ,b 的值;(2)将抛物线2y x ax b =++向下平移m 个单位得到抛物线1C ,存在点(,1)c 在1C 上,求m 的取值范围;(3)抛物线22:(3)C y x k =-+经过点(1,2),直线(2)y n n =>与抛物线2y x ax b =++相交于A 、B (点A 在点B 的左侧),与2C 相交于点C 、D (点C 在点D 的左侧),求AD BC -的值.【分析】(1)根据对称轴公式以及当1x =时2y =,用待定系数法求函数解析式;(2)根据(1)可知抛物线2223(1)2y x x x =-+=-+,再由平移性质得出抛物线1C 解析式,然后把点(,1)c 代入抛物线1C ,再根据方程有解得出m 的取值范围;(3)先求出抛物线2C 解析式,再求出A ,B ,C ,D 坐标,然后求值即可.【解答】解:(1)由题意得,1212aa b ⎧-=⎪⎨⎪++=⎩,解得23a b =-⎧⎨=⎩;(2)由(1)知,抛物线2223(1)2y x x x =-+=-+,将其向下平移m 个单位得到抛物线1C ,∴抛物线1C 的解析式为2(1)2y x m =-+-,存在点(,1)c 在1C 上,2(1)21c m ∴-+-=,即2(1)1c m -=-有实数根,10m ∴- ,解得1m,m ∴的取值范围为1m;(3) 抛物线22:(3)C y x k =-+经过点(1,2),2(13)2k ∴-+=,解得2k =-,∴抛物线2C 的解析式为2(3)2y x =--,把(2)y n n =>代入到2(1)2y x =-+中,得2(1)2n x =-+,解得1x =1x =(1A ∴-,)n ,(1B +)n ,把(2)y n n =>代入到2(3)2y x =--中,得2(3)2n x =--,解得3x =或3x =+(3C ∴)n ,(3D +,)n ,(3(12AD ∴=+--=+,(1(32BC =+--=-+,(2(24AD BC ∴-=+--+=.【点评】本题考查二次函数的几何变换,二次函数的性质以及待定系数法求函数解析式,直线和抛物线交点,关键对平移性质的应用.14.(2023•环翠区一模)已知抛物线2y x bx c =++经过点(1,0)和点(0,3).(1)求此抛物线的解析式;(2)当自变量x 满足13x -时,求函数值y 的取值范围;(3)将此抛物线沿x 轴平移m 个单位长度后,当自变量x 满足15x时,y 的最小值为5,求m 的值.【分析】(1)利用待定系数法求解;(2)先求出1x =-及3x =时的函数值,结合函数的性质得到答案;(3)设此抛物线沿x 轴向右平移m 个单位后抛物线解析式为(2)2y x m l =---,利用二次函数的性质,当25m +>,此时5x =时,5y =,即(52)215m ---=,设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)21y x m =-+-,利用二次函数的性质得到2m l -<,此时1x =时,5y =,即(12)215m ---=,然后分别解关于m 的方程即可.【解答】解:(1) 抛物线2y x bx c =++经过点(1,0)和点(0,3),∴103b c c ++=⎧⎨=⎩,解得43b c =-⎧⎨=⎩,∴此抛物线的解析式为243y x x =-+;(2)当1x =-时,1438y =++=,当3x =时,91230y =-+=,2243(2)1y x x x =-+=-- ,∴函数图象的顶点坐标为(2,1)-,∴当13x -时,y 的取值范围是18y - ;(3)设此抛物线x 轴向右平移m 个单位后抛物线解析式为(2)y x m =--21-,当自变量x 满足15x时,y 的最小值为5,25m ∴+>,即3m >,此时5x =时,5y =,即(52)m --215-=,解得13m =+,23m =-(舍去);设此抛物线沿x 轴向左平移m 个单位后抛物线解析式为(2)y x m =-+21-,当自变量x 满足15x时,y 的最小值为5,21m ∴-<,即1m >,此时1x =时,5y =,即2(12)15m ---=,解得11m =-+,21m =--(舍去),综上所述,m 的值为3+1+【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a 不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式,也考查了二次函数的性质.15.(2023•南宁一模)如图1,抛物线21y x c =-+的图象经过(1,3).(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x - 时,求1y 的最大值与最小值的和;(3)如图2,将抛物线1y 向右平移m 个单位(0)m >,再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出当n 随m 的增大而减小时,m 的取值范围.【分析】(1)把(1,3)代入抛物线解析式求得c 的值;根据抛物线解析式可以直接得到顶点坐标;(2)根据抛物线的性质知:当0x =时,1y 有最大值为4,当3x =-时,1y 有最小值为5-.然后求1y 的最大值与最小值的和;(3)根据平移的性质“左加右减,上加下减”即可得出抛物线2y 的函数解析式;然后根据抛物线的性质分两种情况进行解答:当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.【解答】解:(1)抛物线21y x c =-+的图象经过(1,3),∴当0x =时,2113y c =-+=,解得4c =.∴214y x =-+.顶点坐标为(0,4);(2)10-< ,∴抛物线开口向下.当0x =时,1y 有最大值为4.当3x =-时,21(3)45y =--+=-.当12x =时,21115()424y =-+=.∴当3x =-时,1y 有最小值为5-.∴最大值与最小值的和为4(5)1+-=-;(3)由题意知,新抛物线2y 的顶点为(,42)m m +,∴22()42y x m m =--++.当12y y =时,22()424x m m x --++=-+,化简得:2220mx m m -+=.又0m > ,∴112x m =-.∴2211(1)4(2)424y m m =--+=--+.当21(2)404m --+=时,解得12m =-;26m =, 104-<,∴抛物线开口向下.当06m < 时,0y ,2211(2)4344n m m m =--+=-++.当6m >时,0y <,2211(2)4344n y m m m =-=--=--.∴综上所述2213,06413,64m m m n m m m ⎧-++<⎪⎪=⎨⎪-->⎪⎩ (或21|(2)4|)4n m =--+.当26m <<时,n 随m 的增大而减小.【点评】本题属于二次函数综合题,主要考查了二次函数图象上点的坐标特征,二次函数图象与几何变换,二次函数的图象与性质以及二次函数最值的求法.难度偏大.16.(2023•奉贤区一模)如图,在平面直角坐标系xOy 中,抛物线23y ax bx =++的对称轴为直线2x =,顶点为A ,与x 轴分别交于点B 和点C (点B 在点C 的左边),与y 轴交于点D ,其中点C 的坐标为(3,0).(1)求抛物线的表达式;(2)将抛物线向左或向右平移,将平移后抛物线的顶点记为E ,联结DE .①如果//DE AC ,求四边形ACDE 的面积;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,当DQE CDQ ∠=∠时,求点Q的坐标.【分析】(1)利用待定系数法解答即可;(2)①依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质和平行线的性质求得点E ,F 坐标,再利用四边形ACDE 的面积DFC EFCA S S ∆=+平行四边形解答即可;②依据题意画出图形,利用A ,C ,D 的坐标,等腰直角三角形的判定与性质,勾股定理求得点E 坐标和线段DE ,再利用等腰三角形的判定与性质求得线段FQ ,则结论可求.【解答】解:(1) 抛物线23y ax bx =++的对称轴为直线2x =,经过点(3,0)C ,∴229330b a a b ⎧-=⎪⎨⎪++=⎩,解得:14a b =⎧⎨=-⎩,∴抛物线的表达式为243y x x =-+;(2)①2243(2)1y x x x =-+=-- ,(2,1)A ∴-.设抛物线的对称轴交x 轴于点G ,1AG ∴=.令0x =,则3y =,(0,3)D ∴,3OD ∴=.令0y =,则2430x x -+=,解得:1x =或3x =,(1,0)B ∴.如果//DE AC ,需将抛物线向左平移,设DE 交x 轴于点F ,平移后的抛物线对称轴交x 轴于点H ,如图, 点C 的坐标为(3,0),3OC ∴=.由题意:45ACB ∠=︒,//DE AC ,45DFC ACB ∴∠=∠=︒.3OF OD ∴==,(3,0)F ∴-,由题意:1EH =,1FH EH ∴==,(4,1)E ∴--.//AE x 轴,//DE AC ,∴四边形EFCA 为平行四边形,2(4)6AE =--= ,616EFCA S ∴=⨯=平行四边形.1163922DFC S FC OD ∆=⨯⋅=⨯⨯= ,∴四边形ACDE 的面积6915DFC EFCA S S ∆=+=+=平行四边形;②如果点E 在直线DC 上,点Q 在平移后抛物线的对称轴上,DQE CDQ ∠=∠,如图,当点Q 在x 轴的下方时,设平移后的抛物线的对称轴交x 轴于F ,由题意:1EF =.3OD OC == ,45ODC OCD ∴∠=∠=︒,45FCE OCD ∴∠=∠=︒,1CF EF ∴==,(4,1)E ∴-.CD ==,CE ==DE CD CE ∴=+=DQE CDQ ∠=∠ ,EQ DE ∴==1QF EF EQ ∴=+=,(4,1)Q ∴-;当点Q 在x 轴的上方时,此时为点Q ',DQ E CDQ ∠'=∠' ,EQ DE ∴'==,1Q F EQ EF ∴'='-=,(4Q ∴',1)-.综上,当DQE CDQ ∠=∠时,点Q 的坐标为(4,1)--或(4,1)-.【点评】本题是二次函数综合题,考查了二次函数图象和性质,待定系数法,三角形面积,直角三角形性质,勾股定理,相似三角形判定和性质等,解题的关键是熟练运用分类讨论思想和方程的思想解决问题.17.(2023•下城区校级模拟)如图已知二次函数2(y x bx c b =++,c 为常数)的图象经过点(3,1)A -,点(0,4)C -,顶点为点M ,过点A 作//AB x 轴,交y 轴于点D ,交二次函数2y x bx c =++的图象于点B ,连接BC .(1)求该二次函数的表达式及点M 的坐标:(2)若将该二次函数图象向上平移(0)m m >个单位,使平移后得到的二次函数图象的顶点落在ABC ∆的内部(不包括ABC ∆的边界),求m 的取值范围;(3)若E 为y 轴上且位于点C 下方的一点,P 为直线AC 上一点,在第四象限的抛物线上是否存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形?若存在,请求出点Q的横坐标:若不存在,请说明理由.【分析】(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,即可求解;(2)求出平移后的抛物线的顶点(1,5)m -,再求出直线AC 的解析式4y x =-,当顶点在直线AC 上时,2m =,当M 点在AB 上时,4m =,则24m <<;(3)设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,分三种情况讨论:当CE 为菱形对角线时,CP CQ =,22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,Q 点横坐标为1;②当CP 为对角线时,CE CQ =,22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,Q 点横坐标为2;③当CQ 为菱形对角线时,CE CP =,222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,Q点横坐标为3【解答】解:(1)将点(3,1)A -,点(0,4)C -代入2y x bx c =++,∴4931c b c =-⎧⎨++=-⎩,解得24b c =-⎧⎨=-⎩,224y x x ∴=--,2224(1)5y x x x =--=-- ,∴顶点(1,5)M -;(2)由题可得平移后的函数解析式为2(1)5y x m =--+,∴抛物线的顶点为(1,5)m -,设直线AC 的解析式为y kx b =+,∴431b k b =-⎧⎨+=-⎩,解得14k b =⎧⎨=-⎩,4y x ∴=-,当顶点在直线AC 上时,53m -=-,2m ∴=,//AB x 轴,(1,1)B ∴--,当M 点在AB 上时,51m -=-,4m ∴=,24m ∴<<;(3)存在一点Q ,使以C 、E 、P 、Q 为顶点的四边形是菱形,理由如下:设(0,)E t ,(,4)P p p -,2(,24)Q q q q --,点E 在点C 下方,4t ∴<-,Q点在第四象限,01q ∴<<,①当CE 为菱形对角线时,CP CQ =,∴22222342(2)p q t q q q q q q =-⎧⎪=--⎨⎪=+-⎩,解得334q p t =⎧⎪=-⎨⎪=-⎩(舍)或116p q t =-⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为1;②当CP 为对角线时,CE CQ =,∴22222824(4)(2)p q p t q q t q q q =⎧⎪-=+--⎨⎪+=+-⎩,解得222q p t =⎧⎪=⎨⎪=-⎩,Q ∴点横坐标为2,不符合题意;③当CQ 为菱形对角线时,CE CP =,∴222284(4)2p q q q t p t q =⎧⎪--=+-⎨⎪+=⎩,解得332p q t ⎧=⎪⎪=⎨⎪=-+⎪⎩(舍)或332p q t ⎧=-⎪⎪=-⎨⎪=--⎪⎩,Q ∴点横坐标为3-综上所述:Q 点横坐标为1或3-【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,菱形的性质,分类讨论是解题的关键.18.(2023•即墨区一模)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为243y x x =-+.已知二次函数2y ax bx c =++的图象经过点(0,3)A ,(1,0)B ,.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:(2,1)C -(答案不唯一);(2)当函数值6y <时,自变量x 的取值范围:;(3)如图1,将函数243(0)y x x x =-+<的图象向右平移4个单位长度,与243(4)y x x x =-+ 的图象组成一个新的函数图象,记为L .若点(3,)P m 在L 上,求m 的值;(4)如图2,在(3)的条件下,点A 的坐标为(2,0),在L 上是否存在点Q ,使得9OAQ S ∆=.若存在,求出所有满足条件的点Q 的坐标;若不存在,请说明理由.【分析】(1)只需填一个在抛物线图象上的点的坐标即可;(2)求出6y =时,对应的x 值,再结合图象写出x 的取值范围即可;(3)求出抛物线向右平移4个单位后的解析式为2(6)3y x =--,根据题意可知3x =时,P 点在抛物线2(6)3y x =--的部分上,再求m 的值即可;(4)分两种情况讨论:当Q 点在抛物线2(6)3y x =--的部分上时,设2(,1233)Q t t t -+,由212(1233)92OAQ S t t ∆=⨯⨯-+=,求出Q 点坐标即可;当Q 点在抛物线243y x x =-+的部分上时,设2(,41)Q m m m -+,由212(41)92OAQ S m m ∆=⨯⨯-+=,求出Q 点坐标即可.【解答】解:(1)(2,1)C -,故答案为:(2,1)C -(答案不唯一);(2)243y x x =-+ ,∴当2436x x -+=时,解得2x =2x =-∴当6y <时,22x <<+,故答案为:22x -<<+;(3)2243(2)1y x x x =-+=-- ,∴抛物线向右平移4个单位后的解析式为2(6)1y x =--,当3x =时,点P 在抛物线2(6)1y x =--的部分上,8m ∴=;(4)存在点Q ,使得9OAQ S ∆=,理由如下:当Q 点在抛物线2(6)1y x =--的部分上时,设2(,1235)Q t t t -+,212(1235)92OAQ S t t ∆∴=⨯⨯-+=,解得6t =+6t =,4t ∴<,6t ∴=-(6Q ∴-,9);当Q 点在抛物线243y x x =-+的部分上时,设2(,43)Q m m m -+,212(43)92OAQ S m m ∆∴=⨯⨯-+=,解得2m =+或2m =-4m ,2m ∴=+,2Q ∴,9);综上所述:Q 点坐标为(6,9)或2+,9).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,数形结合解题是关键.19.(2023•武侯区模拟)定义:将二次函数l 的图象沿x 轴向右平移t ,再沿x 轴翻折,得到新函数l '的图象,则称函数l '是函数l 的“t 值衍生抛物线”.已知2:23l y x x =--.(1)当2t =-时,①求衍生抛物线l '的函数解析式;②如图1,函数l 与l '的图象交于(M ,)n ,(,N m -两点,连接MN .点P 为抛物线l '上一点,且位于线段MN 上方,过点P 作//PQ y 轴,交MN 于点Q ,交抛物线l 于点G ,求QNG S ∆与PNG S ∆存在的数量关系.(2)当2t =时,如图2,函数l 与x 轴交于A ,B 两点,与y 轴交于点C ,连接AC .函数l '与x 轴交于D ,E 两点,与y 轴交于点F .点K 在抛物线l '上,且EFK OCA ∠=∠.请直接写出点K 的横坐标.【分析】(1)①利用抛物线的性质和衍生抛物线的定义解答即可;②利用待定系数法求得直线MN 的解析式,设2(,23)P m m m --+,则得到(,2)Q m m -,2(,23)G m m m --,利用m 的代数式分别表示出PQ ,QG 的长,再利用同高的三角形的面积比等于底的比即可得出结论;(2)利用函数解析式求得点A ,B ,C ,D ,E ,F 的坐标,进而得出线段OA ,OC ,OD ,OE ,AC ,OF 的长,设直线FK 的解析式为5y kx =-,设直线FK 交x 轴于点M ,过点M 作MN EF ⊥于点N ,用k 的代数式表示出线段OM .FM ,ME 的长,利用EFK OCA ∠=∠,得到sin sin EFK OCA ∠=∠,列出关于k 的方程,解方程求得k 值,将直线FK 的解析式与衍生抛物线l '的函数解析式联立即可得出结论.。
(全国通用)专题09二次函数与正方形存在性问题二次函数与正方形存在性问题1.作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.2.对于二次函数与正方形的存在性问题,常见的处理思路有:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.3.示例:在平面直角坐标系中,已知A、B的坐标,在平面中求C、D使得以A、B、C、D 为顶点的四边形是正方形.如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.【例1】(2022•齐齐哈尔)综合与探究如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为;(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.【例2】.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB=8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.【例3】(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y 轴上时,请直接写出点G的坐标.【例4】(2022•长春)在平面直角坐标系中,抛物线y=x2﹣bx(b是常数)经过点(2,0).点A在抛物线上,且点A的横坐标为m(m≠0).以点A为中心,构造正方形PQMN,PQ=2|m|,且PQ⊥x轴.(1)求该抛物线对应的函数表达式;(2)若点B是抛物线上一点,且在抛物线对称轴左侧.过点B作x轴的平行线交抛物线于另一点C,连结BC.当BC=4时,求点B的坐标;(3)若m>0,当抛物线在正方形内部的点的纵坐标y随x的增大而增大时,或者y随x的增大而减小时,求m的取值范围;(4)当抛物线与正方形PQMN的边只有2个交点,且交点的纵坐标之差为时,直接写出m的值.1.(2020•乐平市一模)如图,抛物线y=a(x﹣h)2+k(a≠0)的顶点为A,对称轴与x轴交于点C,当以AC为对角线的正方形ABCD的另外两个顶点B、D恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD为它的内接正方形.(1)当抛物线y=ax2+1是美丽抛物线时,则a=;当抛物线y=+k是美丽抛物线时,则k =;(2)若抛物线y=ax2+k是美丽抛物线时,则请直接写出a,k的数量关系;(3)若y=a(x﹣h)2+k是美丽抛物线时,(2)a,k的数量关系成立吗?为什么?(4)系列美丽抛物线y n=a n(x﹣n)2+k n(n为小于7的正整数)顶点在直线y=x上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.2.(2016秋•西城区校级期中)我们规定:在正方形ABCD中,以正方形的一个顶点A为顶点,且过对角顶点C的抛物线,称为这个正方形的以A为顶点的对角抛物线.(1)在平面直角坐标系xOy中,点在轴正半轴上,点C在y轴正半轴上.①如图1,正方形OABC的边长为2,求以O为顶点的对角抛物线;②如图2,在平面直角坐标系xOy中,正方形OABC的边长为a,其以O为顶点的对角抛物线的解析式为y=x2,求a的值;(2)如图3,正方形ABCD的边长为4,且点A的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD内分别交于点M、P、N、Q,直接写出四边形MPNQ的形状和四边形MPNQ的对角线的交点坐标.3.(2022•陇县二模)在平面直角坐标系中,已知抛物线经过A(﹣2,0),两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.4.(2022•临潼区二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.5.(2022•松阳县一模)如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA,OC上分别存在点E,F,使EF⊥FG.已知OE=m,OF=t①当t为何值时,m有最大值?最大值是多少?②若点E与点R关于直线FG对称,点R与点Q关于直线OB对称.问是否存在t,使点Q恰好落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.6.(2022•香坊区校级开学)在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长.7.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l,P是该抛物线上一动点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为.以PQ,QM为边作矩形PQMN.(1)求抛物线的解析式;(2)当点Q与点M重合时,求m的值;(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值;(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,求m的取值范围.8.(2021•云南模拟)如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A在点B的左侧),交y轴于点C,且经过点D(5,6).(1)求抛物线的解析式及点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.9.(2019秋•温州校级月考)如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y =﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD=6?若存在,求出点D的坐标;若不存在,说明理由;(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OP A =135°,直接写出此时AP的长度.10.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)求抛物线的解析式;(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.11.(2021•深圳模拟)如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE=S△MAE,求点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为,当m=时,有最小值.12.(2021•社旗县二模)如图,抛物线y=ax2+bx+c过(1,0),(3,0),(0,6)三点,边长为4的正方形OABC的顶点A,C分别在x轴上,y轴上.(1)求抛物线解析式,并直接写出当﹣1≤x≤4时,y的最大值与最小值的差.(2)将正方形OABC向右平移,平移距离记为h,①当点C首次落在抛物线上,求h的值.②当抛物线落在正方形内的部分,满足y随x的增大而减小时,请直接写出h的取值范围.13.(2021•越秀区校级一模)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q;M是直线l上的一点,其纵坐标为﹣m+,以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)抛物线在矩形PQMN内的部分称为被扫描部分.请问该抛物线是否全部被扫描?若是,请说明理由,若否,直接写出抛物线被扫描部分自变量的取值范围.14.(2020秋•新抚区期末)如图,抛物线y=x2+bx+c经过A(﹣3,0),B(1,0)两点,与y轴交于点C,P为y轴上的动点,连接AP,以AP为对角线作正方形AMPN.(1)求抛物线的解析式;(2)当正方形AMPN与△AOP面积之比为5:2时,求点P的坐标;(3)当正方形AMPN有两个顶点在抛物线上时,直接写出点P的坐标.15.(2020•雁塔区校级一模)如图,抛物线y=x2+2x的顶点为A,与x轴交于B、C两点(点B在点C的左侧).(1)请求出A、B、C三点的坐标;(2)平移抛物线,记平移后的抛物线的顶点为D,与y轴交于点E,F为平面内一点,若以A、D、E、F为顶点的四边形是正方形,且平移后的抛物线的对称轴在y轴右侧,请求出满足条件的平移后抛物线的表达式.16.(2020•吉林)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+.以PQ,QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.17.(2020•雁塔区校级模拟)已知抛物线L:y=﹣ax2+2ax+c与x轴交于A、B两点(点A在点B的左侧),且AB=4.(1)求A、B两点的坐标;(2)将抛物线L沿x轴翻折后得到的新抛物线记为L',且记L和L'的顶点分别记为M、M',要使点A、B、M、M'为顶点的四边形是正方形,请求抛物线L的解析式.18.(2021•龙马潭区模拟)如图,抛物线y=ax2+bx﹣3与x轴交于A(﹣2,0)和B(4,0)两点,与y 轴交于点C.(1)求抛物线的解析式;(2)当点P为直线BC下方抛物线上一动点(不与点B、C重合),PM⊥BC于点M,PD⊥AB于点D,交直线BC于点N,当P点的坐标为何值时,PM+PN的值最大?(3)点P在第四象限的抛物线上移动,以PC为边作正方形CPEF、当抛物线的对称轴经过点E时,求出此时点P的坐标.19.(2020•海淀区校级模拟)在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直.则称该矩形为点P,Q的相关矩形“.如图为点P,Q的“相关矩形”的示意图.(1)已知点A的坐标为(1,0).①若点B的坐标为(2,5),求点A,B的“相关矩形”的周长;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,已知抛物线y=x2+mx+n经过点A和点C,求抛物线y=x2+mx+n与y轴的交点D的坐标;(2)⊙O的半径为4,点E是直线y=3上的从左向右的一个动点.若在⊙O上存在一点F,使得点E,F的“相关矩形”为正方形,直接写出动点E的横坐标的取值范围.20.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点为A,B(点A在点B的左侧),在线段AB上取两点M、N(点M不与点A重合),点M、N关于这条抛物线的对称轴对称,点M在点N的左侧,分别过点M、N作x轴的垂线交抛物线于点P、Q,我们称这样的四边形MPQN为这条抛物线的“抛物线矩形.”(1)若抛物线y=2(x+1)(x﹣3)的抛物线矩形MPQN的顶点M的坐标为(0,0),则点N的坐标为,点P的坐标为,点Q的坐标为.(2)当抛物线y=﹣x2+bx的抛物线矩形MPQN为正方形时,若点M的坐标为(﹣2,0),求b的值.(3)设抛物线y=x2+4x﹣6的抛物线矩形MPQN的周长为C.点M的横坐标为m,求C与m之间的函数关系式.(4)将抛物线y=ax2﹣6ax+5a(a≠0)的抛物线矩形MPQN绕点P顺时针或逆时针旋转90°后,边MN恰好落在y轴上,若MN=2,直接写出a的值.21.(2022•抚顺县一模)如图,在平面直角坐标系中,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于点A (1,0),B(5,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的解析式和点D的坐标;(2)求△BCD的面积;(3)点M为抛物线上一动点,点N为平面内一点,以A,M,I,N为顶点作正方形,是否存在点M,使点I恰好落在对称轴上?若存在,直接写出点M的坐标;若不存在,请说明理由.22.(2022•新化县模拟)已知抛物线y=ax2+bx+c(a≠0)过点A(1,0),B(3,0)两点,与y轴交于点C,OC=3.(1)求抛物线的解析式及顶点D的坐标;(2)过点A作AM⊥BC,垂足为M,求证:四边形ADBM为正方形;(3)若点Q为线段OC上的一动点,问:AQ+QC是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.23.(2022•宜兴市校级二模)如图,在平面直角坐标系中,O为坐标原点,二次函数y=﹣x2+bx+c(b>0,c>0)图象的顶点是点A,对称轴为直线l,图象与y轴交于点C.点D在l右侧的函数图象上,点B在DC延长线上,且四边形ABOD是平行四边形.(1)如图2,若CD∥x轴.①求证:b2=4c;②若▱ABOD是矩形,求二次函数的解析式;(2)当b=2时,▱ABOD能否成为正方形,请通过计算说明理由.24.(2022•于洪区二模)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象交y轴于点D,直线AB与之相交,且A(1,﹣)是抛物线y=x2+bx+c的顶点.(1)b=,c=;(2)如图1,点P是第四象限抛物线上一点,且满足BP∥AD,抛物线交x轴于点C,连接PC.①求直线PB的解析式;②求PC的长;(3)如图2,点Q是抛物线第三象限上一点(不与点B、D重合),连接BQ,以BQ为边作正方形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.。
二次函数的平移、翻折与旋转以及a、b、c符号问题1、抛物线的一般式与顶点式的互化关系:y=ax2+bx+c————→y=a(x+b2a)2+4ac-b24a2、强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。
3、抛物线的平移抓住关键点顶点的移动;例题:1、(2015•龙岩)抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是.考点:二次函数图象与几何变换.分析:根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.解答:解:将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为:y=﹣2x2﹣4x﹣3.点评:本题考查了二次函数图象与几何变换,利用了中心对称的性质.2、(2015•湖州)如图,已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点,顶点分别为A,B,与x轴的另一交点分别为M,N,如果点A与点B,点M与点N都关于原点O成中心对称,则称抛物线C1和C2为姐妹抛物线,请你写出一对姐妹抛物线C1和C2,使四边形ANBM恰好是矩形,你所写的一对抛物线解析式是和.考点:二次函数图象与几何变换.专题:新定义.分析:连接AB,根据姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得△AOM是等边三角形,设OM=2,则点A的坐标是(1,),求出抛物线C1的解析式,从而求出抛物线C2的解析式.解答:解:连接AB,根据姐妹抛物线的定义,可得姐妹抛物线的二次项的系数互为相反数,一次项系数相等且不等于零,常数项都是零,设抛物线C1的解析式为y=ax2+bx,根据四边形ANBM恰好是矩形可得:OA=OM,∵OA=MA,∴△AOM是等边三角形,设OM=2,则点A的坐标是(1,),则,解得:则抛物线C1的解析式为y=﹣x2+2x,抛物线C2的解析式为y=x2+2x,故答案为:y=﹣x2+2x,y=x2+2x.w W w .x K b 1.c o M点评:此题考查了二次函数的图象与几何变换,用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定,关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.3、(2015•绥化)把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为.考点:二次函数图象与几何变换.分析:直接根据“上加下减,左加右减”的原则进行解答.解答:解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.点评:本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.4、(2015•岳阳)如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.考点:二次函数图象与几何变换;二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.解答:解:∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.综上,结论正确的是:③④.故答案为:③④.点评:(1)此题主要考查了二次函数的图象与几何变换,要熟练掌握,解答此类问题的关键是要明确:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.(2)此题还考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).答案:。
练习:1、已知抛物线2y ax bx c =++(a <0)过A (2-,0)、O (0,0)、B (3-,1y )、C (3,2y )四点,则1y 与2y 的大小关系是( A )A .1y >2yB .1y 2y =C .1y <2yD .不能确定 2、二次函数y =ax 2+bx +c 的图象如图所示,下列结论错误..的是( B ) A. ab <0 B. ac <0C. 当x <2时,函数值随x 增大而增大;当x >2时,函数值随xD. 二次函数y =ax 2+bx +c 的图象与x 轴交点的横坐标就是方程ax 2+bx +c =0的根.3、如图是二次函数y =ax 2+bx +c (a ≠0)在平面直角坐标系中的图象,根据图形判断 ①c >0;②a +b +c <0;③2a -b <0;④b 2+8a >4ac 中,正确的是(填写序号) ② 、④ .4、二次函数221=++-y ax x a 的图象可能是( B )5、在反比例函数ay x=中,当0x >时,y 随x 的增大而减小,则二次函数2y ax ax =-的图象大致是下图中的( A )6、在同一坐标系中一次函数y ax b =+和二次函数2y ax bx =+的图象可能为( A )7、已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列结论:( D )①240b ac ->; ②0abc >; ③80a c +>;④930a b c ++<. 其中,正确结论的个数是A. 1B. 2C. 3D. 48、已知二次函数2y ax bx c =++(a ≠0)的图象开口向上,并经过点AB A .B .C .(-1,2),(1,0) . 下列结论正确的是( D)A. 当x >0时,函数值y 随x 的增大而增大B. 当x >0时,函数值y 随x 的增大而减小C. 存在一个负数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x > x 0时,函数值y 随x 的增大而增大D. 存在一个正数x 0,使得当x <x 0时,函数值y 随x 的增大而减小;当x >x 0时,函数值y 随x 的增大而增大 9、已知二次函数)0(2≠++=a c bx ax y 的图象如图所示,有下列5个结论:① 0>abc ;② c a b +<;③ 024>++c b a ;④ b c 32<; ⑤ )(b am m b a +>+,(1≠m 的实数)其中正确的结论有(B )A. 2个B. 3个C. 4个D. 5个10、如图是二次函数y =ax 2+bx +c 图象的一部分,图象过点A (-3,0),对称轴为x =-1.给出四个结论:①b 2>4ac ;②2a +b =0;③a -b +c =0;④5a <b .其中正确结论是( B ). A.②④B. ①④C. ②③D. ①③11、已知二次函数y =x 2-x+a (a >0),当自变量x 取m 时,其相应的函数值小于0,那么下列结论中正确的是( B )(A) m -1的函数值小于0 (B) m -1的函数值大于0(C) m -1的函数值等于0 (D) m -1的函数值与0的大小关系不确定12、定义[,,a b c ]为函数2y ax bx c =++的特征数, 下面给出特征数为[2m ,1 – m , –1– m ] 的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(31,38); ② 当m > 0时,函数图象截x 轴所得的线段长度大于23; ③ 当m < 0时,函数在x >41时,y 随x 的增大而减小; ④ 当m ≠ 0时,函数图象经过同一个点. 其中正确的结论有( B )A. ①②③④B. ①②④C. ①③④D. ②④(Ⅳ) 二次函数y =ax 2+bx +c (a ≠0)图象的平移二次函数y =ax 2+bx +c (a ≠0)平移:a 不变,函数y =ax 2+bx +c (a ≠0)移),,对于旋转、对称变换也是一样。
北辰教育学科老师辅导讲义(此类问题方法总结:二次函数在定义域为实数的围,最值都在顶点处,表示出顶点的纵坐标,根据a 的大小判断为最大还是最小值,注意结合函数图像解题)四.判断二次函数解析式y=ax 2+bx+c 中a,b,c 与0的数量关系。
1. 1、知二次函数2(0)y ax bx c a =++≠的图象如图所示,给出以下结论: ① 0a b c ++<;② 0a b c -+<;③20b a +<;④0abc >. 其中所有正确结论的序号是( ) A. ③④ B. ②③ C. ①④D. ①②.2.已知二次函数y=ax2+bx+c,且a<0,a-b+c>0,则一定有( ). A.b2-4ac>0 B.b2-4ac=0 C.b2-4ac<0 D.b2-4ac ≤0(此类问题方法总结:a,b,c 的大小关系往往通过开口方向,对称轴y=-ab2,顶点为(—a b 2,a b ac 442-),c 为图像与y 轴的交点,结合图像写不等式)五.填空题最后一题:有关图形平移,翻折,旋转类题型18.如图,在Rt △ACB 中,90ACB ∠=︒,点O 在AB 上,且6CA CO ==,1cos 3CAB ∠=,若将△ACB 绕点A 顺时针旋转得到Rt △''AC B ,且'C 落在CO 的延长线上,联结'BB 交CO 的延长线于点F ,则BF =18. 在Rt △ABC 中,90C ∠=,4BC = ,3AC =,将△ABC 绕着点B 旋转后点A 落在直线BC 上的点A ',点C 落在点C '处,那么'tan AAC ∠的值是 18.如图,在△ABC 中,∠90C =,点D 为AB 的中点,3BC =,13cosB =,△DBC 沿着CD 翻折后,点B 落到点E ,那么AE 的长为 .C A BO F 'C 'B ADCB-11xyO6.抛物线()243y x =-+的顶点坐标是( )(A )()4,3-; (B )()4,3-- ; (C )()4,3; (D )()4,3-. 7.下列抛物线中,顶点在第一象限的是 ( ) (A )2)1(21-=x y ;(B )3212+=x y ; (C )3)1(212++=x y ; (D )3)1(212+-=x y .9.把抛物线2)2(3+-=x y 平移后得到抛物线23x y -=,平移的方法可以是 ( ) (A )沿x 轴向右平移2个单位 (B )沿x 轴向左平移2个单位 (C )沿y 轴向上平移2个单位 (D )沿y 轴向下平移2个单位 10.抛物线23x y -=向左平移2个单位后得到的抛物线为( )(A )232+-=x y ; (B )232--=x y ; (C )2)2(3+-=x y ; (D )2)2(3--=x y .11.抛物线c bx ax y ++=2中,a b 4=,它的图象如图,有以下结论:①0>c ;②0>++c b a ;③0>+-c b a ④042<-ac b ⑤0<abc 其中正确的有( )12.二次函数y =ax 2+bx +c 的图象如图所示,那么①abc ,②ac b 42-,③b a +2,④c b a ++这四个代数式中,值为正数的有( )13.如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO =12,CO =BO ,AB =3,求这条抛物线的函数解析式归纳总结解二次函数问题往往要结合图像,用图形来理解其最值,运动变化情况。
2022-2023学年湖北省武汉市江岸区七一华源中学九年级(上)月考数学试卷(9月份)(含答案与详细解析)一、选择题(共10小题,每小题3分,共30分)1.(3分)方程5x2﹣4x﹣1=0的二次项系数、一次项系数、常数项分别为()A.5、﹣1、4B.5、﹣1、﹣4C.5、﹣4、﹣1D.5、4、﹣1 2.(3分)把方程x2﹣6x﹣1=0转化成(x+m)2=n的形式,则m、n的值是()A.3、8B.3、10C.﹣3、3D.﹣3、103.(3分)关于关于x的一元二次方程5x2﹣3x=x+1的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法判断4.(3分)菱形没有而正方形具有的性质是()A.对角线相等B.邻边相等C.对角线互相垂直D.对角线平分对角5.(3分)向阳村2010年的人均年收入为12000元,2012年的人均年收入为14520元.设人均年收入的平均增长率为x,则下列所列的方程中正确的是()A.14520(1﹣x2)=12000B.12000(1+x)2=14520C.14520(1+x)2=12000D.12000(1﹣x)2=145206.(3分)对于抛物线y=﹣(x+1)2﹣5,下列的说法错误的是()A.抛物线的开口向下B.抛物线的顶点坐标是(﹣1,﹣5)C.当x<1时,y随x的增大而增大D.当x>1时,y随x的增大而减小7.(3分)抛物线y=﹣5x2可由y=﹣5(x+2)2﹣6如何平移得到()A.先向右平移2个单位,再向下平移6个单位B.先向左平移2个单位,再向上平移6个单位C.先向左平移2个单位,再向下平移6个单位D.先向右平移2个单位,再向上平移6个单位8.(3分)在解一元二次方程x2+px+q=0时,童威看错了常数项,得到方程的两个根是﹣3、﹣1,胖何看错了一次项系数p,得到方程的两个根是5、﹣4,则原来的方程是()A.x2+4x﹣3=0B.x2+4x﹣20=0C.x2﹣4x﹣20=0D.x2﹣4x﹣3=0 9.(3分)如表中列出了二次函数y=ax2+bx+c(a≠0)的一些对应值,则一元二次方程ax2+bx+c =0(a≠0)的一个近似解x的范围是()x…﹣3﹣2﹣101…y…﹣11﹣5﹣111…A.﹣1<x<0B.1<x<2C.2<x<3D.3<x<410.(3分)已知抛物线y=ax2+bx+c(a、b、c为正数)经过A(1,4)、B(2,12)两点,则b2﹣4ac的值可能为()A.4B.0C.﹣15D.﹣二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)方程x2=x的根是.12.(3分)已知直线y=2x和抛物线y=ax2相交于点(2,b),则a+b=.13.(3分)如果关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个实数根,那么m的取值范围是.14.(3分)若抛物线y=x2﹣2x﹣3与直线y=2交于A、B两点,则AB=.15.(3分)二次函数的图象如图所示,给出四个结论:①abc>0;②4a﹣2b+c>0;③对于任意实数m,有am2+bm+c<a﹣b+c;④>﹣3,其中正确的有.16.(3分)如图,四边形ABCD中,∠ABC=90°,∠BCD=45°,∠CAD=2∠ACB.过点D作DE⊥AC于E,交BC于F.若AB=6,则FC=.三、解答题(共8题,共72分)17.(8分)解方程:3x2+6x﹣1=0.18.(8分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.19.(8分)某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?20.(8分)已知二次函数y=x2﹣2x﹣3.(1)在下方坐标系中画出函数的图象;(2)若﹣2≤x≤5时,则y的取值范围是;(3)若A(x1,y1)、B(x2,y2)在此抛物线上,且x1<1<x2,x1+x2﹣2<0,则y1y2.21.(8分)如图,A、B、C是三个格点,点M是线段AC上一格点.(1)在图1中,在线段BC上找一点N,使得MN∥AB;(2)在图2中,在线段BC上找一点D,使得∠CDM=45°;(3)在图3中,在AB上确定一点P,使∠APM=∠BPC.22.(10分)某商场购进A、B两种服装共100件,已知购进这100件服装的费用不得超过。
专题提优3 抛物线与几何变换———专题讲解———一、抛物线的平移 (1)具体步骤:先利用配方法将二次函数化成y =a (x -h )2+k 的形式,确定其顶点(h ,k ),然后作出二次函数y =ax 2的图象,将抛物线y =ax 2平移,使其顶点平移到(h ,k ).具体平移方法如图所示:(2)平移规律:在原有函数的基础上“左加右减”. 二、抛物线的对称二次函数图象的对称一般有五种情况: ①关于x 轴对称:y =ax 2+bx +c 关于x 轴对称后,得到的解析式是y =-ax 2-bx -c ;y =a (x -h )2+k 关于x 轴对称后,得到的解析式是y =-a (x -h )2-k . ②关于y 轴对称:y =ax 2+bx +c 关于y 轴对称后,得到的解析式是y =ax 2-bx +c ;y =a (x -h )2+k 关于y 轴对称后,得到的解析式是y =a (x +h )2+k . ③关于原点对称:y =ax 2+bx +c 关于原点对称后,得到的解析式是y =-ax 2+bx -c ;y =a (x -h )2+k 关于原点对称后,得到的解析式是y =-a (x +h )2-k . ④关于顶点对称:y =ax 2+bx +c 关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;y =a (x -h )2+k 关于顶点对称后,得到的解析式是()2y a x h k =--+. ⑤关于点(m ,n )对称:()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.———典型例题———【例1】(2014•陕西)已知抛物线C :cbx x y ++-=2经过A (-3,0)和B (0,3)两点.将这条抛物线的顶点记为M ,它的对称轴于x 轴的交点记为N . (1)求抛物线C 的表达式; (2)求点M 的坐标;(3将抛物线C 平移到C′,抛物线C′的顶点记为M′,它的对称轴于x 轴的交点记为N′.如果以点M 、N 、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C 怎样平移为什么【提示】根据平行四边形的定义,可知有四种情形符合条件,需要分类讨论.【感悟】1、二次项系数的不变性.抛物线平移中,二次函数中二次项系数是不变的;2、以点带线.顶点的平移方向和平移距离就是抛物线平移的方向和距离,反之,亦然;3、顶点式的应用,是解答抛物线平移的常用公式.既做到由顶点坐标求解析式,又做到能由解析式求出顶点坐标.【例2】(2013•河北省)如图,一段抛物线:y =-x (x -3)(0≤x ≤3),记为C 1,它与x 轴交于点O ,A 1;将C 1绕点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;…如此进行下去,直至得C 13.若P (37,m )在第13段抛物线C 13上,则m = .【提示】根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m 的值.【方法总结】旋转前后的图形大小与形状都没发生变化.———小试身手———1.(☆☆ 2014•浙江宁波)已知点A (a -2b ,2-4ab )在抛物线y =x 2+4x +10上,则点A 关于抛物线对称轴的对称点坐标为( )A .(-3,7)B .(-1,7)C .(-4,10)D .(0,10)2.(☆☆ 2012•陕西省)在平面直角坐标系中,将抛物线y =x 2-x -6向上(下)或向左(右)平移m 个单位,使平移后的抛物线恰好经过原点,则|m |的最小值为( ) A .1 B .2 C .3 D .63.(☆☆☆2014•山东临沂)在平面直角坐标系中,函数22(y x x x =-≥0)的图象为1C ,1C 关于原点对称的图象为2C ,则直线y a =(a 为常数)与1C ,2C 的交点共有( )A .1个B .1个或2个C .1个或2个或3个D .1个或2个或3个或4个 4.(☆☆☆)如图,抛物线m :y =ax 2+b (a <0,b >0)与x 轴于点A 、B (点A 在点B 的左侧),与y 轴交于点C .将抛物线m 绕点B 旋转180°,得到新的抛物线n ,它的顶点为C 1,与x 轴的另一个交点为A 1.若四边形AC 1A 1C 为矩形,则a ,b 应满足的关系式为( )A .ab =-2B .ab =-3C .ab =-4D .ab =-5(第4题图) (第5题图)5.(☆☆☆☆2014•西湖区一模)如图,将二次函数y =x 2-m (其中m >0)的图象在x 轴下方的部分沿x 轴翻折,图象的其余部分保持不变,形成新的图象记为y 1,另有一次函数y =x +b 的图象记为y 2,则以下说法:(1)当m =1,且y 1与y 2恰好有三个交点时,b 有唯一值为1;(2)当b =2,且y 1与y 2恰有两个交点时,m >4或0<m <47;(3)当m =b 时,y 1与y 2至少有2个交点,且其中一个为(0,m );(4)当m =-b 时,y 1与y 2一定有交点.其中正确说法的序号为 .6.(☆☆ 2013•河南省)如图,抛物线的顶点为P (-2,2),与y 轴交于点A (0,3).若平移该抛物线使其顶点P 沿直线移动到点P′(2,-2),点A 的对应点为A′,则抛物线上PA 段扫过的区域(阴影部分)的面积为 .7.(☆☆2010•关系桂林)将抛物线y =2x 2-12x +16绕它的顶点旋转180°,所得抛物线的解析式是 .8.(☆☆☆☆2014•湖南衡阳模拟)已知二次函数y =2x 2+bx +1(b 为常数),当b 取不同的值时,对应得到一系列二次函数的图象,它们的顶点都在一条抛物线上,则这条抛物线的解析式是 ;若二次函数y =2x 2+bx +1的顶点只在x 轴上方移动,那么b 的取值范围是 .9.(☆☆☆2014•贵州贵阳)如图,经过点A (0,-6)的抛物线y =12x 2+bx +c 与x 轴相交于B (-2,0),C 两点. (1)求此抛物线的函数关系式和顶点D 的坐标; (2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1,若新抛物线y 1的顶点P 在△ABC 内,求m 的取值范围;(3)在(2)的结论下,新抛物线y 1上是否存在点Q ,使得△QAB 是以AB 为底边的等腰三角形请分析所有可能出现的情况,并直接写出相对应的m 的取值范围.10.(☆☆☆2014•江西抚州)如图,抛物线y =ax 2+2ax (a<0)位于x轴上方的图象记为F1,它与x轴交于P1、O两点,图象F2与F1关于原点O对称,F2与x轴的另一个交点为P2,将F1与F2同时沿x轴向右平移P1P2的长度即可得到F3与F4;再将F3与F4同时沿x轴向右平移P1P2的长度即可得到F5与F6;…;按这样的方式一直平移下去即可得到一系列图象F1,F2,…,F n.我们把这组图象称为“波浪抛物线”.(1)当a=-1时,①求图象F1的顶点坐标;②点H(2014,-3)(填“在”或“不在”)该“波浪抛物线”上;若图象F n的顶点T n的横坐标为201,则图象F n对应的解析式为,其自变量x的取值范围为.(2)设图象F n、F n+1的顶点分别为T n、T n+1(m为正整数),x轴上一点Q的坐标为(12,0).试探究:当a为何值时,以O、T n、T n+1、Q四点为顶点的四边形为矩形并直接写出此时m的值.11.(☆☆☆2014•江苏镇江)如图,在平面直角坐标系xOy中,点M为抛物线y=-x2+2nx-n2+2n的顶点,过点(0,4)作x轴的平行线,交抛物线于点P、Q(点P在Q的左侧),PQ=4.(1)求抛物线的函数关系式,并写出点P的坐标;(2)小丽发现:将抛物线y=-x2+2nx-n2+2n绕着点P旋转180°,所得新抛物线的顶点恰为坐标原点O,你认为正确吗请说明理由;12.(☆☆☆☆2014•湖南怀化)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况若存在,求出点P的坐标,若不存在,请说明理由.13.(☆☆☆☆☆2014•辽宁盘锦)如图,抛物线y=ax2+bx+c经过原点,与x轴相交于点E(8,0 ),抛物线的顶点A在第四象限,点A到x轴的距离AB=4,点P(m,0)是线段OE上一动点,连结PA,将线段PA绕点P逆时针旋转90°得到线段PC,过点C作y轴的平行线交x轴于点G,交抛物线于点D,连结BC和AD.(1)求抛物线的解析式;(2)求点C的坐标(用含m的代数式表示);(3)当以点A、B、C、D为顶点的四边形是平行四边形时,求点P的坐标.———参考答案———例1.【解析】(1)∵抛物线y=-x2+bx+c经过A(-3,0)和B(0,3)两点,∴930,3,b cc--+=⎧⎨=⎩解得2,3.bc=-⎧⎨=⎩故此抛物线的解析式为y=-x2-2x+3;(2)∵由(1)知抛物线的解析式为y=-x2-2x+3,∴当x=-22(1)-⨯-=-1时,y=4,∴M(-1,4).(3)由题意,以点M、N、M′、N′为顶点的平行四边形的边MN的对边只能是M′N′,∴MN∥M′N′且MN=M′N′,∴MN•NN′=16,∴NN′=4.i)当M、N、M′、N′为顶点的平行四边形是▱MNN′M′时,将抛物线C向左或向右平移4个单位可得符合条件的抛物线C′;ii)当M、N、M′、N′为顶点的平行四边形是▱MNM′N′时,将抛物线C先向左或向右平移4个单位,再向下平移8个单位,可得符合条件的抛物线C′.∴上述的四种平移,均可得到符合条件的抛物线C′.例2.【答案】2【解析】∵一段抛物线:y=-x(x-3)(0≤x≤3),∴图象与x轴交点坐标为:(0,0),(3,0),∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,直至得C13.∴C13的解析式与x轴的交点坐标为(36,0),(39,0),且图象在x轴上方,∴C13的解析式为y13=-(x-36)(x-39),当x=37时,y=-(37-36)×(37-39)=2.1.【答案】D【解析】∵点A(a-2b,2-4ab)在抛物线y=x2+4x+10上,∴(a-2b)2+4×(a-2b)+10=2-4ab,a2-4ab+4b2+4a-8b+10=2-4ab,(a+2)2+4(b-1)2=0,∴a+2=0,b-1=0,解得a=-2,b=1,∴a-2b=-2-2×1=-4,2-4ab=2-4×(-2)×1=10,∴点A的坐标为(-4,10).∵对称轴为直线x=-421⨯=-2,∴点A关于对称轴的对称点的坐标为(0,10).2.【答案】B【解析】当x=0时,y=-6,故函数图象与y轴交于点C(0,-6),当y=0时,x2-x-6=0,即(x+2)(x-3)=0,解得x=-2或x=3,即A(-2,0),B(3,0);由图可知,函数图象至少向右平移2个单位恰好过原点,故|m|的最小值为2.3.【答案】【解析】C 函数y =x 2-2x (x ≥0)的图象为C 1关于原点对称的图象为C 2的解析式是y =-x 2-2x (x ≤0),观察图象:当a >1或a <-1时,直线y =a 与图象C 1、C 2只有1个交点;当a =1或a =-1时,直线y =a 与图象C 1、C 2有2个交点;当-1<a <1时,直线y =a 与图象C 1、C 2有3个交点. 4.【答案】B【解析】令x =0,得y =b .∴C (0,b ).令y =0,得ax 2+b =0,∴x =±ab-,∴A (-ab -,0),B (ab -,0),∴AB =2ab -,BC =22OB OC +=ab b -2.要使平行四边形AC 1A 1C 是矩形,必须满足AB =BC ,∴2ab -=a b b -2.∴4×(a b -)=b 2-ab,∴ab =-3.∴a ,b 应满足关系式ab =-3. 5.【答案】②③【解析】①当m =1,且y 1与y 2恰好有三个交点时,b 有唯一值为1,b =45,故①错误;②当b =2,且y 1与y 2恰有两个交点时,m >4或0<m <47,故②正确;③当m =b 时,y 1与y 2至少有2个交点,且其中一个为(0,m )故③正确;④当m =-b 时,y 1与y 2没有交点,故④错误. 6.【答案】12【解析】连接AP ,A′P′,过点A 作AD ⊥PP′于点D ,由题意可得出:AP ∥A′P′,AP =A′P′,∴四边形APP′A′是平行四边形.∵抛物线的顶点为P (-2,2),与y 轴交于点A (0,3),平移该抛物线使其顶点P 沿直线移动到点P′(2,-2), ∴PO =2222+=22,∠AOP =45°,又∵AD ⊥OP ,∴△ADO 是等腰直角三角形,∴PP′=22×2=42,AD =DO =223,∴抛物线上PA 段扫过的区域(阴影部分)的面积为42×223=12.7.【答案】y =-2x 2+12x -20【解析】y =2x 2-12x +16=2(x 2-6x +8)=2(x -3)2-2,将原抛物线绕顶点旋转180°后,得y =-2(x -3)2-2=-2x 2+12x -20.8.【答案】y =-2x 2+1,-22<b <2【解析】∵y =2x 2+bx +1的顶点坐标是(-4b,288b -),设x =-4b,y =288b -,∴b =-4x ,∴y =288b -=28(4)8x -=-2x 2+1,若二次函数y =2x 2+bx +1的顶点只在x 轴上方移动,∵a =2>0,∴抛物线与x 轴没有交点,∴△<0,即△=b 2-8<0,9.【解析】(1)将A (0,-6),B (-2,0)代入y =12x 2+bx +c ,得6,022,c b c -=⎧⎨=-+⎩解得2,6.b c =-⎧⎨=-⎩∴y =12x 2-2x -6,∴顶点坐标为(2,-8); (2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m (m >0)个单位长度得到新抛物线y 1=12(x -2+1)2-8+m ,∴P (1,-8+m ).在抛物线y =12x 2-2x -6中易得C (6,0),∴直线AC 的解析式为y 2=x -6, 当x =1时,y 2=-5,∴-5<-8+m <0, 解得3<m <8;(3)∵A (0,-6),B (-2,0),∴线段AB 的中点坐标为(-1,-3),直线AB 的解析式为y =-3x -6, ∴过AB 的中点且与AB 垂直的直线的解析式为y =13x -83, ∴直线y =13x -83与x =1的交点坐标为(1,-73), ∴此时的点P 的坐标为(1,-73),∴此时向上平移了8-73=173个单位, ∴①当3<m <173时,存在两个Q 点,可作出两个等腰三角形; ②当m =173时,存在一个点Q ,可作出一个等腰三角形; ③当173<m <8时,Q 点不存在,不能作出等腰三角形. 10.【解析】(1)当a =-1时,①y =ax 2+2ax =-x 2-2x =-(x +1)2+1,∴图象F 1的顶点坐标为(-1,1); ②∵该“波浪抛物线”顶点坐标纵坐标分别为1和-1,∴点H (2014,-3),不在该“波浪抛物线”上. ∵图象F n 的顶点T n 的横坐标为201,201÷4=50…1,故其图象与F 2,F 4,…形状相同, 则图象F n 对应的解析式为y =(x -201)2-1,其自变量x 的取值范围为200≤x ≤202. 故答案为:不在,y =(x -201)2-1,200≤x ≤202.(2)设OQ 中点为O′,则线段T n T n +1经过O′,由题意可知OO′=O′Q ,O′T n =O′T n +1, ∴当T n T n +1=OQ =12时,四边形OT n T n +1Q 为矩形,∴O′T n +1=6.∵F 1对应的解析式为y =a (x +1)2-a ,∴F 1的顶点坐标为(-1,-a ), ∴由平移的性质可知,点T n +1的纵坐标为-a ,∴由勾股定理得(-a)2+12=62,∴a∵a<0,∴a=m的值为4.11.【解析】(1)∵抛物线y=-x2+2nx-n2+2n过点P,P点的纵坐标为4,∴4=-x2+2n x-n2+2n,解得x1=n,x2=n.∵PQ=x1-x2=4,∴=4,解得n=4,∴抛物线的函数关系式为y=-x2+8x-8,∴4=-x2+8x-8,解得x=2或x=6,∴P(2,4).(2)正确;∵P(2,4),PQ=4,∴Q绕着点P旋转180°后的对称点为Q′(-2,4),∴P与Q′正好关于y轴对称,∴所得新抛物线的对称轴是y轴.∵抛物线y=-x2+8x-8=-(x-4)2+8,∴抛物线的顶点M(4,8),∴顶点M到直线PQ的距离为4,∴所得新抛物线顶点到直线PQ的距离为4,∴所得新抛物线顶点应为坐标原点.12.【解析】(1)∵AB=OB,∠ABO=90°,∴△ABO是等腰直角三角形,∴∠AOB=45°,∵∠yOC=45°,∴∠AOC=(90°-45°)+45°=90°,∴AO⊥CO.∵C′O′是CO平移得到,∴AO⊥C′O′,∴△OO′G是等腰直角三角形.∵射线OC的速度是每秒2个单位长度,∴OO′=2x,∴其以OO′为底边的高为x,∴y=12×(2x)•x=x2;(2)当x=3秒时,OO′=2×3=6,∵12×6=3,∴点G的坐标为(3,3).设抛物线解析式为y=ax2+bx,则933,6480,a ba b+=⎧⎨+=⎩解得1,58.5ab⎧=-⎪⎪⎨⎪=⎪⎩∴抛物线的解析式为y=-15x2+85x;(3)设点P到x轴的距离为h,则S△POB=12×8h=8,解得h=2.当点P在x轴上方时,-15x2+85x=2,整理得x2-8x+10=0,解得x1=4,x2=4,此时,点P的坐标为(4,2)或(4,2);当点P在x轴下方时,-15x2+85x=-2,整理得x2-8x-10=0,解得x1=4-26,x2=4+26,此时,点P的坐标为(4-26,-2)或(4+26,-2).综上所述,点P的坐标为(4-6,2)或(4+6,2)或(4-26,-2)或(4+26,-2)时,△POB的面积S=8.13.【解析】(1)由题意可知A(4,-4),∵抛物线y=ax2+bx+c经过原点、点E(8,0 )和A(4,-4),则0,6480,1644,ca b ca b c=⎧⎪++=⎨⎪++=-⎩解得1,42,0.abc⎧=⎪⎪=-⎨⎪=⎪⎩∴抛物线的解析式为y=14x2-2x.(2)∵∠APC=90°,∴∠APB+∠CPG=90°.∵AB⊥PE,∴∠APB+∠PAB=90°,∴∠CPG=∠PAB.∵∠ABP=∠PGC=90°,PC=PA,∴△ABP≌△PGC,PB=CG,AB=PG=4.∵P(m,0),OP=m,且点P是线段OE上的动点,∴PB=CG=|4-m|,OG=|m+4|.①如图1,当点P在点B左边时,点C在x轴上方,m<4,4-m>0,PB=CG=4-m,∴C(m+4,4-m);②如图2,当点P在点B右边时,点C在x轴下方,m>4,4-m<0,∴PB=|4-m|=-(4-m)=m-4,∴CG=m-4,∴C(m+4,4-m).综上所述,点C坐标是C(m+4,4-m).(3)如图1,当点P在OB上时,∵CD∥y轴,则CD⊥OE.∵点D 在抛物线上,横坐标是m +4,将x =m +4代入y =41x 2-2x 得y =41(m +4)2−2(m +4) , 化简得y =41m 2−4,∴D (m +4,41m 2−4),CD =4-m -(41m 2−4)=−41m 2−m +8. ∵四边形ABCD 是平行四边形,∴AB =CD =4, ∴−41m 2−m +8=4,解得m 1=−2+25,m 2=−2−25. ∵点P 在线段OE 上,∴m 2=−2−25不符合题意,舍去,∴P (−2+25,0);如图2,当点P 在线段BE 上时,∵C (m +4,4-m ), ∵点D 在抛物线上,横坐标是m +4,将x =m +4代入y =41x 2-2x 得y =41(m +4)2−2(m +4), 化简得y =41m 2−4,∴D (m +4,41m 2−4), ∴CD =41m 2−4−(4−m )=41m 2+m +8. ∵四边形ABDC 是平行四边形,∴AB =CD =4, ∴41m 2+m −8=4,解得m 1=−2+213,m 2=−2−213, ∵点P 在线段OE 上,∴m 2=−2−213不符合题意,舍去,∴P (−2+213,0).综上所述,当以点A 、B 、C 、D 为顶点的四边形是平行四边形时,点P 的坐标为P (−2+25,0)或P (−2+213,0).[。
二次函数中的平移、翻折、对称、旋转、折叠问题目录题型01二次函数平移问题题型02二次函数翻折问题题型03二次函数对称问题题型04二次函数旋转问题题型05二次函数折叠问题题型01二次函数平移问题1. 二次函数的平移变换平移方式(n>0)一般式y=ax2+bx+c顶点式y=a(x-h)2+k平移口诀向左平移n个单位y=a(x+n)2+b(x+n)+c y=a(x-h+n)2+k左加向右平移n个单位y=a(x-n)2+b(x-n)+c y=a(x-h-n)2+k右减向上平移n个单位y=ax2+bx+c+n y=a(x-h)2+k+n上加向下平移n个单位y=ax2+bx+c-n y=a(x-h)2+k-n下减2.平移与增加性变化如果平移后对称轴不发生变化,则不影响增减性,但会改变函数最大(小)值.只对二次函数上下平移,不改变增减性,改变最值.只对二次函数左右平移,改变增减性,不改变最值.1(2023·上海杨浦·统考一模)已知在平面直角坐标系xOy中,抛物线y=ax2-2ax-3a≠0与x轴交于点A、点B(点A在点B的左侧),与y轴交于点C,抛物线的顶点为D,且AB=4.(1)求抛物线的表达式;(2)点P 是线段BC 上一点,如果∠PAC =45°,求点P 的坐标;(3)在第(2)小题的条件下,将该抛物线向左平移,点D 平移至点E 处,过点E 作EF ⊥直线AP ,垂足为点F ,如果tan ∠PEF =12,求平移后抛物线的表达式.【答案】(1)y =x 2-2x -3(2)P 53,-43(3)y =x +1792-4【分析】(1)设点A 的横坐标为x A ,点B 的横坐标为x B ,根据对称轴,AB =4,列式x A +x B2=1,x B -x A =4,利用根与系数关系计算确定a 值即可.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,交AC 左侧的AP 的延长线于点N ,利用三角形全等,确定坐标,后根据解析式交点确定所求坐标即可.(3)设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,证明Rt △FGE ∽Rt △PHF ,根据相似三角形的性质得出GEHF=GF HP =EF FP =1tan ∠PEF =2即可求解.【详解】(1)解:∵抛物线y =ax 2-2ax -3a ≠0 与x 轴交于点A 、点B (点A 在点B 的左侧),与y 轴交于点C ,抛物线的顶点为D ,且AB =4,∴x A +x B 2=1,x B -x A =4,解得x B =3,x A =-1,∴-3a=3×-1 ,解得a=1,故抛物线的解析式为y =x 2-2x -3.(2)过点C 作AC ⊥MN 于点C ,交AC 右侧的AP 的延长线于点M ,∵∠PAC =45°,∴AC =CM ,过点M 作MT ⊥y 轴于点T ,∴∠ACO =90°-∠ECM =∠CMT ∵∠ACO =∠CMT ∠AOC =∠CTM AC =CM,∴△AOC ≌△CTM AAS ,∴AO =CT ,OC =EM ,∵抛物线的解析式为y =x 2-2x -3,x B =3,x A =-1,∴AO =CT =1,OC =TM =3,A -1,0 ,C 0,-3 ,B 3,0 ,∴OE =2,TM =3∴M 3,-2 ,设AM 的解析式为y =kx +b ,BC 的解析式为y =px +q ∴-k +b =03k +b =-2 ,3p +q =0q =-3 ,解得k =-12b =-12,p =1q =-3 ∴AM 的解析式为y =-12x -12,BC 的解析式为y =x -3,∴y =x -3y =-12x -12 ,解得x =53y =-43,故P 53,-43;(3)∵y =x 2-2x -3=x -1 2-4,点D 1,-4 ,设抛物线向左平移了t 个单位,则点E 1-t ,-4 ,过点F 作x 轴的平行线交过点P 和y 轴的平行线于点H ,交过点E 和y 轴的平行线于点G ,由(2)知,直线AP 的表达式为:y =-12x -12,P 53,-43设F m ,-12m -12 ∵∠EFP =90°,∴∠GFE +∠HFP =90°,∵∠GFE +∠GEF =90°,∴∠GEF =∠HFP ,∴Rt △FGE ∽Rt △PHF ,∴GE HF =GF HP =EF FP =1tan ∠PEF=2,∵GE =y F -y E =-12m -12+4,HF =x P -x F =53-m ,GF =x F -x G =m -1-t ,HP=y F -y P =-12m-12+43,∴-12m -12+453-m =m -1-t -12m -12+43=2,解得:t =269,∴y =x -1+269 2-4=x +179 2-4.【点睛】本题为考查了二次函数综合运用,三角形全等和相似、解直角三角形、图象平移等,正确作辅助线是解题的关键.2(2023·广东湛江·校考一模)如图1,抛物线y =36x 2+433x +23与x 轴交于点A ,B (A 在B 左边),与y 轴交于点C ,连AC ,点D 与点C 关于抛物线的对称轴对称,过点D 作DE ∥AC 交抛物线于点E ,交y 轴于点P.(1)点F 是直线AC 下方抛物线上点一动点,连DF 交AC 于点G ,连EG ,当△EFG 的面积的最大值时,直线DE 上有一动点M ,直线AC 上有一动点N ,满足MN ⊥AC ,连GM ,NO ,求GM +MN +NO 的最小值;(2)如图2,在(1)的条件下,过点F 作FH ⊥x 轴于点H 交AC 于点L ,将△AHL 沿着射线AC 平移到点A 与点C 重合,从而得到△A H L (点A ,H ,L 分别对应点A ,H ,L ),再将△A H L 绕点H 逆时针旋转α(0°<α<180°),旋转过程中,边A L 所在直线交直线DE 于Q ,交y 轴于点R ,求当△PQR 为等腰三角形时,直接写出PR 的长.【答案】(1)4+23975(2)1733-3或833【分析】(1)作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 ,求出直线DE 的解析式,联立方程得到x =-3时,FH 的值最大,求出答案;作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小,求出答案即可;(2)当△PQR 是等腰三角形时,易知∠QPR =120°,易知直线RQ 与x 轴的夹角为60°,得到直线RQ 的解析式为y =3x +3-3,进而求出答案,当△QPR 是等腰三角形,同理求出答案.【详解】(1)如图1中,作FH ∥y 轴交DE 于H .设F m ,36m 2+433m +23 .由题意可知A (-6,0),B (-2,0),C (0,23),∵抛物线的对称轴x =-4,C ,D 关于直线x =-4对称,∴D (-8,23),∴直线AC 的解析式为y =33x +23,∵DE ∥AC ,∴直线DE 的解析式为y =33x +1433,由y =33x +23y =33x +1433,解得x =8y=23 或x =2y =1633,∴E 2,1633 ,H m ,33m +1433,∵S △DEF =S △DEG +S △EFG ,△DEG 的面积为定值,∴△DEG 的面积最大时,△EFG 的面积最大,∵FH 的值最大时,△DEF 的面积最大,∵FH 的值最大时,△EFG 的面积最大,∵FH =-36m 2-3m +833,∵a <0.开口向下,∴x =-3时,FH 的值最大,此时F -3,-32.如图2中,作点G 关于DE 的对称点T ,TG 交DE 于R ,连接OR 交AC 于N ,作NM ⊥DE 于M ,连接TM ,GM ,此时GM +MN +NO 的值最小.∵直线DF 的解析式为:y =-32x -23,由y =-32x -23y =33x +23,解得x =-245y =235,∴G -245,232 ,∵TG ⊥AC ,∴直线GR 的解析式为y =-3x -2235,由y =33x +1433y =-3x -2235 ,解得x =-345y =1235,∴R -345,1235,∴RG =4,OR =23975,∵GM =TM =RN ,∴GM +MN +ON =RN +ON +RG =RG +ON =4+23975.∴GM +MN +NO 的最小值为4+23975.(2)如图3中,如图当△PQR 是等腰三角形时,易知∠QPR =120°,PQ =PR易知直线RQ 与x 轴的夹角为60°,L 3-32,23+32,直线RQ 的解析式为y =3x +3-3,∴R (0,3-3),∴PR =1433-(3-3)=1733-3.如图4中,当△QPR 是等腰三角形,∵∠QPR =60°,∴△QPR 是等边三角形,同法可得R (0,23),∴PR =OP -OC =1433-23=833综上所述,满足条件的PR 的值为1733-3或833.【点睛】本题属于二次函数证明题,考查了二次函数的性质,一次函数的应用,解题的关键是学会构建二次函数解决最值问题,学会分类讨论的思想思考问题.3(2023·广东潮州·校考一模)如图,在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点P 为直线BC 上方抛物线上一动点,连接OP 交BC 于点Q .(1)求抛物线的函数表达式;(2)当PQ OQ 的值最大时,求点P 的坐标和PQ OQ的最大值;(3)把抛物线y =-12x 2+bx +c 沿射线AC 方向平移5个单位得新抛物线y ,M 是新抛物线上一点,N 是新抛物线对称轴上一点,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,直接写出N 点的坐标,并把求其中一个N 点坐标的过程写出来.【答案】(1)抛物线的函数表达式为y =-12x 2+x +4(2)当m =2时,PQ OQ取得最大值12,此时,P (2,4)(3)N 点的坐标为N 12,52 ,N 22,-112 ,N 32,-52.其中一个N 点坐标的解答过程见解析【分析】(1)运用待定系数法即可求得答案;(2)运用待定系数法求得直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),证明△PDQ ∽△OCQ ,得出:PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,运用求二次函数最值方法即可得出答案;(3)设M t -12t 2+2t +92,N (2,s ),分三种情况:当BC 为▱BCN 1M 1的边时;当BC 为▱BCM 2N 2的边时;当BC 为▱BM 3CN 3的对角线时,运用平行四边形性质即可求得答案.【详解】(1)∵抛物线y =-12x 2+bx +c 与x 轴交于A (-2,0),B (4,0)两点(点A 在点B 的左侧),∴-12×(-2)2-2b +c =0-12×42+4b +c =0,解得:b =1c =4 ,∴抛物线的函数表达式为y =-12x 2+x +4;(2)∵抛物线y =-12x 2+x +4与y 轴交于点C ,∴C (0,4),∴OC =4,设直线BC 的解析式为y =kx +d ,把B (4,0),C (0,4)代入,得:4k +d =0,d =4 解得:k =-1d =4 ,∴直线BC 的解析式为y =-x +4,如图1,过点P 作PD ∥y 轴交BC 于点D ,设P m ,-12m 2+m +4 ,则D (m ,-m +4),∴PD =-12m 2+2m ,∵PD ∥OC ,∴△PDQ ∽△OCQ ,∴PQ OQ =PD OC=-12m 2+2m 4=-18(m -2)2+12,∴当m =2时,PQ OQ取得最大值12,此时,P (2,4).(3)如图2,沿射线AC 方向平移5个单位,即向右平移1个单位,向上平移2个单位,∴新的物线解析式为y =-12(x -2)2+132=-12x 2+2x +92,对称轴为直线x =2,设M t ,-12t 2+2t +92,N (2,s ),当BC 为▱BCN 1M 1的边时,则BC ∥MN ,BC =MN ,∴t -2=4s =-12t 2+2t +92+4解得:t =6s =52,∴N 12,52;当BC 为▱BCM 2N 2的边时,则BC ∥MN ,BC =MN ,∴t -2=-4s =-12t 2+2t +92-4 ,解得:t =-2s =-112,∴N 22,-112;当BC 为▱BM 3CN 3的对角线时,则t +2=4-12t 2+2t +92+s =4,解得:t =2s =-52,∴N 32,-52;综上所述,N 点的坐标为:N 12,52 ,N 22,-112 ,N 32,-52.【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的图象和性质,抛物线的平移,平行四边形的性质,相似三角形的判定和性质,熟练掌握铅锤法、中点坐标公式,运用数形结合思想、分类讨论思想是解题关键.4(2023·湖北襄阳·校联考模拟预测)坐标综合:(1)平面直角坐标系中,抛物线C 1:y 1=x 2+bx +c 的对称轴为直线x =3,且经过点6,3 ,求抛物线C 1的解析式,并写出其顶点坐标;(2)将抛物线C 1在平面直角坐标系内作某种平移,得到一条新的抛物线C 2:y 2=x 2-2mx +m 2-1,①如图1,设自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1.此时,若y 2的最大值比最小值大12m ,求m 的值;②如图2,直线l :y =-12x +n n >0 与x 轴、y 轴分别交于A 、C 两点.过点A 、点C 分别作两坐标轴的平行线,两平行线在第一象限内交于点B .设抛物线C 2与x 轴交于E 、F 两点(点E 在左边).现将图中的△CBA 沿直线l 折叠,折叠后的BC 边与x 轴交于点M .当8≤n ≤12时,若要使点M 始终能够落在线段EF (包括两端点)上,请通过计算加以说明:抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向左还是向右平移?最少要平移几个单位?最多能平移几个单位?【答案】(1)抛物线C 1的解析式为y 1=x 2-6x +3,抛物线C 1的顶点坐标为3,-6(2)①m 的值为2或9-154;②抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位【分析】(1)根据对称轴为直线x =3,可得b =-6,再把把6,3 代入,即可求解;(2)①根据配方可得当x =m 时,函数有最小值-1,再由自变量x 在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,可得1≤m ≤2,然后两种情况讨论,即可求解;②先求出点A ,C 的坐标,可得点B 的坐标,再根据图形折叠的性质可得CM =AM ,在Rt △COM 中,根据勾股定理可得CM =54n ,从而得到点M 的坐标,继而得到n 的取值范围,然后根据点M 始终能够落在线段EF (包括两端点)上,可得m 取值范围,即可求解.【详解】(1)解:∵y 1=x 2+bx +c 的对称轴为直线x =3,∴-b2=3,解得:b =-6,把6,3 代入y 1=x 2-6x +c ,得3=62-6×6+c ,解得:c =3,∴抛物线C 1的解析式为y 1=x 2-6x +3,当x =3时,y 1=32-6×3+3=-6,∴抛物线C 1的顶点坐标为3,-6 ;(2)解:①∵y 2=x 2-2mx +m 2-1=x -m 2-1,∴抛物线C 2的对称轴为直线x =m ,当x =m 时,函数有最小值-1,∵在1≤x ≤2的范围内取值时,函数y 2的最小值始终等于-1,∴1≤m ≤2,当1≤m ≤32时,x =2时y 2有最大值为m 2-4m +3,∴m 2-4m +3+1=12m ,解得m =9±154,∴m =9-154;当32≤m ≤2时,x =1时y 2有最大值为m 2-2m ,∴m 2-2m +1=12m ,解得m =2或m =12(舍),综上所述:m 的值为2或9-154;②直线l :y =-12x +n 与x 轴的交点A 2n ,0 ,与y 轴的交点C 0,n ,∴B 2n ,n ,∵△CBA 沿直线l 折叠,∴∠BCA =∠ACM ,∵∠BCA =∠CAM ,∴∠ACM =∠MAC ,∴CM =AM ,在Rt △COM 中,CM 2=CO 2+OM 2,即CM 2=n 2+2n -CM 2,解得CM =54n ,∴OM =34n ,∴M 34n ,0 ,∵8≤n ≤12,∴6≤34n ≤9,当x 2-2mx +m 2-1=0时,解得:x =m +1或x =m -1,∴E m -1,0 ,F m +1,0 ,∵点M 始终能够落在线段EF 上,∴m +1≥6,m -1≤9,∴5≤m ≤10,∵y 1=x 2-6x +3=x -3 2-6,y 2=x -m 2-1,当m =5时,抛物线C 1沿x 轴向右平移2个单位,向上平移5个单位,当m =10时,抛物线C 1沿x 轴向右平移7个单位,向上平移5个单位,∴抛物线C 1在向抛物线C 2平移时,沿x 轴的方向上需要向右平移,最少平移2个单位,最多平移7个单位.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,函数图象平移的性质,轴对称图形的性质,勾股定理的应用是解题的关键.5(2023·浙江湖州·统考中考真题)如图1,在平面直角坐标系xOy 中,二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,图象的顶点为M .矩形ABCD 的顶点D 与原点O 重合,顶点A ,C 分别在x 轴,y 轴上,顶点B 的坐标为1,5 .(1)求c 的值及顶点M 的坐标,(2)如图2,将矩形ABCD 沿x 轴正方向平移t 个单位0<t <3 得到对应的矩形A B C D .已知边C D ,A B 分别与函数y =x 2-4x +c 的图象交于点P ,Q ,连接PQ ,过点P 作PG ⊥A B 于点G .①当t =2时,求QG 的长;②当点G 与点Q 不重合时,是否存在这样的t ,使得△PGQ 的面积为1?若存在,求出此时t 的值;若不存在,请说明理由.【答案】(1)c =5,顶点M 的坐标是2,1(2)①1;②存在,t =12或52【分析】(1)把0,5 代入抛物线的解析式即可求出c ,把抛物线转化为顶点式即可求出顶点坐标;(2)①先判断当t =2时,D ,A 的坐标分别是2,0 ,3,0 ,再求出x =3,x =2时点Q 的纵坐标与点P 的纵坐标,进而求解;②先求出QG =2,易得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 ,然后分点G 在点Q 的上方与点G 在点Q 的下方两种情况,结合函数图象求解即可.【详解】(1)∵二次函数y =x 2-4x +c 的图象与y 轴的交点坐标为0,5 ,∴c =5, ∴y =x 2-4x +5=x -2 2+1,∴顶点M 的坐标是2,1 .(2)①∵A 在x 轴上,B 的坐标为1,5 ,∴点A 的坐标是1,0 .当t =2时,D ,A 的坐标分别是2,0 ,3,0 .当x =3时,y =3-2 2+1=2,即点Q 的纵坐标是2,当x =2时,y =2-2 2+1=1,即点P 的纵坐标是1.∵PG ⊥A B ,∴点G 的纵坐标是1, ∴QG =2-1=1. ②存在.理由如下:∵△PGQ 的面积为1,PG =1,∴QG =2.根据题意,得P ,Q 的坐标分别是t ,t 2-4t +5 ,t +1,t 2-2t +2 .如图1,当点G 在点Q 的上方时,QG =t 2-4t +5-t 2-2t +2 =3-2t =2,此时t =12(在0<t <3的范围内),如图2,当点G 在点Q 的下方时,QG =t 2-2t +2-t 2-4t +5 =2t -3=2,此时t =52(在0<t <3的范围内).∴t =12或52.【点睛】本题考查了二次函数图象上点的坐标特点、矩形的性质以及三角形的面积等知识,熟练掌握二次函数的图象与性质、灵活应用数形结合思想是解题的关键.6(2023·江苏·统考中考真题)如图,二次函数y =12x 2+bx -4的图像与x 轴相交于点A (-2,0)、B ,其顶点是C .(1)b =;(2)D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52;将原抛物线向左平移,使得平移后的抛物线经过点D ,过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,求k 的取值范围;(3)将原抛物线平移,平移后的抛物线与原抛物线的对称轴相交于点Q ,且其顶点P 落在原抛物线上,连接PC 、QC 、PQ .已知△PCQ 是直角三角形,求点P 的坐标.【答案】(1)-1;(2)k ≤-3;(3)3,-52 或-1,-52 .【分析】(1)把A (-2,0)代入y =12x 2+bx -4即可求解;(2)过点D 作DM ⊥OA 于点M ,设D m ,12m 2-m -4 ,由tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得D -1,-52,进而求得平移后得抛物线,平移后得抛物线为y =12x +3 2-92,根据二次函数得性质即可得解;(3)先设出平移后顶点为P p ,12p 2-p -4 ,根据原抛物线y =12x -1 2-92,求得原抛物线的顶点C 1,-92 ,对称轴为x =1,进而得Q 1,p 2-2p -72,再根据勾股定理构造方程即可得解.【详解】(1)解:把A (-2,0)代入y =12x 2+bx -4得,0=12×-2 2+b ×-2 -4,解得b =-1,故答案为-1;(2)解:过点D 作DM ⊥OA 于点M ,∵b =-1,∴二次函数的解析式为y =12x 2-x -4设D m ,12m 2-m -4 ,∵D 是第三象限抛物线上的一点,连接OD ,tan ∠AOD =52,∴tan ∠AOD =DM OM=-12m 2+m +4-m =52,解得m =-1或m =8(舍去),当m =-1时,12m 2-m -4=12+1-4=-52,∴D -1,-52,∵y =12x 2-x -4=12x -1 2-92,∴设将原抛物线向左平移后的抛物线为y =12x +a 2-92,把D -1,-52 代入y =12x +a 2-92得-52=12-1+a 2-92,解得a =3或a =-1(舍去),∴平移后得抛物线为y =12x +3 2-92∵过点(k ,0)作x 轴的垂线l .已知在l 的左侧,平移前后的两条抛物线都下降,在y =12x +3 2-92的对称轴x =-3的左侧,y 随x 的增大而减小,此时原抛物线也是y 随x 的增大而减小,∴k ≤-3;(3)解:由y =12x -1 2-92,设平移后的抛物线为y =12x -p 2+q ,则顶点为P p ,q ,∵顶点为P p ,q 在y =12x -1 2-92上,∴q =12p -1 2-92=12p 2-p -4,∴平移后的抛物线为y =12x -p 2+12p 2-p -4,顶点为P p ,12p 2-p -4 ,∵原抛物线y =12x -1 2-92,∴原抛物线的顶点C 1,-92,对称轴为x =1,∵平移后的抛物线与原抛物线的对称轴相交于点Q ,∴Q 1,p 2-2p -72,∵点Q 、C 在直线x =1上,平移后的抛物线顶点P 在原抛物线顶点C 的上方,两抛物线的交点Q 在顶点P 的上方,∴∠PCQ 与∠CQP 都是锐角,∵△PCQ 是直角三角形,∴∠CPQ =90°,∴QC 2=PC 2+PQ 2,∴p 2-2p -72+92 2=p -1 2+12p 2-p -4+922+p -1 2+12p 2-p -4-p 2+2p +722化简得p -1 2p -3 p +1 =0,∴p =1(舍去),或p =3或p =-1,当p =3时,12p 2-p -4=12×32-3-4=-52,当p =-1时,12×-1 2+1-4=-52,∴点P 坐标为3,-52 或-1,-52.【点睛】本题考查了二次函数的图像及性质,勾股定理,解直角三角形以及待定系数法求二次函数的解析式,熟练掌握二次函数的图像及性质是解题的关键.7(2023·湖北宜昌·统考模拟预测)如图,过原点的抛物线y 1=ax (x -2n )(a ≠0,a ,n 为常数)与x 轴交于另一点A ,B 是线段OA 的中点,B -4,0 ,点M (-3,3)在抛物线y 1上.(1)点A 的坐标为;(2)C 为x 轴正半轴上一点,且CM =CB .①求线段BC 的长;②线段CM 与抛物线y 1相交于另一点D ,求点D 的坐标;(3)将抛物线y 1向右平移(4-t )个单位长度,再向下平移165个单位长度得到抛物线y 2,P ,Q 是抛物线y 2上两点,T 是抛物线y 2的顶点.对于每一个确定的t 值,求证:矩形TPNQ 的对角线PQ 必过一定点R ,并求出此时线段TR 的长.【答案】(1)-8,0(2)①BC =5;②D -54,2716 (3)证明见解析,RT =5【分析】(1)根据中点公式求C 点坐标即可;(2)①设C x ,0 ,根据CM =CB ,建立方程(x +3)2+9=x +4,求出C 点坐标即可求BC ;②求出直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),求出n =-4,将M 点代入y 1=ax (x +8),求出a =-15,从而求出抛物线y 1=-15x (x +8),直线CM 与抛物线的交点即为点D -54,2716;(3)根据平移的性质可求y 2=-15(x +t )2,则T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,由根与系数的关系可得m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,证明△FPT ∽△ETQ ,则PF TE =FT EQ ,即15(m +t )2n +t =-t -m 15(n +t )2,整理得,(m +t )(n +t )=-25,求出b =kt -5,所以直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),RT =5.【详解】(1)∵B 是线段OA 的中点,B -4,0 ,∴OA =8,∴A -8,0 ,故答案为:-8,0 ;(2)①设C x ,0 ,∵CM =CB ,∴(x +3)2+9=x +4,解得x =1,∴BC =5;②设直线CM 的解析式为y =k 'x +b ',∴k '+b '=0-3k '+b '=3 ,解得k '=-34b '=34,∴直线CM 的解析式为y =-34x +34,将A -8,0 代入y 1=ax (x -2n ),∴-8a (-8-2n )=0,∵a ≠0,∴-8-2n =0,解得n =-4,∴y 1=ax (x +8),将M 点代入y 1=ax (x +8),∴-3a (-3+8)=3,解得a =-15,∴抛物线y 1=-15x (x +8),当-34x +34=-15x (x +8)时,解得x =-3或x =-54,∴D -54,2716;(3)证明:∵y 1=-15x (x +8)=-15(x +4)2+165,∴y 2=-15(x +t )2,∴T (-t ,0),设直线PQ 的解析式为y =kx +b ,P m ,-15(m +t )2 ,Q n ,15(n +t )2 ,当kx +b =-15(x +t )2时,整理得x 2+(2t +5k )x +5b +t 2=0,∴m +n =-2t -5k ,mn =5b +t 2,过点P 作PF ⊥x 轴交于F 点,过Q 点作QE ⊥x 轴交于E 点,∵四边形TPNQ 是矩形,∴∠PTQ =90°,∴∠FTP +∠ETQ =90°,∵∠FTP +∠TPF =90°,∴∠ETQ =∠TPF ,∴△FPT ∽△ETQ ,∴PF TE =FTEQ,即15(m +t )2n +t=-t -m15(n +t )2,整理得,(m +t )(n +t )=-25,∴mn +t (m +n )+t 2=-25,∴b -kt =-5,即b =kt -5,∴直线PQ 的解析式为y =kx +kt -5=k (x +t )-5,∴对于每一个确定的t 值,直线PQ 必经过定点R (-t ,-5),∴RT =5.【点睛】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,三角形相似的判定及性质,一元二次方程根与系数的关系,题型02二次函数翻折问题二次函数的翻转问题的解题思路:①根据二次函数上特殊点的坐标值求得二次函数的表达式;②根据翻转后抛物线与原抛物线的图像关系,确定新抛物线的表达式;③在直角坐标系中画出原抛物线及翻转后抛物线的简易图,根据图像来判断题目中需要求解的量的各种可能性;④根据图像及相关函数表达式进行计算,求得题目中需要求解的值。
抛物线平移、对称变换专题抛物线平移、对称变换学习目标:1.抛物线平移顶点,与坐标系交点关系2.利用对称性求点的坐标知识框架:【1】抛物线的平移变换只改变抛物线的顶点位置,而不改变抛物线的开口方向与开口大小。
【2】求抛物线y ax2 bx c( a 0)沿坐标轴平移后的解析式,一般可先将其配方成顶点式y ax h2 k (a 0),然后利用抛物线平移变换的有关规律将原顶点坐标改变成平移后的新顶点坐标即可。
抛物线平移变换的规律是:左加右减(在括号),上加下减(在末梢)。
【3】抛物线绕其顶点旋转180°只改变抛物线的开口方向,而不改变抛物线的开口大小及顶点位置【4】求抛物线y ax2 bx c ( a 0 )绕其顶点旋转180°后的解析式,同样可先将其配方成顶点式y ax h2k ( a 0),然后将二次项系数直接改变成其相反数即可。
【5】⑴抛物线沿y轴翻折只改变抛物线的顶点位置,而不改变抛物线的开口方向及开口大小。
⑵抛物线沿x轴翻折将同时改变抛物线的开口方向及顶点位置,但抛物线的开口大小不变。
【6】求抛物线y ax2 bx c( a 0 )沿某条坐标轴翻折后的解析式,首先仍应将其配方成顶点式y a x h 2 k ( a 0),然后再根据翻折的方向来确定新抛物线的解析式若是沿y轴翻折,则只需将其顶点坐标改变成翻折后的新顶点坐标即可;若是沿x轴翻折,则除了要将顶点坐标改变成翻折后的新顶点坐标外,还需将二次系数改变成其相反数。
真题汇编:第一部分(选择题)(2013-2014海淀)二次函数y 2X2+I的图象如图所示,将其绕坐标原点O旋转180o,则旋转后的抛物线的解析式为()A. y 2x2 1Br 2 , y 2x 1•C・y 2x2Dr 2 ,y 2x 1 •【方法总结】(2015-2016北师大实验二龙路中学)将抛物线y 2x2向左平移1个单位长度,再向上平移3个单位长度得到的抛物线解析式是()•A • y 2(X 1)2 3B • y 2(x 1)2 3【方法总结】(2015-2016北京三中)将抛物线y 2x2 4绕顶点旋转180 ,则旋转后的抛物线的解析式为( ).A. y 2x2 4 B・y 2x2 4 C . y 2x2 4D. y 2x2【方法总结】(2015-2016北京市昌平第三中学)把抛物线y=2x2-3沿x轴翻折,所得的抛物线是()2 2 2 2A.y= —2x -3B. 一y = 2x -3C. y = 2x + 3D. y = —2x +3【方法总结】(2015-2016北京三帆中学)二次函数y 3x2+1的图象如图所示,将其沿x轴翻折后得到的抛物线的解析式为*y A. y 3x2 1 B. y 3x2C・y 3x2 1 c 2 ‘y 3x 1【方法总结】丰台区2017-2018如图,在平面直角坐标系中,抛物线y 1x2经过平移得到抛物线y 2x2 2x,其对称轴与两段抛物线所围成的阴影部分的面积是()B. 4C. 8D. 16【方法总结】第二部分(填空题)海淀区2017- 2018y 2x2平移后经过点A(0,3) , B(2,3),求平移后的抛物线的表达式.【方法总结】(2013-2014海淀)已知点P( -1 , m在二次函数y x2 1的图象上,贝M m的值为_______________ ;平移此二次函数的图象,使点P与坐标原点重合,则平移后的函数图象所对应的解析式为___________ . ________【方法总结】(2015-2016年北京市第三^一中学)抛物线图像y 2x2经过平移得到抛物线图像y 2x2 4x 5,平移方法是_______【方法总结】朝阳区2015-20 1 6如图,抛物线y=-|x2通过平移得到抛物线m,抛物线m经过点B (6,0)和O (0, 0),它的顶点为A,以O为圆心,OA 为半径作圆,在第四象限内与抛物线y=-9x2交于点C,连接AC,则图中阴影部分的面积为【方法总结】丰台区2014- 2015如图O的半径为2, Ci是函数的12i 2y —x的图象,C2是函数的y —x的图象,C3是函数的y x的图2 2象,则阴影部分的面积是________【方法总结】(2013-2014东城)二次函数y ax2bx c的图象与x轴交于点A (-1, 0 ),与y轴交于点C (0,-5),且经过点D (3, -8).(1)求此二次函数的解析式和顶点坐标;(2)请你写出一种平移的方法,使平移后抛物线的顶点落在原点处,并写出平移后抛物线的解析式.【方法总结】(2016-2017北京四十四中初三上期中)抛物线y 2x2向上平移后经过点A(0,3),求平移后的抛物线的表达式.【方法总结】(2016-2017北京西城铁路第二中学初三上期中) 如图,一段抛物线:y x(x 2)(0W x< 2),记为C,它与x轴交于点O, A;将C1绕点A旋转180° 得G ,交x 轴于点A ;将C2绕点A旋转180°得G,交x轴于点A;•••,女口此进行下去,直至得G o.(1)请写出抛物线C2的解析式:____________________ ;(2)若P (19, a)在第10段抛物线C。
04二次函数y =ax 2+bx +c 的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题 函数y =ax 2与y =x 2的图象之间存在怎样的关系? 为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2高中必备知识点2:二次函数图像的平移变换函数y =a (x +h )2+k 与y =ax 2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y =2(x +1)2+1与y =2x 2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y =2x 2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y =2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.52.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣23.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y 3的大小关系为( ). A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 16.下列函数是二次函数的是( ). A .y =2x B .y =1x+x C .y =x +5D .y =(x +1)(x ﹣3)7.下列对二次函数2y x x =-的图象的描述,正确的是( ) A .经过原点 B .对称轴是y 轴 C .开口向下D .在对称右侧部分是向下的8.已知函数y =(x ﹣a )(x ﹣b )(其中a >b )的图象如图所示,则函数y =ax +b 的图象大致是( )A .B .C .D .9.如图,已知抛物线y =ax 2+bx +c 经过点(﹣1,0),以下结论:①2a +b >0;②a +c <0;③4a +2b +c >0;④b 2﹣5a 2>2a c .其中正确的是( )A .①②B .③④C .②③④D .①②③④10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣2,0),B(4,0),与直线y=32x﹣3交于点C(0,﹣3),直线y=32x﹣3与x轴交于点D.(1)求该抛物线的解析式(2)点P是抛物线上第四象限上的一个动点连接PC,PD,当△PCD的面积最大时,求点P的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l,点E是直线l上一点,连接OE,BE,若直线l上存在使sin∠BEO最大的点E,请直接写出满足条件的点E的坐标;若不存在,请说明理由.20.已知抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),C三点.直线y=mx+12交抛物线于A,Q两点,点P是抛物线上直线AQ上方的一个动点,作PF⊥x轴,垂足为F,交AQ于点N.(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A点,已知﹣1<h<1,请求出m的取值范围.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.专题04二次函数y=ax2+bx+c的图像和性质高中必备知识点1:二次函数图像的伸缩变换问题函数y=ax2与y=x2的图象之间存在怎样的关系?为了研究这一问题,我们可以先画出y =2x 2,y =12x 2,y =-2x 2的图象,通过这些函数图象与函数y =x 2的图象之间的关系,推导出函数y =ax 2与y =x 2的图象之间所存在的关系. 先画出函数y =x 2,y =2x 2的图象. 先列表:再描点、连线,就分别得到了函数y =x 2,y =2x 2的图象(如图2-1所示),从图2-1我们可以得到这两个函数图象之间的关系:函数y =2x 2的图象可以由函数y =x 2的图象各点的纵坐标变为原来的两倍得到.同学们也可以用类似于上面的方法画出函数y =12x 2,y =-2x 2的图象,并研究这两个函数图象与函数y =x 2的图象之间的关系. 通过上面的研究,我们可以得到以下结论:二次函数y =ax 2(a ≠0)的图象可以由y =x 2的图象各点的纵坐标变为原来的a 倍得到.在二次函数y =ax 2(a ≠0)中,二次项系数a 决定了图象的开口方向和在同一个坐标系中的开口的大小.典型考题【典型例题】二次函数的图象如图所示,有下列结论:①;②;③;④,其中正确的结论个数是A.1个B.2 个C.3 个D.4 个【答案】C【解析】由图象可得,,,故错误,当时,,故正确,当时,,由得,,则,得,故正确,,得,故正确,故选:C.【变式训练】下列说法错误的是( )A.二次函数y=-2x2中,当x=0时,y有最大值是0B.二次函数y=4x2中,当x>0时,y随x的增大而增大C.在三条抛物线y=2x2,y=-0.5x2,y=-x2中,y=2x2的图象开口最大,y=-x2的图象开口最小D.不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点【答案】C【解析】A、a=-2<0,抛物线开口向下,当x=0时,y有最大值是0,故该选项正确;B、二次函数y=4x2中,当x>0时,y随x的增大而增大,故该选正确;C、因为|2|>|-1|>|-0.5|,所以,y=2x2的图象开口最小,y=-0.5x2的图象开口最大,故该选错误;D、不论a是正数还是负数,抛物线y=ax2(a≠0)的顶点一定是坐标原点,故该选正确.故选C.【能力提升】抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是()A.y=x2B.y=﹣3x2C.y=﹣x2D.y=2x2【答案】A【解析】∵二次函数中|a|的值越小,则函数图象的开口也越大,又∵,∴抛物线y=x2,y=﹣3x2,y=﹣x2,y=2x2的图象开口最大的是y=x2,故选A.高中必备知识点2:二次函数图像的平移变换函数y=a(x+h)2+k与y=ax2的图象之间存在怎样的关系?同样地,我们可以利用几个特殊的函数图象之间的关系来研究它们之间的关系.同学们可以作出函数y=2(x+1)2+1与y=2x2的图象(如图2-2所示),从函数的同学我们不难发现,只要把函数y=2x2的图象向左平移一个单位,再向上平移一个单位,就可以得到函数y=2(x +1)2+1的图象.这两个函数图象之间具有“形状相同,位置不同”的特点.类似地,还可以通过画函数y =-3x 2,y =-3(x -1)2+1的图象,研究它们图象之间的相互关系.通过上面的研究,我们可以得到以下结论:二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”.由上面的结论,我们可以得到研究二次函数y =ax 2+bx +c (a ≠0)的图象的方法:由于y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a224()24b b aca x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以看作是将函数y =ax 2的图象作左右平移、上下平移得到的,于是,二次函数y =ax 2+bx +c (a ≠0)具有下列性质:(1)当a >0时,函数y =ax 2+bx +c 图象开口向上;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而减小;当x >2b a -时,y 随着x 的增大而增大;当x =2ba-时,函数取最小值y =244ac b a -.(2)当a <0时,函数y =ax 2+bx +c 图象开口向下;顶点坐标为24(,)24b ac b a a--,对称轴为直线x =-2ba;当x <2b a -时,y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小;当x =2ba-时,函数取最大值y =244ac b a -.典型考题【典型例题】如图,已知抛物线C 1:y =﹣x 2+4,将抛物线C 1沿x 轴翻折,得到抛物线C 2(1)求出抛物线C 2的函数表达式;(2)现将抛物线C 1向左平移m 个单位长度,平移后得到的新抛物线的顶点为M ,与x 轴的交点从左到右依次为A ,B ;将抛物线C 2向右也平移m 个单位长度,平移后得到的新抛物线的顶点为N ,与x 轴交点从左到右依次为D ,E .在平移过程中,是否存在以点A ,N ,E ,M 为顶点的四边形是矩形的情形?若存在,请求出此时m 的值;若不存在,请说明理由.【答案】(1)y =x 2﹣4(2)当m =3时,以点A ,N ,E ,M 为顶点的四边形是矩形 【解析】(1)∵抛物线C 1的顶点为(0,4), ∴沿x 轴翻折后顶点的坐标为(0.﹣4),∴抛物线C 2的函数表达式为y =x 2﹣4;(2)存在连接AN ,NE ,EM ,MA ,依题意可得:M (﹣m ,4),N (m ,﹣4),∴M,N关于原点O对称OM=ON,原C1、C2抛物线与x轴的两个交点分别(﹣2,0),(2,0),∴A(﹣2﹣m,0),E(2+m,0),∴A,E关于原点O对称,∴OA=OE∴四边形ANEM为平行四边形,∴AM2=22+42=20,ME2=(2+m+m)2+42=4m2+8m+20,AE2=(2+m+2+m)2=4m2+16m+16,若AM2+ME2=AE2,∴20+4m2+8m+20=4m2+16m+16,解得m=3,此时△AME是直角三角形,且∠AME=90,∴当m=3时,以点A,N,E,M为顶点的四边形是矩形.【变式训练】如图,抛物线轴的负半轴相交于点,将抛物线平移得到抛物线相交于点,直线于点,且.(1)求点的坐标;(2)写出一种将抛物线平移到抛物线的方法;(3)在轴上找点,使得的值最小,求点的坐标.【答案】(1)A(-2,0),B(3,5),C(8,10);(2)先将向右平移5个单位,再向上平移5个单位得到;(3)P(0,).【解析】(1)M1:y=x2-4与x轴的负半轴相交于点A,∴A(-2,0),∵AB=BC,C(8,m),∴,设AB直线解析式为y=kx+b,∵y=x2-4与相交于点A和B,∴m=10,∴B(3,5),C(8,10);(2)∵抛物线M1平移得到抛物线M2,∴a=1,∵B(3,5),C(8,10)在抛物线y=x2+bx+c上,∴y=x2-10+26=(x-5)2+1,由M1平移得到抛物线M2先向右平移5个单位长度,再向上平移5个单位长度;(3)作点B关于y轴的对称点B',连接CB'与y轴的交点即为P,∴B'(-3,5),设直线B'C的直线解析式为y=mx+n,.【能力提升】已知抛物线y=﹣x2+bx+c经过点B(﹣1,0)和点C(2,3).(1)求此抛物线的函数表达式;(2)如果此抛物线上下平移后过点(﹣2,﹣1),试确定平移的方向和平移的距离.【答案】(1)y=﹣x2+2x+3;(2)将抛物线向上平移4个单位.【解析】(1)把B(﹣1,0)和点C(2,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)把x=﹣2代入y=﹣x2+2x+3得y=﹣4﹣4+3=﹣5,点(﹣2,﹣5)向上平移4个单位得到点(﹣2,﹣1),所以需将抛物线向上平移4个单位.专题验收测试题1.抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法正确的有多少个①抛物线与x轴的一个交点为(﹣2,0);②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=;④抛物线与x轴的另一个交点为(3,0);⑤在对称轴左侧,y随x增大而减少.A.2 B.3 C.4 D.5【答案】C【解析】的对称性,逐一判断.【详解】根据图表,抛物线与x轴的一个交点为(﹣2,0),∴①正确;根据图表,抛物线与y轴交与(0,6),②正确;∵抛物线经过点(0,6)和(1,6),∴对称轴为x=,∴③正确;设抛物线经过点(x,0),∴x=解得:x=3∴抛物线一定经过(3,0),④正确;在对称轴左侧,y随x增大而增大,∴⑤错误,故选C.2.如图,一条抛物线与x轴相交于A(x1,0)、B(x2,0)两点(点B在点A的右侧),其顶点P在线段MN上移动,M、N的坐标分别为(﹣1,2)、(1,2),x1的最小值为﹣4,则x2的最大值为()A.6 B.4 C.2 D.﹣2【答案】B【解析】由题意可知,当P在M点时,x1有最小值﹣4,∵M的坐标分别为(﹣1,2),∴x2=2;∴x2与对称轴的距离是3;当P在N点时,x2有最大值,∵N的坐标分别为(1,2),∴x2的最大值为4.故选B.3.如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>2x时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是()A.①②④B.②③④C.②④D.③④【答案】C【解析】∵函数y=x2+bx+c与x轴无交点,∴b2﹣4ac<0;∴b2﹣4c<0故①不正确;当x=3时,y=9+3b+c=3,即3b+c+6=0;故②正确;把(1,1)(3,3)代入y=x2+bx+c,得抛物线的解析式为y=x2﹣3x+3,当x=2时,y=x2﹣3x+3=1,y=2x=1,抛物线和双曲线的交点坐标为(2,1)第一象限内,当x>2时,x2+bx+c>2x;或第三象限内,当x<0时,x2+bx+c>2x;故③错误;∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确;故选:C.4.定义运算“※”为:a※b=,如:1※(﹣2)=﹣1×(﹣2)2=﹣4.则函数y=2※x 的图象大致是()A.B.C.D.【答案】C【解析】解:y=2※x=,当x>0时,图象是y=对称轴右侧的部分;当x<0时,图象是y=对称轴左侧的部分,所以C选项是正确的.5.若抛物线y=ax2+2ax+4a(a>0)上有A(32,y1)、B(2,y2)、C(32,y3)三点,则y1、y2、y3的大小关系为( ).A.y1<y2<y3B.y1<y3<y2C.y3<y1<y2D.y2<y3<y1【答案】B【解析】解:抛物线的对称轴是x=﹣1,开口向上,且与x轴无交点,∴与对称轴距离越近的点对应的纵坐标越小.A、B、C三点与对称轴距离按从小到大顺序是A、C、B,∴y1<y3<y2,故选:B.6.下列函数是二次函数的是( ).A .y =2xB .y =1x +xC .y =x +5D .y =(x +1)(x ﹣3)【答案】D【解析】解:A 、y =2x ,是一次函数,故此选项错误;B 、y =1x +x ,不是整式,故此选项错误;C 、y =x +5,是一次函数,故此选项错误;D 、y =(x +1)(x ﹣3),是二次函数,故此选项正确.故选:D .7.下列对二次函数2y x x =-的图象的描述,正确的是()A .经过原点B .对称轴是y 轴C .开口向下D .在对称右侧部分是向下的【答案】A【解析】解:A 、当x =0时,y =x 2﹣x =0,∴抛物线经过原点,选项A 正确;B 、∵122ba -=, ∴抛物线的对称轴为直线12x =,选项B 不正确;C 、∵a =1>0,∴抛物线开口向上,选项C 不正确;D 、∵a >0,抛物线的对称轴为直线12x =, ∴当12x >时,y 随x 值的增大而增大,选项D 不正确.故选:A .8.已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如图所示,则函数y=ax+b的图象大致是()A.B.C.D.【答案】C【解析】解:∵y=(x﹣a)(x﹣b)=x2﹣(a+b)x+ab,∵抛物线的开口向上知二次项系数>0,与y轴的交点为在y轴负半轴上,∴ab<0,∵对称轴在y轴的右侧,二次项系数大于0,∴﹣(a+b)>0.∴a+b<0,∵a>b,∴a>0,b<0,∴y=ax+b的图象是C选项,故选:C.9.如图,已知抛物线y=ax2+bx+c经过点(﹣1,0),以下结论:①2a+b>0;②a+c<0;③4a+2b+c >0;④b2﹣5a2>2a c.其中正确的是( )A .①②B .③④C .②③④D .①②③④【答案】B【解析】 解:由图象可知a <0,0<﹣2b a <1, ∴b <﹣2a ,∴2a +b <0,所以①错误; ∵﹣2b a>0,a <0, ∴b >0,当x =﹣1时,y 1=a ﹣b +c =0,∴a +c =b >0,所以②错误;∵当x =2时,y >0,∴4a +2b +c >0﹣﹣﹣﹣②,所以③正确;∵过(﹣1,0),代入得a ﹣b +c =0,∴b 2﹣2ac ﹣5a 2=(a +c )2﹣2ac ﹣5a 2=c 2﹣4a 2=(c +2a )(c ﹣2a )又∵4a +2b +c >04a +2(a +c )+c >0即2a +c >0①∵a <0,∴c >0则c ﹣2a >0②由①②知(c +2a )(c ﹣2a )>0,所以b 2﹣2ac ﹣5a 2>0,即b 2﹣5a 2>2ac ,所以④正确. 故选:B .10.二次函数y =ax 2+bx +c (a ≠0)的大致图象如图所示,顶点坐标为(﹣2,﹣9a ),下列结论:①abc >0;②4a +2b +c >0;③5a ﹣b +c =0;④若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1;⑤若方程|ax 2+bx +c |=2有四个根,则这四个根的和为﹣4.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】A【解析】 解:∵抛物线的开口向上,则a >0,对称轴在y 轴的左侧,则b >0,交y 轴的负半轴,则c <0,∴abc <0,所以①结论错误;∵抛物线的顶点坐标(﹣2,﹣9a ), ∴﹣b 2a -=﹣2,244ac b a-=﹣9a , ∴b =4a ,c =﹣5a ,∴抛物线的解析式为y =ax 2+4ax ﹣5a ,∴4a +2b +c =4a +8a ﹣5a =7a >0,所以②结论正确,5a ﹣b +c =5a ﹣4a ﹣5a =﹣4a <0,故③结论错误,∵抛物线y =ax 2+4ax ﹣5a 交x 轴于(﹣5,0),(1,0),∴若方程a (x +5)(x ﹣1)=﹣1有两个根x 1和x 2,且x 1<x 2,则﹣5<x 1<x 2<1,正确,故结论④正确,若方程|ax 2+bx +c |=1有四个根,设方程ax 2+bx +c =1的两根分别为x 1,x 2,则122x x +=﹣2,可得x 1+x 2=﹣4,设方程ax 2+bx +c =1的两根分别为x 3,x 4,则342x x +=﹣2,可得x 3+x 4=﹣4,所以这四个根的和为﹣8,故结论⑤错误,故选:A .11.如图,与抛物线y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为______.【答案】y =(x ﹣3)2﹣4【解析】解:y =x 2﹣2x ﹣3的顶点是(1,﹣4),(1,﹣4)关于x =2的对称点是(3,﹣4),y =x 2﹣2x ﹣3关于直线x =2成轴对称的函数表达式为y =(x ﹣3)2﹣4,故答案为:y =(x ﹣3)2﹣4.12.已知关于x 的一元二次方程ax 2+bx +c =5的一个根是2,且二次函数y =ax 2+bx +c 的对称轴是直线x =2,则抛物线y =ax 2+bx +c 的顶点坐标为_____.【答案】(2,5)【解析】解:∵二次函数y =ax 2+bx +c 的对称轴是直线x =2,方程ax 2+bx +c =5的一个根是2,∴当x =2时,y =ax 2+bx +c =5,∴抛物线的顶点坐标是(2,5).故答案为:(2,5).13.二次函数21212y x x =-+ 中,二次项系数为____,一次项是____,常数项是___ 【答案】12 -2x , 1 【解析】∵y =ax 2+bx +c (a ,b ,c 是常数且a ≠0).在一般形式中ax 2叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项∴21212y x x =-+ 中,二次项系数为12,一次项是-2x ,常数项是1. 故答案是:12; -2x;1. 14.如图,二次函数y =ax 2+bx +c (a ≠0).图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1、3,与y 轴负半轴交于点C .下面三个结论:①2a +b =0;②a +b +c >0;③只有当12a =时,△ABD 是等腰直角三角形;那么,其中正确的结论是_____.(只填你认为正确结论的序号)【答案】①③【解析】解:①∵图象与x 轴的交点A ,B 的横坐标分别为﹣1,3,∴AB =4,∴对称轴x =﹣b 2a =1, 即2a +b =0.故选项正确;②由抛物线的开口方向向上可推出a >0,而﹣b 2a=1, ∴b <0,∵对称轴x =1,∴当x =1时,y <0,∴a +b +c <0.故选项错误;③要使△ABD 为等腰直角三角形,必须保证D 到x 轴的距离等于AB 长的一半; D 到x 轴的距离就是当x =1时y 的值的绝对值.当x =1时,y =a +b +c ,即|a +b +c |=2,∵当x=1时y<0,∴a+b+c=﹣2,又∵图象与x轴的交点A,B的横坐标分别为﹣1,3,∴当x=﹣1时y=0,即a﹣b+c=0,x=3时y=0,即9a+3b+c=0,解这三个方程可得:b=﹣1,a=12,c=﹣32,故选项正确.故答案为:①③.15.把二次函数y=x2+2x+3的图象向左平移1个单位长度,再向下平移1个单位长度,就得到二次函数____的图象.【答案】y=(x+2)2+1或y=x2+2x+5.【解析】∵y=x2+2x+3=(x+1)2+2,∴抛物线y=x2+2x+3先向左平移1个单位,再向下平移1个单位,平移后的函数关系式是:y=(x+2)2+1或y=x2+2x+5.故答案为:y=(x+2)2+1或y=x2+2x+5.16.已知当2≤x≤3时,关于x的多项式x2﹣2kx+k2﹣k﹣1(k为大于2的常数)有最小值﹣2,则常数k的值为___.【答案】4.【解析】解:x2﹣2kx+k2﹣k﹣1=(x﹣k)2﹣k﹣1(k>2),①当2<k≤3时,当x=k时取最小值,∴﹣k﹣1=﹣2,∴k=2,不合题意;②当k>3时,当x=3时取最小值,∴9﹣6k+k2﹣k﹣1=﹣2,∴k=4或2.5,∵k>3,∴k=4;综上,k=4;故答案为:4.17.已知二次函数y=a(x-m)2-a(x-m)(a,m为常数,且a≠0).(1)求证:不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)设该函数的图象与x轴的两个交点为A(x1,0),B(x2,0),且x12+x22=25,求m的值;(3)设该函数的图象的顶点为C,与x轴交于A,B两点,且△ABC的面积为1,求a的值.【答案】(1)证明见解析;(2)m的值为-4或3;(3)a的值是±8.【解析】(1)证明:令y=0,a(x-m)2-a(x-m)=0,△=(-a)2-4a×0=a2,∵a≠0,∴a2>0,∴不论a与m为何值,该函数的图象与x轴总有两个公共点;(2)解:y=0,则a(x-m)2-a(x-m)=a(x-m)(x-m-1)=0,解得x1=m,x2=m+1,∵x12+x22=25,∴m2+(m+1)2=25,解得m1=-4,m2=3.故m的值为-4或3;(3)解:∵x1=m,x2=m+1,∴AB=(m+1)-m=1,y=a(x-m)2-a(x-m)=a(x-m-12)2-4a,△ABC的面积=12×1×|-4a|=1,解得a=±8.故a的值是±8.18.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线对称轴DE交x轴于点E,连接B D.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标.【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(2,2).【解析】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),B(3,0)两点,∴10930b cb c--+=⎧⎨-++=⎩,解得23bc=⎧⎨=⎩,∴所求的抛物线的函数表达式为y=﹣x2+2x+3;(2)如图,连接PC,PE.抛物线的对称轴为x=222(1)ba-=-⨯-=1.当x=1时,y=4,∴点D的坐标为(1,4).设直线BD的解析式为y=kx+b,则4 30 k bk b+=⎧⎨+=⎩,解得26kb=-⎧⎨=⎩.∴直线BD的解析式为:y=2x+6,设点P的坐标为(x,﹣2x+6),又C(0,3),E(1,0),则PC2=x2+(3+2x﹣6)2,PE2=(x﹣1)2+(﹣2x+6)2,∵PC=PE,∴x2+(3+2x﹣6)2=(x﹣1)2+(﹣2x+6)2,解得,x=2,则y =﹣2×2+6=2, ∴点P 的坐标为(2,2).19.如图,在平面直角坐标系中,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (﹣2,0),B (4,0),与直线y =32x ﹣3交于点C (0,﹣3),直线y =32x ﹣3与x 轴交于点D . (1)求该抛物线的解析式(2)点P 是抛物线上第四象限上的一个动点连接PC ,PD ,当△PCD 的面积最大时,求点P 的坐标;(3)将抛物线的对称轴向左平移3个长度单位得到直线l ,点E 是直线l 上一点,连接OE ,BE ,若直线l 上存在使sin ∠BEO 最大的点E ,请直接写出满足条件的点E 的坐标;若不存在,请说明理由.【答案】(1)233384y x x =--;(2)P (3,﹣815);(3)点E 的坐标为(﹣2,)或(﹣2,﹣. 【解析】解:(1)用交点式函数表达式得:y =a (x +2)(x ﹣4)=a (x 2﹣2x ﹣8),即﹣8a =﹣3,解得:a =38, 则函数的表达式为:233384y x x =--;(2)y =32x ﹣3,令y =0,则x =2,即点D (2,0),连接OP ,设点P (x ,233384x x --), S △PCD =S △PDO +S △PCO ﹣S △OCD =22133113272(3)323(3)2842288x x x x ⨯-+++⨯⨯-⨯⨯=--+, ∵﹣38<0,∴S △PCD 有最大值, 此时点P (3,﹣815); (3)如图,经过点O 、B 的圆F 与直线l 相切于点E ,此时,sin ∠BEO 最大,过圆心F 作HF ⊥x 轴于点H ,则OH =12OB =2=OA ,OF =EF =4,∴HF =,过点E 的坐标为(﹣2,﹣;同样当点E 在x 轴的上方时,其坐标为(﹣2,;故点E 的坐标为(﹣2,2,﹣).20.已知抛物线y =ax 2+bx +2经过A (﹣1,0),B (2,0),C 三点.直线y =mx +12交抛物线于A ,Q 两点,点P 是抛物线上直线AQ 上方的一个动点,作PF ⊥x 轴,垂足为F ,交AQ 于点N .(1)求抛物线的解析式;(2)如图①,当点P运动到什么位置时,线段PN=2NF,求出此时点P的坐标;(3)如图②,线段AC的垂直平分线交x轴于点E,垂足为D,点M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.【答案】(1)y=﹣x2+x+2;(2)点P的坐标为(12,94);(3)在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).【解析】(1)∵抛物线y=ax2+bx+2经过A(﹣1,0),B(2,0),∴将点A和点B的坐标代入得:204220a ba b-+=⎧⎨++=⎩,解得a=﹣1,b=1,∴抛物线的解析式为y=﹣x2+x+2.(2)直线y=mx+12交抛物线与A、Q两点,把A(﹣1,0)代入解析式得:m=12,∴直线AQ的解析式为y=12x+12.设点P的横坐标为n,则P(n,﹣n2+n+2),N(n,12n+12),F(n,0),∴PN=﹣n2+n+2﹣(12n+12)=﹣n2+12n+32,NF=12n+12.∵PN=2NF,即﹣n2+12n+32=2×(12n+12),解得:n=﹣1或12.当n=﹣1时,点P与点A重合,不符合题意舍去.∴点P的坐标为(12,94).(3)∵y=﹣x2+x+2,=﹣(x﹣12)2+94,∴M(12,94).如图所示,连结AM交直线DE与点G,连结CG、CM此时,△CMG的周长最小.设直线AM的函数解析式为y=kx+b,且过A(﹣1,0),M(12,94).根据题意得:1924k bk b-+=⎧⎪⎨+=⎪⎩,解得3232kb⎧=⎪⎪⎨⎪=⎪⎩.∴直线AM的函数解析式为y=32x+32.∵D为AC的中点,∴D(﹣12,1).设直线AC的解析式为y=kx+2,将点A的坐标代入得:﹣k+2=0,解得k=2,∴AC的解析式为y=2x+2.设直线DE的解析式为y=﹣12x+c,将点D的坐标代入得:14+c=1,解得c=34,∴直线DE的解析式为y=﹣12x+34.将y=﹣12x+34与y=32x+32联立,解得:x=﹣38,y=1516.∴在直线DE上存在一点G,使△CMG的周长最小,此时G(﹣38,1516).21.现有一次函数y=mx+n和二次函数y=mx2+nx+1,其中m≠0,(1)若二次函数y=mx2+nx+1经过点(2,0),(3,1),试分别求出两个函数的解析式.(2)若一次函数y=mx+n经过点(2,0),且图象经过第一、三象限.二次函数y=mx2+nx+1经过点(a,y1)和(a+1,y2),且y1>y2,请求出a的取值范围.(3)若二次函数y=mx2+nx+1的顶点坐标为A(h,k)(h≠0),同时二次函数y=x2+x+1也经过A 点,已知﹣1<h <1,请求出m 的取值范围. 【答案】(1)y =x ﹣2,y =12-x 2+32+1;(2)a <12;(3)m <﹣2或m >0. 【解析】(1)将点(2,0),(3,1),代入一次函数y =mx +n 中,0213m nm n =+⎧⎨=+⎩, 解得12m n =⎧⎨=-⎩,∴一次函数的解析式是y =x ﹣2,再将点(2,0),(3,1),代入二次函数y =mx 2+nx +1,04211931m n m n =++⎧⎨=++⎩, 解得1232m n ⎧=-⎪⎪⎨⎪=⎪⎩,∴二次函数的解析式是213122y x =-++. (2)∵一次函数y =mx +n 经过点(2,0), ∴n =﹣2m ,∵二次函数y =mx 2+nx +1的对称轴是x =n 2m-, ∴对称轴为x =1,又∵一次函数y =mx +n 图象经过第一、三象限, ∴m >0, ∵y 1>y 2, ∴1﹣a >1+a ﹣1, ∴a <12. (3)∵y =mx 2+nx +1的顶点坐标为A (h ,k ), ∴k =mh 2+nh +1,且h =n 2m-,又∵二次函数y=x2+x+1也经过A点,∴k=h2+h+1,∴mh2+nh+1=h2+h+1,∴11 hm=-+,又∵﹣1<h<1,∴m<﹣2或m>0.22.如图,在直角坐标系中,直线y=13x+1与x轴、y轴的交点分别为A、B,以x=﹣1为对称轴的抛物线y=﹣x2+bx+c与x轴分别交于点A、C.(1)求抛物线的解析式;(2)若点P是第二象限内抛物线上的动点,设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;(3)若点Q在第二象限内,且tan∠AQD=2,线段CQ是否存在最小值?如果存在直接写出最小值,如果不存在,请说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)点P的坐标是(﹣1,4)或(﹣2,3);(3)存在,CQ【解析】解:(1)∵直线y=13x+1与x轴交点为A,∴点A的坐标为(﹣3,0),∵抛物线的对称轴为x=﹣1,∴点C的坐标为(1,0),∵抛物线y=﹣x2+bx+c与x轴分别交于点A、C,。
一、解答题1.如图,四边形ABCD 和四边形GHIJ 都是正方形,点E 同时是边BC 和HI 的中点,点F 是边AD 的中点,点K 是边GJ 的中点,连接BH ,FK .(1)如图1,当HI 与BC 在同一条直线上时,直接写出BH 与FK 的数量关系和位置关系;(2)正方形ABCD 固定不动,将图1中的正方形GHIJ 绕点E 顺时针旋转角,如图2所示,判断(1)中的结论是否仍然成立,若成立,请加以证明:若不成立,说明理由;(3)正方形ABCD 固定不动,将图1中的正方形GHIJ 绕点E 旋转角,作于点L .设,线段AB ,BH ,HG ,GK ,KF ,FA 所围成的图形面积为S .当6AB =,时,求S 关于x 的函数关系式,并写出相应的x 的取值范围. 2.问题发现如图1,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,45CAB CDE ∠=∠=︒,点D 是线段AB 上一动点,连接BE .(1)填空: ①BE AD的值为______; ②DBE ∠的度数为______.(2)类比探究如图2,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,点D 是线段AB 上一动点,连接BE .请求出BE AD 的值及DBE ∠的度数,并说明理由; (3)拓展延伸如图3,在Rt ABC △和Rt CDE △中,90ACB DCE ∠=∠=︒,CAB CDE ∠=∠,点D 是线段AB 上一动点,连接BE ,M 为DE 中点.若4BC =,3AC =,在点D 从A 点运动到B 点的过程中,请直接写出M 点经过的路径长.3.如图1,在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点B 作BE CD ⊥,交AC 于点H ,交CD 于点E .过点C 作//CF BD ,交BE 的延长线于点F ,过点F 作//FG BC ,交BD 的延长线于点G .(1)若8AC =,6BD =,求BE 的长;(2)如图2,连接AF ,交BG 于点K ,若GFA BFC ∠=∠,求证:2BF BC CD -.(3)如图3,当点D 与点G 重合时,若9AB =,将BOH 沿射线BC 方向平移,当点B 到达点C 时停止平移.当平移结束后(即点B 到达点C 时),将BOH 绕点B 顺时针旋转一个角度()0360αα<<︒,O 的对应点'O ,H 的对应点'H ,直线'CH 与直线BF 的交点为M ,直线''O H 与直线BF 的交点为N ,在旋转过程中,当'MNH △是直角三角形,且'90MNH ∠=︒时,直接写出'MNH △的面积.4.已知:抛物线l 1:y =—x 2+bx +3交x 轴于点A 、B ,(点A 在点B 的左侧),交y 轴于点C ,其对称轴为直线x =1,抛物线l 2经过点A ,与x 轴的另一个交点为E (5,0),交y轴于点D (0,5—2) (1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.5.在△ABC中,AB=BC=5,AD⊥BC于D,AD=4.动点P从点B出发,沿折线BA→AC运动(点P不与B、C重合),点P在边BA上运动的速度为2.5个单位长度,在个单位长度,过P作PQ⊥BC于点Q,以PQ为边向右作矩形边AC上的运动速度为52PQFE,使PQ=2PE,点F在线段BC上,设点P运动的时间为t.(1)点P在BA上时,则PQ=;(用含t代数式表示)(2)点P在AC上时,则PQ=;(用含t代数式表示)(3)连结DE,当△DEF与△ADC相似时,求t的值.(4)设矩形PQFE的对角线相交于点O,当点O在△ACD边上时,直接写出t的取值范围.6.如图,在平面直角坐标系中,已知点A(a,0)、B(0,b)分别为x轴和y轴上一点,且a,b满足22260+-+=,过点B作BE⊥AC于点E,延长BE至点D,使得BD=AC,连a b ab b接OC、OD.(1)A点的坐标为;∠OAB的度数为.(2)如图1,若点C在第四象限,试判断OC与OD的数量关系与位置关系,并说明理由.(3)如图2,连接CD,若点C的坐标为(4,3),CE平分∠OCD,AC与OD交于点F.①求D点的坐标;②试判断DE与CF的数量关系,并说明理由.7.如图1,在平面直角坐标系中,直线y=2x+8与x轴交于点A,与y轴交于点B,过点B的另一条直线483y x=-+交x轴正半轴于点C.(1)写出C点坐标;(2)若M为线段BC上一点,且满足S△AMB=S△AOB,请求出点M的坐标;(3)如图2,设点F为线段AB中点,点G为y轴正半轴上一动点,连接FG,以FG为边向FG右侧作正方形FGQP,在G点的运动过程中,当顶点Q落在直线BC上时,求出点G 的坐标.8.如图1,在平面直角坐标系中,抛物线y=ax2+154x+c与x轴负半轴相交于点A(﹣20,0),与y轴相交于点B(0,﹣15).(1)求抛物线的函数表达式及直线AB的函数表达式;(2)如图2,点C是第三象限内抛物线上的一个动点,连接AC、BC,直线OC与直线AB 相交于点D,当△ABC的面积最大时,求此时△ABC面积的最大值及点C的坐标;(3)在(2)的条件下,点E为线段OD上的一个动点,点E从点O开始沿OD以每秒10D运动(运动到点D时停止),以OE为边,在OD的左侧做正方形OEFG,设正方形OEFG与△OAD重叠的面积为S,运动时间为t秒.当t>3时,请直接写出S 与t 之间的函数关系式为 (不必写出t 的取值范围).9.二次函数y =ax 2﹣4ax +2的图象与y 轴交于点A ,且过点B (3,6).(1)试求二次函数的解析式及点A 的坐标;(2)若点B 关于二次函数对称轴的对称点为点C ,设点D 在直线AB 上方的抛物线上,当∠CBD =∠ABC 时,求出点D 的坐标;(3)若在抛物线的对称轴上有一点P ,使得△ABP 是以AB 为腰的等腰三角形,试直接写出符合题意的所有的点P 的坐标.10.如图,已知抛物线23y ax bx =++(a 、b 为常数,且a ≠0)与x 轴交于点A (-1,0)和点B ,与y 轴交于点C ,其对称轴是直线x =1,顶点为P ,连接BP ,CP .(1)求抛物线的表达式;(2)判断△BCP 的形状,并说明理由;(3)该抛物线上是否存在点Q ,使得∠QBC=∠ACO ?若存在,请直接写出满足条件的所有点Q 是坐标;若不存在,请说明理由.11.如图,抛物线与x 轴交于A 、B 两点( 点A 在点B 的左侧),点B 坐标()3,0,抛物线与y 轴交于点()0,3C -,点D 为抛物线顶点,对称轴1x =与x 轴交于点E ,连接BC 、EC .(1)求抛物线的解析式;(2)点P 是BC 下方异于点D 的抛物线上一动点,若PBC EBC SS =,求此时点P 的坐标; (3)点Q 是抛物线上一动点,点M 是平面上一点,若以点B 、C 、Q 、M 为顶点的四边形为矩形,直接写出满足条件的点Q 的横坐标.12.如图,已知抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点(0,3)C ,顶点为点D .(1)求抛物线的解析式;(2)若过点C 的直线交线段AB 于点E ,且,求的正切值; (3)若点P 在抛物线上,点Q 在x 轴上,当以点D 、C 、P 、Q 为顶点的四边形是平行四边形时,直接写出点P 的坐标.13.如图1,在平面直角坐标系中,已知△ABC 中,∠ABC =90°,B (4,0),C (8,0),tan∠ACB =2,抛物线y =ax 2+bx 经过A ,C 两点.(1)求点A 的坐标及抛物线的解析式;(2)如图2,过点A 作AD ⊥AB 交BC 的垂线于点D ,动点P 从点A 出发,沿线段AB 向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动,速度均为每秒1个单位长度,运动时间为t秒,过点P作PE⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t为何值时,线段EG取得最大值?最大值是多少?②连接EQ,在点P,Q运动过程中,t为何值时,使得△CEQ与△ABC相似?14.如图,在平面直角坐标系中,抛物线y=ax2+bx+2与直线y=x﹣2交于点A(m,0)和点B(﹣2,n),与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)若向下平移抛物线,使顶点D落在x轴上,原来的抛物线上的点P平移后的对应点为P',若,求点P的坐标;(3)在抛物线上是否存在点Q,使△QAB的面积是△ABC面积的一半?若存在,直接写出点Q的坐标;若不存在,请说明理由.15.如图,在平面直角坐标系中,四边形AOBC是矩形,OB=4,OA=3,F是BC边上一个动点(不与B、C重合),过点F的反比例函数y=kx(k>0)的图象与边AC交于点E.(1)当BF=13BC时,求点E的坐标;(2)连接EF,求∠EFC的正切值;(3)将△EFC沿EF折叠,得到△EFG,当点G恰好落在矩形AOBC的对角线上时,求k的值.16.如图,在长方形ABCD中,10AB=,9BC=,点E在AB上,点G在AD上,AEFG 为正方形.点M,N分别为BC,CD上的动点,MO BC⊥,NO CD⊥,且点O始终在正方形AEFG的内部,MO交EF于点P,NO交FG于点Q.(1)设CM AE a ==,①用含a 的代数式表示四边形EBMP 的周长;②若四边形OPFQ ,GQND 的周长之和恰好为四边形EBMP 周长的两倍,求a 的值.(2)设3CM x =,2CN x =,AE n CN =,是否存在正整数x ,n ,使得EBMP GQND S S =四边形四边形若存在,求出x ,n 的值;若不存在,请说明理由.17.如图,在平面直角坐标系中,ABC 是等腰直角三角形,90ACB ∠=︒,AC BC =,1OA =,4OC =,抛物线,2y x bx c =++经过A ,B 两点,抛物线的顶点为D .(1)求抛物线的解析式;(2)点E 是Rt ABC 斜边AB 上一动点(点A 、B 除外),过点E 作x 轴的垂线交抛物线于点F ,当线段EF 的长度最大时,求点E 的坐标;(3)若在抛物线的对称轴上恰好存在唯一的点P ,使EFP △是以EF 为直角边的直角三角形?若存在,求出所有点P 的坐标;请确定此时点E 的坐标.18.如图1,在直角坐标系中,O 是坐标原点,点A 在y 轴正半轴上,二次函数y =ax 2+16x +c 的图象F 交x 轴于B 、C 两点,交y 轴于M 点,其中B (﹣3,0),M (0,﹣1).已知AM =BC .(1)求二次函数的解析式;(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;(3)在(2)的条件下,设直线l过D且l⊥BD,分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N,求11BP BQ+的值;19.如图1,过点C(0,5)的抛物线y=ax2+bx+c与直线y=21033x-+相交于B(5,0)、D(﹣1,4)两点,点E为线段BD上一动点(不与点B、D重合),连接AE并将其延长交抛物线于点F,过点F作FG∥y轴,交BD于点G.(1)求抛物线的表达式;(2)求线段FG的最大值,并求出此时点E的坐标;(3)在(2)的条件下,把抛物线y=ax2+bx+c先向左平移1个单位,再向下平移53个单位得到新抛物线,点P是新抛物线与原抛物线的交点,点Q为射线BA上一动点,连接CQ,将△CQB沿直线BC翻折到△CNB,连接NQ,交直线BC于点M,R为平面直角坐标系中一点,直接写出所有使得以M、P、F、R为顶点的四边形是菱形的点R的坐标,并把求其中一个点R的坐标的过程写出来.20.如图①,在平面直角坐标系中,点A、B的坐标分别为A(4,0)、B(0,3),连结AB.抛物线经过点B,且对称轴是直线.(1)求抛物线的函数关系式.(2)将图①中的△ABO沿x轴向左平移得到△DCE(如图②),当四边形ABCD是菱形时,说明点C和点D都在该抛物线上.(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),过点M作MN∥y轴交直线CD于点N.设点M的横坐标为m,线段MN的长为l.求l与m之间的函数关系式.(4)在(3)的条件下,直接写出m为何值时,以M、N、C、E为顶点的四边形是平行四边形.【参考答案】**科目模拟测试一、解答题1.(1)BH与FK的数量关系为FK=2BH,位置关系为FK⊥BH(2)仍然成立,BH与FK的数量关系不变,FK=2BH,位置关系不变FK⊥BH,证明见解析(3),变量x的取值范围是【解析】【分析】(1),根据正方形的性质和中点定义,可知AB=BC,GH=HI,BE=EC,EH=EI,进而得出BH=IC,再根据FK=AB-GH,可得答案.(2),先连接FE,KE,再根据两边成比例且夹角相等的两个三角形形似,得,进而得出,即可得出数量关系.再延长FK,交BC于M,延长BH,交FM于N,由①可得∠HBE=∠KFE,进而得出∠BNM=90°,即可得出位置关系.(3),分两种情况:第一:当正方形GHIJ绕点E顺时针旋转α时,表示EL,再求出,,表示,再根据,得出,最后根据列出关系式,并求出取值范围.第二:当正方形GHIJ绕点E逆时针旋转α时,与第一类似,再根据列出关系式,并求出自变量取值范围,最后确定答案即可.(1)解:BH与FK的数量关系为FK=2BH,位置关系为FK⊥BH.根据题意可知AB=BC,GH=HI,BE=EC,EH=EI,∴BH=BE-HE,IC=EC-EI,即BH=IC.∴FK=AB-GH=BC-HI=BH+IC=2BH.(2)当正方形GHIJ绕点E旋转α()角时,其数量和位置关系不变先证FK=2BH连接FE,KE由题意可得到,∠FEB=∠KEH=90°可得∠HEB+∠FEH=∠KEF+∠FEH∴∠HEB=∠KEF∴∴即FK=2BH②再证FK⊥BH延长FK,交BC于M,延长BH,交FM于N由①可得∠HBE=∠KFE∴∠HBE+∠FMB=∠KFE+∠FMB=90°∴∠BNM=90°即FK⊥BH∴BH与FK的数量关系不变,FK=2BH,位置关系不变FK⊥BH (3)正方形GHIJ绕点E旋转α(0°≤α≤90°),有以下两种情况:当正方形GHIJ绕点E顺时针旋转α时,EL=x-3.如图,,∵,∴∴又∵因此自变量x的取值范围是当正方形GHIJ绕点E逆时针旋转α时,EL=3-x.如图,, ∵, ∴∴又∵因此自变量x 的取值范围是. 综上所述,.【点睛】 这是一道关于正方形的综合问题,考查了正方形的性质,相似三角形的性质和判定,旋转的性质,求一次函数的关系式及自变量取值范围等.2.(1)①1;②90°;(2)3BE AD =90DBE ∠=︒,理由见解析;(3)256 【解析】【分析】(1)①证明ACD △≌BCE 即可求得BE AD的值;②由①的结论,可得DBE ABC CBE ∠=∠+∠,进而可得DBE ∠的度数; (2)由已知条件证明Rt ACB △∽Rt DCE ,可得AC CD BC CE =,又ACD BCE ∠=∠,可得ACD △∽BCE ,进而根据3AC BC =3BE BC AD AC ==1)可得DBE ABC CBE ∠=∠+∠,进而可得DBE ∠的度数;(3)设AB 的中点为P ,BE 的中点为Q ,由题意M 的路径长为PQ 的长,根据(2)的结论可得ACD △∽BCE ,进而求得CE 的长,根据中位线定理即可求得PQ ,即M 点经过的路径长.【详解】(1)∵90ACB DCE ∠=∠=︒,45CAB CDE ∠=∠=︒,∴45ABC CAB CDE CED ∠=∠=︒=∠=∠,∴AC BC =,CD CE =,∵90ACB DCE ∠=∠=︒,∴ACD BCE ∠=∠,在ACD △和BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴ACD △≌BCE (S A S ),∴BE AD =,45CAB CBE ∠=∠=︒,∴90DBE ABC CBE ∠=∠+∠=︒,1BE AD=. 故答案为:1,90°.(2)BE AD =90DBE ∠=︒. 理由如下:∵90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,∴30CED ABC ∠=∠=︒,ACB DCB DCE DCB ∴∠-∠=∠-∠,即ACD BCE ∠=∠,∴tan tan 30AC ABC BC ∠=︒== ∵90ACB DCE ∠=∠=︒,60CAB CDE ∠=∠=︒,∴Rt ACB △∽Rt DCE , ∴AC CD BC CE =, ∴AC BC CD CE=,且ACD BCE ∠=∠, ∴ACD △∽BCE ,∴BE BC AD AC =60CBE CAD ∠=∠=︒, ∴90DBE ABC CBE ∠=∠+∠=︒.(3)如图,设AB 的中点为P ,BE 的中点为Q ,点D 是线段AB 上一动点, M 为DE 中点,在点D 从A 点运动到B 点的过程中,M 点从AB 的中点P 运动到BE 的中点Q ,当D 点与B 点重合时,M 点与Q 点重合,此时如图,则M 点的运动路径长为PQ 的长,由(2)可得ACD △∽BCE ,4BC =,3AC =,90ACB ∠=︒,∴43BE BC EC AD AC CD ===,225AB AC BC +=, 4CD BC ==,163EC ∴=, 1625333AE AC EC ∴=+=+=, ,P Q 分别为,AD BE 的中点,则256PQ =, ∴M 点的运动路径长为256. 【点睛】本题考查了三角形全等的性质与判定,相似三角形的性质与判定,解直角三角形,综合运用以上知识是解题的关键.3.(1)245;(2)见解析;(3)815434+或543814- 【解析】【分析】(1)由菱形的对角线互相垂直平分,得到直角三角形及其两条直角边的长,再由勾股定理求出边CD 的长,利用菱形的面积列方程即可求解;(2)延长AD 交BF 于点L ,根据平行四边形的判定和性质及直角三角形斜边上的中线等于斜边的一半、菱形的每条对角线平分一组对角等,可得:45BLA BAL ∠=∠=︒,进而得出2BF BC CD -=;(3)在0360α<<︒范围内,O H BF ''⊥即90MNH ∠='︒的情况有两种,准确的画出相应图形进行求解即可.【详解】解:(1)如图1,∵四边形ABCD 是菱形,∴90COD ∠=︒,118422OC AC ==⨯=,116322OD BD ==⨯=, ∴22435CD =+=,∴15862BE =⨯⨯, 解得245BE =.(2)如图2,延长AD 交BF 于点L .∵//CF BD ,//FG BC ,∴四边形BCFG 是平行四边形,∵90ABF DEF ∠=∠=︒,90AOB ∠=︒,∴90GBF ABO BAC DAC ∠=︒-∠=∠=∠,∵////FG BC AD ,GFA BFC ∠=∠,∴LAF GFA BFC ∠=∠=∠,∵BFC GBF ∠=∠,∴GFA BFC LAF BAC DAC ∠=∠=∠=∠=∠,设GFA BFC LAF BAC DAC β∠=∠=∠=∠=∠=,∵AKD FKG ∠=∠,DAK GFK ∠=∠,FG AD =,∴()AKD FKG AAS ≅△△,∴AK FK =, ∴12BK AF AK ==, ∴3KAB KBA GBC GFC β∠=∠=∠=∠=,∴LFA LAF β∠==∠,∵90LFA LAF BAC DAC ∠+∠+∠+∠=︒, ∴45LFA LAF BAC DAC ∠=∠=∠=∠=︒,∴LF LA =,45BLA BAL ∠=∠=︒,∴22LA AB LB ==,∵BC AB BL ==,∴2BF BC BF BL LF LA AB -=-===,∵AB CD =,∴2BF BC CD -=.(3)当点D 与点G 重合时,则四边形ABCD 和四边形BCFD 都是菱形,∴60ADB BDC CDF ∠=∠=∠=︒,30DAO ∠=︒,∵9AD AB ==,∴1922BO DO AD ===,933AO CO DO ===. 当0180α<≤︒,且'90MNH ∠=︒时,如图3,∵9'2EN CO BO ===,932ME CO ==, ∴993993222MN +=+=, ∵'30NMH ∠=︒,∴9933339'tan 30232NH MN ++=⋅︒=⨯=, ∴'1993339815432224MNH S +++=⨯⨯=△.当180360α︒<<︒,且'90MNH ∠=︒时,如图4,则939939222MN -=-=, 9393933'tan 30232NH MN --=⋅︒=⨯=, ∴'1939933543812224MNH S ---=⨯⨯=△.综上所述,'MNH △.【点睛】 题目主要考查平行四边形的判定和性质、直角三角形斜边上的中线等于斜边的一半以及全等三角形的性质和判定、二次根式和化简等知识点,综合运用这些知识点是解题关键.4.(1)215222y x x =--;(2)(1,1);(3)12 【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1)抛物线21:3l y x bx =-++的对称轴为1x =,12b ∴-=-,解得2b =, ∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-, 又抛物线2l 交y 轴于点(20,5)D -, 552a ∴-=-,解得12a =, 2115(1)(5)2222y x x x x ∴=+-=--, ∴抛物线2l 的函数表达式为215222y x x =--; (2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA =,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --, //MN y 轴,2(,23)N x x x ∴-++, 令221523222x x x x -++=--,可解得1x =-或113x =, ①当1113x -<时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+, 显然411133-<,∴当43x =时,MN 有最大值496; ②当1153x <时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--, 显然当43x >时,MN 随x 的增大而增大, ∴当5x =时,MN 有最大值,23449(5)12236⨯--=; 综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.5.(1)2t ;(2)6﹣t ;(3)67或613或2或5;(4)t =32或2≤t <6 【解析】【分析】(1)由四边形PQFE 是矩形,可得PQ ⊥QF ,进而推出PQ ∥AD ,可得△BPQ ∽△BAD ,得出BP PQ AB AD=,即可求出PQ 的长; (2)由勾股定理得出BD 、AC 的长度,表示出AP 的长,CP 的长,利用△CPQ ∽△CAD ,得出PQ CP AD AC=,即可求出PQ 的长; (3)分两种情况:①当点P 在边BA 上运动时,由四边形PQFE 是矩形,可得QF =PE =t ,EF =PQ =2t ,当△EFD ∽△ADC 时,DF CD EF DA = , 求得t =67,当△DFE ∽△ADC 时, DF AD EF CD =,求得t =613,②如图4,当点P 在边AC 上运动时,当△EFD ∽△ADC 时,则DF DC EF AD =,求得t =2,当△DFE ∽△ADC 时,DF AD EF CD =,求得t =5,综上所述,t 的值为67或613或2或5; (4)分三种情况讨论:①当矩形PQFE 的对角线交点O 在AD 上,②当矩形PQFE 的对角线交点O 在AC 上,③当矩形PQFE 的对角线交点O 在CD 上,即可得到t 的取值范围.【详解】解:(1)点P 在BA 上时,点P 在边BA 上运动的速度为2.5个单位长度,BP =2.5t , ∵四边形PQFE 是矩形,∴PQ ⊥QF ,∵点F 在线段BC 上,∴PQ ⊥BC ,∵AD ⊥BC ,∴PQ ∥AD ,∴∠BPQ =∠BAD ,∵∠B =∠B ,∴△BPQ ∽△BAD ,∴BP PQ AB AD=, ∵BP =2.5t ,AB =5,AD =4, ∴2.554t PQ =, ∴PQ =2t ,故答案为:2t ;(2)如图2,点P 在AC 5个单位长度, 由题意得:AP 5(t ﹣2), ∵AD ⊥BC ,AB =5,AD =4,∴BD 2222543AB AD -=-=,∴CD =BC ﹣BD =5﹣3=2,∴AC 22224225AD CD ++∴CP =AC ﹣AP =)5525235t -=,∵PQ∥AD,∴∠QPC=∠DAC,∠PQC=∠ADC,∴△CPQ∽△CAD,∴PQ CPAD AC=,即5352425tPQ-=,∴PQ=6﹣t,故答案为:6﹣t;(3)分两种情况:①如图3,当点P在边BA上运动时,∵四边形PQFE是矩形,∴QF=PE=t,EF=PQ=2t,在Rt△BPQ中,BQ=BP•cos∠B=BP×32.5 1.55BDt t AB=⨯=,∴DF=3﹣2.5t,当△EFD∽△ADC时,DF CD EF DA=∴3 2.52 24tt-=,∴t=67,经检验符合题意,当△DFE∽△ADC时,DF AD EF CD=,∴3 2.54 22tt-=,∴t=6 13,经检验符合题意,②如图4,当点P在边AC上运动时,∵四边形PQFE是矩形,∴QF=PE=t,EF=PQ=6﹣t,∴DF=DC=2,当△EFD∽△ADC时,则DF DC EF AD=,即22 64t=-,∴t=2,经检验符合题意,当△DFE∽△ADC时,DF AD EF CD=,∴24 62t=-,∴t=5,经检验符合题意,综上所述,t的值为67或613或2或5;(4)分三种情况讨论:①当矩形PQFE的对角线交点O在AD上时,如图5,∴QD=12QF=0.5t,∵BQ =1.5t ,BQ +QD =BD =3,∴1.5t +0.5t =3,∴t =32, ②当矩形PQFE 的对角线交点O 在AC 上时,∵点F 始终与点C 重合,点P 从点A 运动到点C ,4AC = ∴点P 在AC 上运动时间为2≤t <6,∴当2≤t <6时,矩形PQFE 的对角线交点O 在AC 上;③由题意知,矩形PQFE 的对角线交点O 不可能在CD 上;综上所述,t 的取值范围t =32或2≤t <6. 【点睛】本题考查锐角三角函数,勾股定理,等腰三角形性质,三角形相似判定与性质,可化为一元一次方程的分式方程,矩形性质,动点动图形问题,分类讨思想的运用,掌握锐角三角函数,勾股定理,等腰三角形性质,三角形相似判定与性质,可化为一元一次方程的分式方程,矩形性质,动点动图形问题,分类讨思想的运用,本题难度大,涉及知识多,是中考压轴题.6.(1)(6,0)-,45︒;(2)OC OD =,OC OD ⊥;理由见解析;(3)①(3,4)D -;②12DE CF = 【解析】【分析】(1)直接根据完全平方式的非负性,二次根式有意义的条件得出,a b 的值即可得出答案;(2)根据题意证明()OAC OBD SAS △≌△,根据全等三角形的性质以及三角形内角和定理可得结论;(3)①作DG x ⊥轴交x 轴于点G ,⊥CH x 轴交x 轴于点H ,证明()OGD CHO AAS ≌,即可得到答案;②延长CO 交BD 于点M ,根据题意证明COF DOM ≌,然后证明DCE MCE ≌,可得结论.【详解】解:(1)∵2220a b ab +-=,即2()0a b -+,∴6b =-,6a b ==-,∴A 点的坐标为(6,0)-,点(0,6)B -∴6OA OB ,∵90AOB ∠=︒,∴45OAB ∠=︒,故答案为:(6,0)-,45︒;(2)设AC 与y 轴交于点F ,BD 与OC 交于点G ,∵BE ⊥AC ,∴90BEF ∠=︒,在AOF 和BEF 中,90AOF BEF ∠=∠=︒,AFO BFE =∠∠,∴FAO FBE ∠=∠,即OAC OBD ∠=∠,在OAC 和OBD 中,OA OB OAC OBD AC BD =⎧⎪∠=∠⎨⎪=⎩, ∴()OAC OBD SAS △≌△,∴OC OD =,C D ∠=∠,在OGD 和EGC 中,C D ∠=∠,OGD EGC ∠=∠,∴90DOC GEC ∠=∠=︒,∴OC OD ⊥,∴OC OD =,OC OD ⊥;(3)①作DG x ⊥轴交x 轴于点G ,⊥CH x 轴交x 轴于点H ,∵点C的坐标为(4,3),∴4,3OH CH==,由(2)知,90OC OD COD=∠=︒,∵90DOG COH∠+∠=︒,90COH OCH∠+∠=︒,∴DOG OCH∠=∠,∵90OGD CHO∠=∠=︒,∴()OGD CHO AAS≌,∴3OG CH==,4GD HO==,∴(3,4)D-;②延长CO交BD于点M,∵ODB OCA∠=∠,90COD DOM∠=∠=︒,OC OD=,∴COF DOM≌,∴CF DM=,∵CE平分∠OCD,∴DCA OCA∠=∠,∵,90CE CE DEC MEC=∠=∠=︒,∴DCE MCE≌,∴12DE ME DM==,∴12DE CF=.【点睛】本题考查了完全平方式的非负性,二次根式有意义的条件,坐标与图形,全等三角形的判定与性质,正确作出辅助线,熟练掌握全等三角形的判定定理以及性质定理是解本题的关键.7.(1)点C (6,0);(2)点1224(,)55M ;(3)满足条件的点G 坐标为34(0,)7或(0,-2).【解析】【分析】(1)直接利用直线483y x =-+,令y=0,解方程即可; (2)结合图形,由S △AMB =S △AOB 分析出直线OM 平行于直线AB ,再利用两直线相交建立方程组2483y x y x =⎧⎪⎨=-+⎪⎩,解方程组求得交点M 的坐标; (3)分两种情形:①当n >4时,如图2-1中,点Q 落在BC 上时,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .求出Q (n-4,n-2).②当n <4时,如图2-2中,同法可得Q (4-n ,n +2),代入直线BC 的解析式解方程即可解决问题.【详解】解:(1)∵直线483y x =-+交x 轴正半轴于点C . ∴当y =0时,48=03x -+, 解得x =6∴点C (6,0)故答案为(6,0);(2)连接OM 并双向延长,∵S △AMB =S △AOB ,∴点O 到AB 与点M 到AB 的距离相等,∴直线OM 平行于直线AB ,∵AB 解析式为y =2x +8,故设直线OM 解析式为:2y x =,将直线OM 的解析式与直线BC 的解析式联立得方程组得:2483y x y x =⎧⎪⎨=-+⎪⎩, 解得:125245x y ⎧=⎪⎪⎨⎪=⎪⎩故点1224(,)55M ; (3)∵直线y =2x +8与x 轴交于点A ,与y 轴交于点B ,∴令y=0,2x +8=0,解得x =-4,∴A (-4,0),令x =0,则y =8∴B (0,8),∵点F 为AB 中点,点F 横坐标为()1-4+0=-22,纵坐标为()10+8=42∴F (-2,4),设G (0,n ),①当n >4时,如图2-1中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN =n -4,∴Q (n -4,n -2),∵点Q 在直线483y x =-+上, ∴42(4)43n n -=--+, ∴34=7n , ∴34(0,)7G . ②当n <4时,如图2-2中,点Q 落在BC 上时,过G 作MN 平行于x 轴,过点F ,Q 作该直线的垂线,分别交于M ,N .∵四边形FGQP 是正方形,∴FG =QG ,∠FGQ =90°,∴∠MGF +∠NGQ =180°-∠FGQ=180°-90°=90°,∵FM ⊥MN ,QN ⊥MN ,∴∠M =∠N =90°,∴∠MFG +∠MGF =90°,∴∠MFG =∠NGQ ,在△FMG 和△GNQ 中,M N MFG NGQ FG GQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△FMG ≌△GNQ ,∴MG =NQ =2,FM =GN = 4-n ,∴Q (4- n , n +2),∵点Q 在直线483y x =-+上, ∴42(4)83n n +=--+,∴n =-2,∴(0,-2)G .综上所述,满足条件的点G 坐标为34(0,)7或(0,-2). 【点睛】本题属于一次函数综合题,考查了一次函数与坐标轴的交点,平行线性质,两直线联立解方程组,全等三角形的判定和性质,正方形的性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)291515404y x x =+-,y =﹣34x ﹣15;(2)面积最大值225,C (﹣10,﹣30);(3)S =﹣2553t +160t ﹣240. 【解析】【分析】(1)利用待定系数法将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 即可求出抛物线的函数表达式;设AB 的函数表达式是y =kx +b ,然后利用待定系数法将点A (﹣20,0),B (0,﹣15)代入y =kx +b 即可求出直线AB 的函数表达式;(2)作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15),根据题意表示出CF 的长度,进而表示出ABC S ∆,然后利用二次函数的性质求解即可;(3)作AN ⊥OD 于N ,AD 与FG 交于点I ,首先根据题意求出OC 的解析式,然后联立33154y x y x =⎧⎪⎨=--⎪⎩求出点D 的坐标,然后求出AD OD =,利用等腰三角形三线合一性质求出ON 的长度,进而利用勾股定理求出AN 的长度,表示出S △AON ,然后证明出△GFI ∽△OGH ∽△ANO ,利用相似三角形的性质表示出S △IJF =803(t ﹣3)2,S △GOH =253t ,最后利用面积之间的关系即可求出S 与t 之间的函数关系式.【详解】解:(1)由题意得,将点A (﹣20,0),B (0,﹣15)代入抛物线y =ax 2+154x +c 得, 21515(20)(20)04c a c =-⎧⎪⎨-+⨯-+=⎪⎩, ∴15940c a =-⎧⎪⎨=⎪⎩, ∴291515404y x x =+-, 设AB 的函数表达式是y =kx +b ,将点A (﹣20,0),B (0,﹣15)代入y =kx +b 得,∴15200b k b =-⎧⎨-+=⎩, ∴1534b k =-⎧⎪⎨=-⎪⎩, ∴y =﹣34x ﹣15; (2)如图1,作CE ⊥OA 于E ,交AB 于F ,设C (a ,940a 2+154a ﹣15),F (a ,﹣34a ﹣15), ∴FC =(﹣315)4a -﹣(2940a +154a ﹣15)=﹣2940a ﹣92a , ∴ABC S ∆=12CF •AO =12(﹣2940a ﹣92a )×20=﹣94(a +10)2+225, ∴当a =﹣10时,ABC S ∆=225,当a =﹣10时,y =29(10)40⨯-+()15104⨯-﹣15=﹣30, ∴C (﹣10,﹣30); (3)如图2,作AN ⊥OD 于N ,∵C (﹣10,﹣30),∴OC 的解析式是:y =3x ,由33154y x y x =⎧⎪⎨=--⎪⎩得, 412x y =-⎧⎨=-⎩, ∴D (﹣4,﹣12),∵A (﹣20,0),OD 22412+10 ∴AD ()2220412-++=20, ∴AD OD =,又∵AN ⊥OD ,∴ON =12OD =1022610AN AO ON -= S △AON =116102106022AN ON =⨯=, ∵OE 10,OD =10, ∴DE =1010,∴JE =3(1010),∴FJ =EF ﹣JE 10t ﹣3(1010t )=10(t ﹣3),∵OG AN FJ ∥∥, ∴GOH OAN DAN AJF ∠=∠=∠=∠,又∵90G ANO F ∠=∠=∠=︒,∴△GFI ∽△OGH ∽△ANO , ∴IJF AON S S ∆∆=(FJ AN )2=410(3)610t -2,GOH AON S S ∆∆=(OG AN )210610t )2,∴S △IJF =803(t ﹣3)2,S △GOH =253t , ∴S =S 正方形OEFG ﹣S △IJF ﹣S △GOH=10t 2﹣53t 2﹣803(t ﹣3)2 =﹣2553t +160t ﹣240, 故答案是:S =﹣2553t +160t ﹣240. 【点睛】此题考查了待定系数法求二次函数和一次函数表达式,二次函数与一次函数综合问题,相似三角形的性质和判定,二次函数中最大面积问题等知识,解题的关键是正确分析题目中的条件,设出点的坐标,根据相似三角形的性质以及勾股定理表示出相应的线段和面积.9.(1)二次函数的解析式为2416233y x x =-++;A (0,2);(2)D (2,223);(3)点P 的坐标为(2,22,22,6-2,6+【解析】【分析】(1)把B (3,6)代入y =ax 2﹣4ax +2,列方程求a 的值,求出二次函数的解析式,再令x =0,求出点A 的纵坐标;(2)先作点A 关于直线BC 的对称点E ,交抛物线于点D ,得到∠CBD =∠ABC ,求直线BD 的解析式且与二次函数的解析式组成方程组,解方程组求出点D 的坐标;(3)以AB 为腰的等腰三角形PAB ,可按以BP 为底边或以AP 为底边两种情况分类讨论,由AP 2=AB 2或PB 2=AB 2列方程,分别求出相应的点P 的坐标.【详解】解:(1)把B (3,6)代入y =ax 2﹣4ax +2,得9a ﹣12a +2=6,解得,a =43-, ∴二次函数的解析式为2416233y x x =-++; 当x =0时,24162233y x x =-++=, ∴A (0,2).(2)如图1,∵()22416422223333y x x x =-++=--+, ∴抛物线的对称轴为直线x =2,∵点C 与点B (3,6)关于直线x =2对称,∴C (1,6),∴BC ∥x 轴,作点A (0,2)关于直线BC 的对称点E ,交抛物线于点D ,则E (0,10), ∵BC 垂直平分AE ,∴AB =AE ,∴∠CBD =∠ABC ,设直线BD 的解析式为y =kx +10,则3k +10=6, 解得,43k =-, ∴y =43-x +10, 由24103416233y x y x ⎧=-+⎪⎪⎨⎪=-++⎪⎩, 得112223x y =⎧⎪⎨=⎪⎩,2336x y =⎧⎨=⎩, ∴D (2,223); (3)设P (2,m ),∵A (0,2),B (3,6),∴AB 2=32+(6﹣2)2=25,当AP =AB 时,如图2,由AP2=AB2得,22+(m﹣2)2=25,整理得,m2﹣4m﹣17=0,解得,m1=221-,+,m2=221∴P(2,221-),+)或P′(2,221当PB=AB时,如图3,由PB2=AB2,得(3﹣2)2+(6﹣m)2=25,整理得,m2﹣12m+12=0,解得,m1=66+-m2=66∴P(2,626-P′(2,626+综上所述,点P的坐标为(2,2212,221-2,-2,626626+【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质、用待定系数法求函数解析式、等腰三角形的性质、解一元二次方程、二次根式的化简及分类讨论数学思想的运用等知识与方法,熟练掌握相关知识是解题关键10.(1)2y x2x3=-++(2)直角三角形,理由见解析(3)Q (1,4)或Q【解析】【分析】 (1)将A (-1,0)代入解析式得到,结合对称轴12b x a=-=解出,a b 即可; (2)求出顶点P 坐标,分别计算出CP 、BC 、BP 的长度,得到CP 2+BC 2=BP 2,进而得到△BCP 为直角三角形;(3)分Q 点在直线BC 上方和下方结合相似三角形分类讨论即可.(1)解:∵抛物线23y ax bx =++经过A (-1,0),其对称轴是直线x =1,∴,解出12a b =-⎧⎨=⎩, ∴抛物线的解析式为:2y x 2x 3=-++.(2)解:当x =1时代入抛物线解析式中得, ∴抛物线的顶点坐标P (1,4),令2y x 2x 3=-++中0y =得到C (0,3),令2y x 2x 3=-++中0x =得到B (3,0),∴PC 2=(1-0)2+(4-3)2=2,PB 2=(1-3)2+(4-0)2=20,BC 2=(3-0)2+(0-3)2=18,∵PC 2+BC 2=2+18=20=PB 2,∴△PBC 为直角三角形,且∠PCB =90°.(3)解:分类讨论:情况一:当Q 点在直线BC 上方时,如下图所示:,由(2)中可知,△PBC为直角三角形,∴,∴,此时只要Q点与P点重合,必有,故Q点坐标为(1,4);情况二:当Q点在直线BC下方时,如下图所示:由情况一可知,∠CBQ=∠ACO,故只要将直线BQ沿BC对折,Q点落在M处,此时∠CBM=∠CBQ=∠ACO,且△CBQ≌△CBM,CQ=CM,分别过Q、M作QE⊥y轴于E,作MF⊥y轴于F,∵CQ=CM,∠QEC=∠MFC=90°,∠MCF=∠QCE,∴△QCE≌△MCF(AAS),∴MF=QE=1,CF=EC=4-3=1,∴M(-1,2),设直线MB解析式为:y=mx+n,代入B(3,0)和M(-1,2),得到,解出,∴MB解析式为:,与抛物线联立,即,解得:(为上述图中Q 1点坐标,符合题意),(为B 点坐标,舍去), 综上所述, Q 坐标存在,为(1,4)或.【点睛】 本题考查二次函数综合知识,准确把握二次函数相关性质,学会数形结合,分类讨论思想在抛物线中的应用是解题关键,本题属于中考常考压轴题型.11.(1)223y x x =---(2)点P 的坐标为()2,3-(3)点Q 的横坐标为1m =或2-【解析】【分析】(1)用待定系数法即可求解;(2)在x 轴上取点H ,使BH =BE =2,过点H (5,0)作BC 的平行线交抛物线于点P ,则点P 为所求点,进而求解;(3)分BC 是边、BC 是对角线两种情况,利用图形平移、中点公式和矩形的性质,分别求解即可.(1) 解:由题意得:123930b x a c a b c ⎧=-=⎪⎪=-⎨⎪++=⎪⎩, 解得123a b c =⎧⎪=-⎨⎪=-⎩, 故抛物线的表达式为223y x x =---①;(2)解:在x 轴上取点H ,使2BH BE ==,过点()5,0H 作BC 的平行线交抛物线于点P ,则点P 为所求点,。
二次函数综合训练(折叠,旋转,对称,平移)1、已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△ND D1面积的2倍,求点N的坐标.2、如图,已知点A(-2,4)和点B(1,0)都在抛物线y=m x2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;(3)试求出菱形AA′B′B的对称中心点M的坐标.3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.4、如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC 绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=a x2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.5、在平面直角坐标系中点A(0,2)C(4,0),AB∥x轴,△ABC是直角三角形,∠ACB=90°.(1)求出点B的坐标,并求出过A,B,C三点的抛物线的函数解析式;(2)将△ABC直线AB翻折,得到△ABC1,再将△ABC1绕点A逆时针旋转90度,得到△AB1C2.请求出点C2的坐标,并判断点C2是否在题(1)所求的抛物线的图象上;(3)将题(1)中的抛物线平移得到新的抛物线的函数解析式为y=ax2-mx+2m,并使抛物线的顶点落在△ABC的内部或者边上,请求出此时m的取值范围.6、如图抛物线y=a x2+ax+c(a≠0)与x轴的交点为A、B(A在B的左边)且AB=3,与y轴交于C,若抛物线过点E(-1,2).(1)求抛物线的解析式;(2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;(3)若D为原点关于A点的对称点,F点坐标为(0,1.5),将△CEF绕点C旋转,在旋转过程中,线段DE与BF是否存在某种关系(数量、位置)?请指出并证明你的结论.7、如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.8、在平面直角坐标系xOy中,把矩形AOCB绕点A逆时针旋转α角,得到矩形ADEF,设AD与BC相交于点G,且A(-9,0),C(0,6),如图甲.(1)当α=60°时,请猜测△ABF的形状,并对你的猜测加以证明.(2)当GA=GC时,求直线AD的解析式.(3)当α=90°时,如图乙.请探究:经过点F,且以点B为顶点的抛物线,是否经过矩形ADEF的对称中心H,并说明理由.9、在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC 绕点O 顺时针旋转90°,得到矩形DEFG (如图1).(1)若抛物线y=- x 2+bx+c 经过点B 和F ,求此抛物线的解析式;(2)将矩形DEFG 以每秒1个单位长度的速度沿x 轴负方向平移,平移t 秒时,所成图形如图2所示.①图2中,在0<t <1的条件下,连接BF ,BF 与(1)中所求抛物线的对称轴交于点Q ,设矩形DEFG 与矩形OABC 重合部分的面积为S1,△AQF 的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;②在0<t <3的条件下,P 是x 轴上一点,请你探究:是否存在t 值,使以PB 为斜边的Rt △PFB 与Rt △AOC 相似?若存在,直接写出满足条件t 的值及点P 的坐标;若不存在,请说明理由(利用图3分析探索).10、如图所示,在平面直角坐标系中,矩形ABOC 的边BO在x 轴的负半轴上,边OC 在y 轴的正半轴上,且1AB =,OB =,矩形ABOC 绕点O 按顺时针方向旋转60后得到矩形EFOD .点A 的对应点为点E ,点B 的对应点为点F ,点C 的对应点为点D ,抛物线2y ax bx c =++过点A E D ,,.(1)判断点E 是否在y 轴上,并说明理由;(2)求抛物线的函数表达式;(3)在x 轴的上方是否存在点P ,点Q ,使以点O B P Q ,,,为顶点的平行四边形的面积是矩形ABOC 面积的2倍,且点P 在抛物线上,若存在,请求出点P ,点Q 的坐标;若不存在,请说明理由.11.已知如图,抛物线n mx x y ++=221与x 轴交于A 、B 两点,与y 轴交于C 点,四边形OBHC 为矩形,CH 的延长线交抛物线于点D (5,2),连结BC 、AD .(1)求C 点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q. 问是否存在点P,使直线PQ分梯形ABCD的面积为1∶3两部分?若存在,求出P点坐标;若不存在,请说明理由.二次函数综合训练(折叠,旋转,对称,平移)答案1、已知抛物线y=x2+bx+c经过A(1,0),B(0,2)两点,顶点为D.(1)求抛物线的解析式;(2)将△OAB绕点A顺时针旋转90°后,将B落到点C的位置,将抛物线沿y轴平移后经过点C,求平移后所得图象的函数关系式.(3)设(2)中平移后,所得抛物线与y轴的交点为B1,顶点为D1,若点N在平移后的抛物线上,且满足△NBB1的面积是△NDD1面积的2倍,求点N的坐标.[解析] (1)利用待定系数法,将点A,B的坐标代入解析式即可求得;(2)根据旋转的知识可得:A(1,0),B(0,2),∴OA=1,OB=2,可得旋转后C点的坐标为(3,1),当x=3时,由y=x2-3x+2得y=2,可知抛物线y=x2-3x+2过点(3,2)∴将原抛物线沿y轴向下平移1个单位后过点C.∴平移后的抛物线解析式为:y=x2-3x+1;(3)首先求得B1,D1的坐标,根据图形分别求得即可,要注意利用方程思想.2、如图,已知点A(-2,4)和点B(1,0)都在抛物线y=mx2+2mx+n上.(1)求m、n;(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形AA′B′B为菱形,求平移后抛物线的表达式;(3)试求出菱形AA′B′B的对称中心点M的坐标.【解析】(1)本题需先根据题意把A (-2,4)和点B (1,0)代入抛物线y=mx2+2mx+n中,解出m、n的值即可.(2)本题需先根据四边形AA′B′B为菱形得出y的解析式,再把解析式向右平移5个单位即可得到平移后抛物线的表达式.(3)本题需根据平移与菱形的性质,得到A′、B′的坐标,再过点A′作A′H⊥x轴,得出BH和A′H的值,再设菱形AA′B′B的中心点M,作MG⊥x轴,根据中位线性质得到MG、BG的值,最后求出点M的坐标.3、把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点C,当EC=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.【解析】(1)依题意得点E在射线CB上,横坐标为4,纵坐标根据勾股定理可得点E.(2)已知∠BCD=60°,∠BCF=30°,然后可得∠α=60°.(3)设CG=x,则EG=x,FG=6-x,根据勾股定理求出CG的值.(4)设以C为顶点的抛物线的解析式为y=a(x-4)2,把点A的坐标代入求出a值.当x=7时代入函数解析式可得解.4、如图,在平面直角坐标系中,矩形OABC的顶点A(3,0),C(0,1).将矩形OABC 绕原点逆时针旋转90°,得到矩形OA′B′C′.设直线BB′与x轴交于点M、与y轴交于点N,抛物线y=ax2+bx+c的图象经过点C′、M、N.解答下列问题:(1)求出该抛物线所表示的函数解析式;(2)将△MON沿直线BB′翻折,点O落在点P处,请你判断点P是否在该抛物线上,并请说明理由;(3)将该抛物线进行一次平移(沿上下或左右方向),使它恰好经过原点O,求出所有符合要求的新抛物线的解析式.【解析】(1)根据四边形OABC是矩形,A(3,0),C(0,1)求出B′的坐标,设直线BB′的解析式为y=mx+n,利用待定系数法即可求出此直线的解析式,进而可得出M、N 两点的坐标,设二次函数解析式为y=ax2+bx+c,把CMN三点的坐标代入此解析式即可求出二次函数的解析式;(2)设P点坐标为(x,y),连接OP,PM,由对称的性质可得出OP⊥MN,OE=PE,PM=OM=5,再由勾股定理求出MN的长,由三角形的面积公式得出OE的长,利用两点间的距离公式求出x、y的值,把x的值代入二次函数关系式看是否适合即可;(3)由于抛物线移动的方向不能确定,故应分三种情况进行讨论.【解答】(3)①在上下方向上平移时,根据开口大小不变,对称轴不变,所以,二次项系数和一次项系数不变,根据它过原点,把(0,0)这个点代入得常数项为0,新解析式就为:y=-12x2+2x;②在左右方向平移时,开口大小不变,二次项系数不变,为-12,这时根据已经求出的C′(-1,0),M(5,0),可知它与X轴的两个交点的距离还是为6,所以有两种情况,向左移5个单位,此时M与原点重合,另一点经过(-6,0),代入解出解析式为y=-12x2-3x;③当它向右移时要移一个单位C′与原点重合,此时另一点过(6,0),所以解出解析式为y=-12x2+3x.5、在平面直角坐标系中点A(0,2)C(4,0),AB∥x轴,△ABC是直角三角形,∠ACB=90°.(1)求出点B的坐标,并求出过A,B,C三点的抛物线的函数解析式;(2)将△ABC直线AB翻折,得到△ABC1,再将△ABC1绕点A逆时针旋转90度,得到△AB1C2.请求出点C2的坐标,并判断点C2是否在题(1)所求的抛物线的图象上;(3)将题(1)中的抛物线平移得到新的抛物线的函数解析式为y=ax2-mx+2m,并使抛物线的顶点落在△ABC的内部或者边上,请求出此时m的取值范围.【解析】(1)过C作CD⊥AB于D,根据A、C的坐标,易求得AD、CD的长,在Rt△ACB中,CD⊥AB,利用射影定理可求得BD的长(也可利用相似三角形得到),由此求得点B的坐标,进而可利用待定系数法求得抛物线的解析式;(2)根据△ABC的两次旋转变化可知AB1落在y轴上,可过C2作C2D1⊥AB1,根据△ACD≌△AC2D1得AD1、CD1的长,从而求出点C2的坐标,然后将其代入抛物线的解析式中进行验证即可;(3)在(1)题中求得了抛物线的二次项系数,即可用m表示出平移后的抛物线顶点坐标,得(m,4m-m22),由于此顶点在△ACB的边上或内部,因此顶点横坐标必在0≤m≤5的范围内,然后分三种情况考虑:①顶点纵坐标应小于或等于A、B的纵坐标.②求出直线AC和直线x=m的交点纵坐标,那么顶点纵坐标应该大于等于此交点纵坐标.③求出直线BC和直线x=m的交点纵坐标,方法同②.结合上面四个不等关系式,即可得到m的取值范围.6、如图抛物线y=ax2+ax+c(a≠0)与x轴的交点为A、B(A在B的左边)且AB=3,与y轴交于C,若抛物线过点E(-1,2).(1)求抛物线的解析式;(2)在x轴的下方是否存在一点P使得△PBC的面积为3?若存在求出P点的坐标,不存在说明理由;(3)若D为原点关于A点的对称点,F点坐标为(0,1.5),将△CEF绕点C旋转,在旋转过程中,线段DE与BF是否存在某种关系(数量、位置)?请指出并证明你的结论.【解析】(1)抛物线y=ax2+ax+c(a≠0)的对称轴是x=-a2a=-12,又因与x轴的交点为A、B(A在B的左边)且AB=3,求出A、B点的坐标,解决第一问;(2)因为S△ABC=3,△PBC的面积是3,说明P点一定在过A点平行于BC的直线上,且一定是与抛物线的交点,因此求出过A点的直线,与抛物线联立进一步求得答案;(3)连接DC、BC,证明三角形相似,利用旋转的性质解决问题.7、如图,在平面直角坐标系中,O是坐标原点,点A、B的坐标分别为A(0,3)和B(5,0),连接AB.(1)现将△AOB绕点O按逆时针方向旋转90°,得到△COD,(点A落到点C处),请画出△COD,并求经过B、C、D三点的抛物线对应的函数关系式;(2)将(1)中抛物线向右平移两个单位,点B的对应点为点E,平移后的抛物线与原抛物线相交于点F、P为平移后的抛物线对称轴上一个动点,连接PE、PF,当|PE-PF|取得最大值时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴上运动时,是否存在点P使△EPF为直角三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.【解析】(1)根据旋转的性质知△COD≌△AOB,则OC=OA、OD=OB,由此可求出C、D 的坐标,进而用待定系数法即可求出抛物线的解析式;(2)将(1)题所得的抛物线解析式化为顶点式,然后根据“左加右减,上加下减”的平移规律得出平移后的抛物线解析式;联立两个函数的解析式即可得到F点的坐标;取E点关于平移后抛物线对称轴的对称点E′,那么直线E′F与此对称轴的交点即为所求的P点,可先求出直线E′F的解析式,联立这条对称轴的解析式即可得到P点的坐标;(3)可根据对称轴方程设出P点坐标,分别表示出PE、PF、EF的长;由于△PEF的直角顶点没有确定,因此要分成三种情况考虑:①∠EPF=90°,②∠PEF=90°,③∠PFE=90°;可根据上述三种情况中不同的直角边和斜边,利用勾股定理列出关于P点纵坐标的方程,求出P点的坐标.8、在平面直角坐标系xOy中,把矩形AOCB绕点A逆时针旋转α角,得到矩形ADEF,设AD与BC相交于点G,且A(-9,0),C(0,6),如图甲.(1)当α=60°时,请猜测△ABF的形状,并对你的猜测加以证明.(2)当GA=GC时,求直线AD的解析式.(3)当α=90°时,如图乙.请探究:经过点F,且以点B为顶点的抛物线,是否经过矩形ADEF的对称中心H,并说明理由.【解析】(1)根据旋转的知识可得AB=AF,根据∠BAF=60°可得∴△ABF为等边三角形;(2)利用△AGB为直角三角形,根据勾股定理可得CG的长,也求得了G的坐标,利用点A、G的坐标可得所求的直线解析式;(3)易得F坐标,利用顶点式可得经过点F,且以点B为顶点的抛物线,易得H的坐标,把横坐标代入所得函数解析式,看是否等于纵坐标即可.9、在平面直角坐标系中,矩形OABC的边OA在x轴的负半轴上,边OC在y轴的正半轴上,且OA=1,OC=2.将矩形OABC绕点O顺时针旋转90°,得到矩形DEFG(如图1).(1)若抛物线y=-x2+bx+c经过点B和F,求此抛物线的解析式;(2)将矩形DEFG以每秒1个单位长度的速度沿x轴负方向平移,平移t秒时,所成图形如图2所示.①图2中,在0<t<1的条件下,连接BF,BF与(1)中所求抛物线的对称轴交于点Q,设矩形DEFG与矩形OABC重合部分的面积为S1,△AQF的面积为S2,试判断S1+S2的值是否发生变化?如果不变,求出其值;②在0<t<3的条件下,P是x轴上一点,请你探究:是否存在t值,使以PB为斜边的Rt △PFB与Rt△AOC相似?若存在,直接写出满足条件t的值及点P的坐标;若不存在,请说明理由(利用图3分析探索).【解析】(1)首先确定点B、F的坐标,将点的坐标代入函数解析式,解方程组即可求得;(2)①首先求得对称轴,根据题意用t表示出S1、S2的值即可求得.②利用相似三角形的性质即可求得:过点F作FP⊥FB,FP交x同于点P,延长FE交AB 于点M,要使Rt△PFB∽Rt△AOC,只要FB:FP=2:1即可,而Rt△BMF∽Rt△PGF,所以根据FBFP=FMFG只须FMFG=21,列出方程解答即可求出此时点P的坐标.第10、11题答案省略。