初中数学解题和析题56页
- 格式:ppt
- 大小:866.00 KB
- 文档页数:56
贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A. 2-B. 0C. 2D. 42. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D. 3. 计算23a a +结果正确的是( )A. 5aB. 6aC. 25aD. 26a 4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B.C. D.5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =-6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为()的A. 第一象限B. 第二象限C. 第三象限D. 第四象限7. 为了解学生阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A 100人 B. 120人 C. 150人 D. 160人8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是( )A. AB BC =B. AD BC =C. OA OB =D. AC BD ⊥9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y =B. 2x y =C. 4x y =D. 5x y=的.12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴的另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3二、填空题(本大题共4题,每题4分,共16分)13. 的结果是________.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名是学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?22. 综合与实践:小星学习解直角三角形知识后,结合光折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;的(3)若2OA OE =,2DF =,求PB 的长.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.贵州省2024年初中学业水平考试(中考)试题卷数 学同学你好!答题前请认真阅读以下内容:1.全卷共6页,三个大题,共25小题,满分150分.考试时长120分钟.考试形式为闭卷.2.请在答题卡相应位置作答,在试题卷上答题无效.3.不能使用计算器.一、选择题(本大题共12题,每题3分,共36分.每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置填涂)1. 下列有理数中最小的数是( )A 2- B. 0 C. 2 D. 4【答案】A【解析】【分析】本题考查有理数的大小比较,解题的关键是掌握比较有理数大小的方法.根据有理数的大小比较选出最小的数.【详解】解:∵2024-<<<,∴最小的数是2-,故选:A .2. “黔山秀水”写成下列字体,可以看作是轴对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查了轴对称图形概念,一个图形沿着某条直线折叠后直线两旁的部分能够完全重合,这个图形就叫轴对称图形.根据轴对称图形概念,结合所给图形即可得出答案.【详解】解:A .不是轴对称图形,不符合题意;B . 是轴对称图形,符合题意;C . 不是轴对称图形,不符合题意;D . 不是轴对称图形,不符合题意;故选:B ..3. 计算23a a +的结果正确的是( )A. 5aB. 6aC. 25aD. 26a 【答案】A【解析】【分析】本题主要考查合并同类项,根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变即可得.【详解】解: 235a a a +=,故选:A .4. 不等式1x <的解集在数轴上的表示,正确的是( )A. B. C.D.【答案】C【解析】【分析】根据小于向左,无等号为空心圆圈,即可得出答案.本题考查在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解题的关键.【详解】不等式1x <的解集在数轴上的表示如下:.故选:C .5. 一元二次方程220x x -=的解是( )A. 13x =,21x =B. 12x =,20x =C. 13x =,22x =-D. 12x =-,21x =-【答案】B【解析】【分析】本题考查了解一元二次方程,利用因式分解法求解即可.【详解】解∶ 220x x -=,∴()20x x -=,∴0x =或20x -=,∴12x =,20x =,故选∶B .6. 为培养青少年的科学态度和科学思维,某校创建了“科技创新”社团.小红将“科”“技”“创”“新”写在如图所示的方格纸中,若建立平面直角坐标系,使“创”“新”的坐标分别为()2,0-,()0,0,则“技”所在的象限为( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】【分析】本题考查坐标与图形,先根据题意确定平面直角坐标系,然后确定点的位置.【详解】解:如图建立直角坐标系,则“技”在第一象限,故选A .7. 为了解学生的阅读情况,某校在4月23日世界读书日,随机抽取100名学生进行阅读情况调查,每月阅读两本以上经典作品的有20名学生,估计该校800名学生中每月阅读经典作品两本以上的人数为( )A. 100人B. 120人C. 150人D. 160人【答案】D【解析】分析】本题考查用样本反映总体,利用样本百分比乘以总人数计算即可解题.【详解】解:20800160100⨯=(人),故选D .8. 如图,ABCD Y 的对角线AC 与BD 相交于点O ,则下列结论一定正确的是()【A. AB BC= B. AD BC = C. OA OB = D. AC BD⊥【答案】B【解析】【分析】本题主要考查平行四边形的性质,掌握平行四边形的对边平行且相等,对角线互相平分是解题的关键.【详解】解:∵ABCD 是平行四边形,∴AB CD AD BC AO OC BO OD ====,,,,故选B .9. 小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A. 小星定点投篮1次,不一定能投中B. 小星定点投篮1次,一定可以投中C. 小星定点投篮10次,一定投中4次D. 小星定点投篮4次,一定投中1次【答案】A【解析】【分析】本题主要考查了概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,据此求解即可.【详解】解:小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,则由概率的意义可知,小星定点投篮1次,不一定能投中,故选项A 正确,选项B 错误;小星定点投篮10次,不一定投中4次,故选项C 错误;小星定点投篮4次,不一定投中1次,故选项D 错误故选;A .10. 如图,在扇形纸扇中,若150AOB ∠=︒,24OA =,则 AB 的长为( )A. 30πB. 25πC. 20πD. 10π【答案】C【解析】【分析】本题考查了弧长,根据弧长公式∶π180n r l =求解即可.【详解】解∵150AOB ∠=︒,24OA =,∴ AB 的长为150π2420π180⨯=,故选∶C .11. 小红学习了等式的性质后,在甲、乙两台天平的左右两边分别放入“■”“●”“▲”三种物体,如图所示,天平都保持平衡.若设“■”与“●”的质量分别为x ,y ,则下列关系式正确的是( )A. x y= B. 2x y = C. 4x y = D. 5x y=【答案】C【解析】【分析】本题考查等式的性质,设“▲”的质量为a ,根据题意列出等式2x y y a +=+,2x a x y +=+,然后化简代入即可解题.【详解】解:设“▲”的质量为a ,由甲图可得2x y y a +=+,即2x a =,由乙图可得2x a x y +=+,即2a y =,∴4x y =,故选C .12. 如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3-,顶点坐标为()1,4-,则下列说法正确的是( )A. 二次函数图象的对称轴是直线1x =B. 二次函数图象与x 轴另一个交点的横坐标是2C. 当1x <-时,y 随x 的增大而减小D. 二次函数图象与y 轴的交点的纵坐标是3【答案】D【解析】【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c =++的顶点坐标为()1,4-,∴二次函数图象的对称轴是直线=1x -,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3-,对称轴是直线=1x -,∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误;∵抛物线开口向下, 对称轴是直线=1x -,∴当1x <-时,y 随x 的增大而增大,故选项C 错误;设二次函数解析式为()214y a x =++,把()3,0-代入,得()20314a =-++,解得1a =-,∴()214y x =-++,当0x =时,()20143y =-++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确,故选D .二、填空题(本大题共4题,每题4分,共16分)的13. 的结果是________.【解析】【分析】利用二次根式的乘法运算法则进行计算.【详解】解:原式,.=a ≥0,b >0)是解题关键.14. 如图,在ABC 中,以点A 为圆心,线段AB 的长为半径画弧,交BC 于点D ,连接AD .若5AB =,则AD 的长为______.【答案】5【解析】【分析】本题考查了尺规作图,根据作一条线段等于已知线段的作法可得出AD AB =,即可求解.【详解】解∶由作图可知∶ AD AB =,∵5AB =,∴5AD =,故答案为∶5.15. 在元朝朱世杰所著的《算术启蒙》中,记载了一道题,大意是:快马每天行240里,慢马每天行150里,慢马先行12天,则快马追上慢马需要的天数是______.【答案】20【解析】【分析】本题考查了一元一次方程的应用,设快马追上慢马需要x 天,根据快马走的路程等于慢马走的总路程,列方程求解即可.【详解】解∶设快马追上慢马需要x 天,根据题意,得()24015012x x =+,解得20x =,故答案:20.16. 如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为______.【解析】【分析】延长BC ,AF 交于点M ,根据菱形的性质和中点性质证明ABE ADF ≌,ADF MCF ≌,过E 点作EN AF ⊥交N 点,根据三角函数求出EN ,AN ,NF ,MN ,在Rt ENM △中利用勾股定理求出EM ,根据菱形的性质即可得出答案.【详解】延长BC ,AF 交于点M ,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,AB BC CD AD ∴===,BE EC CF DF ===,AD BC ,D FCM ∠=∠,B D ∠=∠在ABE 和ADF △中AB AD B D BE DF =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ABE ADF ≌,∴AE AF =,在ADF △和MCF △中为D FCM DF CFAFD MFC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ADF MCF ≌,∴CM AD =,AF MF =,5AE = ,5AE AF MF ∴===,过E 点作EN AF ⊥于N 点,90A N E ∴∠=︒ 4sin 5EAF ∠=,5AE =,4EN ∴=,3AN =,∴2NF AF AN =-=,527MN ∴=+=,在Rt ENM △中EM ===,即12EM EC CM BC BC =+=+=AB BC CD AD ===,AB BC ∴==,.【点睛】本题考查了菱形的性质,全等三角形的判定和性质,运用三角函数解直角三角形,勾股定理等,正确添加辅助线构造直角三角形是解本题的关键.三、解答题(本大题共9题,共98分.解答应写出必要的文字说明、证明过程或演算步骤)17. (1)在①22,②2-,③()01-,④122⨯中任选3个代数式求和;(2)先化简,再求值:()21122x x -⋅+,其中3x =.【答案】(1)见解析 (2)12x -,1【解析】【分析】本题考查分式的化简求值和实数的混合运算,掌握运算法则是解题的关键.(1)利用实数的混合运算的法则和运算顺序解题即可;(2)先把分式的分子、分母分解因式,然后约分化为最简分式,最后代入数值解题即可.【详解】(1)解:选择①,②,③,2022(1)+-+-421=++7=;选择①,②,④,212222+-+⨯421=++7=;选择①,③,④,()0212122+-+⨯411=++6=;选择②,③,④,()012122-+-+⨯211=++4=;(2)解:()21122x x -⋅+()()11(1)21x x x =-+⋅+12x -=;当3x =时,原式3112-==.18. 已知点()1,3在反比例函数k y x=的图象上.(1)求反比例函数的表达式;(2)点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,比较a ,b ,c 的大小,并说明理由.【答案】(1)3y x =(2)a c b <<,理由见解析【解析】【分析】本题主要考查了反比例函数的性质,以及函数图象上点的坐标特点,待定系数法求反比例函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.(1)把点()1,3代入k y x=可得k 的值,进而可得函数的解析式;(2)根据反比例函数表达式可得函数图象位于第一、三象限,再根据点A 、点B 和点C 的横坐标即可比较大小.【小问1详解】解:把()1,3代入k y x=,得31k =,∴3k =,∴反比例函数的表达式为3y x =;【小问2详解】解:∵30k =>,∴函数图象位于第一、三象限,∵点()3,a -,()1,b ,()3,c 都在反比例函数的图象上,3013-<<<,∴0a c b <<<,∴a c b <<.19. 根据《国家体质健康标准》规定,七年级男生、女生50米短跑时间分别不超过7.7秒、8.3秒为优秀等次.某校在七年级学生中挑选男生、女生各5人进行集训,经多次测试得到10名学生的平均成绩(单位:秒)记录如下:男生成绩:7.61,7.38,7.65,7.38,7.38女生成绩:8.23,8.27,8.16,8.26,8.32根据以上信息,解答下列问题:(1)男生成绩的众数为______,女生成绩的中位数为______;(2)判断下列两位同学的说法是否正确.(3)教练从成绩最好的3名男生(设为甲,乙,丙)中,随机抽取2名学生代表学校参加比赛,请用画树状图或列表的方法求甲被抽中的概率.【答案】(1)7.38,8.26(2)小星的说法正确,小红的说法错误(3)2 3【解析】【分析】本题考查用树状图或列表法求概率,众数和中位数的定义,掌握列表法或树状图求概率是解题的关键.(1)利用中位数和众数的定义解题即可;(2)根据优秀等次的要求进行比较解题即可;(3)列表格得到所有可能的结果数n,找出符合要求的数量m,根据概率公式计算即可.【小问1详解】解:男生成绩7.38出现的次数最多,即众数为7.38,女生成绩排列为:8.16,8.23,8.26,8.27,8.32,居于中间的数为8.26,故中位数为8.26,故答案为:7.38,8.26;【小问2详解】解:∵用时越少,成绩越好,∴7.38是男生中成绩最好的,故小星的说法正确;∵女生8.3秒为优秀成绩,8.328.3,∴有一人成绩达不到优秀,故小红的说法错误;【小问3详解】列表为:甲乙丙甲甲,乙甲,丙乙乙,甲乙,丙丙丙,甲丙,乙由表格可知共有6种等可能结果,其中抽中甲的有4种,故甲被抽中的概率为4263=.20. 如图,四边形ABCD 的对角线AC 与BD 相交于点O ,AD BC ∥,90ABC ∠=︒,有下列条件:①AB CD ∥,②AD BC =.(1)请从以上①②中任选1个作为条件,求证:四边形ABCD 是矩形;(2)在(1)的条件下,若3AB =,5AC =,求四边形ABCD 的面积.【答案】(1)见解析(2)12【解析】【分析】本题考查矩形的判定,勾股定理,掌握矩形的判定定理是解题的关键.(1)先根据条件利用两组对边平行或一组对边平行且相等证明ABCD 是平行四边形,然后根据矩形的定义得到结论即可;(2)利用勾股定理得到BC 长,然后利用矩形的面积公式计算即可.【小问1详解】选择①,证明:∵AB CD ∥,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;选择②,证明:∵AD BC =,AD BC ∥,∴ABCD 是平行四边形,又∵90ABC ∠=︒,∴四边形ABCD 是矩形;【小问2详解】解:∵90ABC ∠=︒,∴4BC ===,∴矩形ABCD 的面积为3412⨯=.21. 为增强学生的劳动意识,养成劳动的习惯和品质,某校组织学生参加劳动实践.经学校与劳动基地联系,计划组织学生参加种植甲、乙两种作物.如果种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名学生.根据以上信息,解答下列问题:(1)种植1亩甲作物和1亩乙作物分别需要多少名学生?(2)种植甲、乙两种作物共10亩,所需学生人数不超过55人,至少种植甲作物多少亩?【答案】(1)种植1亩甲作物和1亩乙作物分别需要5、6名学生(2)至少种植甲作物5亩【解析】【分析】本题考查了二元一次方程组的应用,一元一次不等式的应用,(1)设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据“种植3亩甲作物和2亩乙作物需要27名学生,种植2亩甲作物和2亩乙作物需要22名”列方程组求解即可;(2)设种植甲作物a 亩,则种植乙作物()10a -亩,根据“所需学生人数不超过55人”列不等式求解即可.【小问1详解】解:设种植1亩甲作物和1亩乙作物分别需要x 、y 名学生,根据题意,得32272222x y x y +=⎧⎨+=⎩,解得56x y =⎧⎨=⎩,答:种植1亩甲作物和1亩乙作物分别需要5、6名学生;【小问2详解】解:设种植甲作物a 亩,则种植乙作物()10a -亩,根据题意,得:()561055a a +-≤,解得5a ≥,答:至少种植甲作物5亩.22. 综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)【答案】(1)20cm(2)3.8cm【解析】【分析】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用数形结合的思想解答.(1)根据等腰三角形的性质计算出的值;(2)利用锐角三角函数求出DN 长,然后根据BD BN DN =-计算即可.【小问1详解】解:在Rt ABC 中,45A ∠=︒,∴45B ∠=︒,∴20cm BC AC ==,【小问2详解】解:由题可知110cm 2ON EC AC ===,∴10cm NB ON ==,又∵32DON ∠=︒,∴tan 10tan 32100.62 6.2cm DN ON DON =⋅∠=⨯︒≈⨯=,∴10 6.2 3.8cm BD BN DN =-=-=.23. 如图,AB 为半圆O 的直径,点F 在半圆上,点P 在AB 的延长线上,PC 与半圆相切于点C ,与OF 的延长线相交于点D ,AC 与OF 相交于点E ,DC DE =.(1)写出图中一个与DEC ∠相等的角:______;(2)求证:OD AB ⊥;(3)若2OA OE =,2DF =,求PB 的长.【答案】(1)DCE ∠(答案不唯一)(2)163(3)163【解析】【分析】(1)利用等边对等角可得出DCE DEC ∠=∠,即可求解;(2)连接OC ,利用切线的性质可得出90DCE ACO ∠+∠=︒,利用等边对等角和对顶角的性质可得出AOE DCE ∠=∠,等量代换得出90AEO CAO ∠+∠=︒,然后利用三角形内角和定理求出90AOE ∠=︒,即可得证;(3)设2OE =,则可求2AO OF BO x ===,EF x =,22OD x =+,2DC DE x ==+,在Rt ODC △中,利用勾股定理得出()()()2222222x x x +=++,求出x 的值,利用tan OP OC D OD CD==可求出OP ,即可求解.【小问1详解】解:∵DC DE =,∴DCE DEC ∠=∠,故答案为:DCE ∠(答案不唯一);【小问2详解】证明:连接OC ,,∵PC 是切线,∴OC CD ⊥,即90DCE ACO ∠+∠=︒,∵OA OC =,∴OAC ACO ∠=∠,∵DCE DEC ∠=∠,AEO DEC ∠=∠,∴90AEO CAO ∠+∠=︒,∴90AOE ∠=︒,∴OD AB ⊥;【小问3详解】解:设OE x =,则2AO OF BO x ===,∴EF OF OE x =-=,22OD OF DF x =+=+,∴2DC DE DF EF x ==+=+,在Rt ODC △中,222OD CD OC =+,∴()()()2222222x x x +=++,解得14x =,20x =(舍去)∴10OD =,6CD =,8OC =,∵tan OP OC D OD CD ==,∴8106OP =,解得403OP =,∴163BP OP OB =-=.【点睛】本题考查了等腰三角形的性质,切线的性质,勾股定理,解直角三角形的应用等知识,灵活运用以上知识是解题的关键.24. 某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.销售单价x /元…1214161820…销售量y /盒…5652484440…(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值.【答案】(1)280y x =-+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【解析】【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【小问1详解】解∶设y 与x 的函数表达式为y kx b =+,把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =-⎧⎨=⎩,∴y 与x 的函数表达式为280y x =-+;【小问2详解】解:设日销售利润为w 元,根据题意,得()10w x y=-⋅()()10280x x =--+的22100800x x =-+-()2225450x =--+,∴当25x =时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;【小问3详解】解:设日销售利润为w 元,根据题意,得()10w x m y =--⋅()()10280x m x =---+()22100280080x m x m =-++--,∴当()100250222m m x ++=-=⨯-时,w 有最大值为()25050210028008022m m m m ++⎛⎫⎛⎫-++-- ⎪ ⎪⎝⎭⎝⎭,∵糖果日销售获得的最大利润为392元,∴()25050210028008039222m m m m ++⎛⎫⎛⎫-++--= ⎪ ⎪⎝⎭⎝⎭,化简得2601160m m -+=解得12m =,258m =(舍去)∴m 的值为2.25. 综合与探究:如图,90AOB ∠=︒,点P 在AOB ∠的平分线上,PA OA ⊥于点A .(1)【操作判断】如图①,过点P 作PC OB ⊥于点C ,根据题意在图①中画出PC ,图中APC ∠的度数为______度;(2)【问题探究】如图②,点M 在线段AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,求证:2OM ON PA +=;(3)【拓展延伸】点M 在射线AO 上,连接PM ,过点P 作PN PM ⊥交射线OB 于点N ,射线NM 与射线PO 相交于点F ,若3ON OM =,求OP OF的值.【答案】(1)画图见解析,90(2)见解析(3)23或83【解析】【分析】(1)依题意画出图形即可,证明四边形OAPC 是矩形,即可求解;(2)过P 作PC OB ⊥于C ,证明矩形OAPC 是正方形,得出OA AP PC OC ===,利用ASA 证明APM CPN △≌△,得出AM CN =,然后利用线段的和差关系以及等量代换即可得证;(3)分M 在线段AO ,线段AO 的延长线讨论,利用相似三角形的判定与性质求解即可;【小问1详解】解:如图,PC 即为所求,∵90AOB ∠=︒,PA OA ⊥,PC OB ⊥,∴四边形OAPC 是矩形,∴90APC ∠=︒,故答案为:90;【小问2详解】证明:过P 作PC OB ⊥于C ,由(1)知:四边形OAPC 是矩形,∵点P 在AOB ∠的平分线上,PA OA ⊥,PC OB ⊥,∴PA PC =,∴矩形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴OM ON OM CN OC+=++OM AM AP=++OA AP=+2AP =;【小问3详解】解:①当M 在线段AO 上时,如图,延长NM 、PA 相交于点G ,由(2)知2OM ON PA +=,设OM x =,则3ON x =,2AO PA x ==,∴AM AO OM x OM =-==,∵90AOB MAG ︒∠=∠=,AMG OMN ∠=∠,∴()ASA AMG OMN ≌,∴3AG ON x ==,∵90AOB ∠=︒,PA OA ⊥,∴AP OB ∥,∴ONF PGF ∽ ,∴33325OFONxPF PG x x ===+,∴53PFOF =,∴53833OP OF +==;②当M 在AO 的延长线上时,如图,过P 作PC OB ⊥于C ,并延长交MN 于G由(2)知:四边形OAPC 是正方形,∴OA AP PC OC ===,90APC ∠=︒,PC AO ∥,∵PN PM ⊥,∴90APM CPN MPC ∠=∠=︒-∠,又90A PCN ∠=∠=︒,AP CP =,∴APM CPN △≌△,∴AM CN =,∴ON OM-OC CN OM=+-AO AM OM=+-AO AO=+2AO =,∵33ON OM x==∴AO x =,2CN AM x ==,∵PC AO ∥,∴CGN OMN ∽,∴CGCNOM ON =,即23CG xx x =,∴23CG x =,∵PC AO ∥,∴OMF PGF ∽ ,∴3253OF OM xPF PG x x===+,∴53 PFOF=,∴53233 OPOF-==;综上,OPOF的值为23或83.【点睛】本题考查了矩形的判定与性质,正方形的判定与性质,角平分线的性质,全等三角形的判断与性质,相似三角形的判断与性质等知识,明确题意,添加合适辅助线,构造全等三角形、相似三角形,合理分类讨论是解题的关键.。
决胜中考经典专题分析二次函数应用题——经典利润应用题(1)了解什么是利润,利润率,售价,折扣数,商品的销售量,商品总销售额等(2)牢记进价,售价,利润,利润率,折扣数,商品销售量和总销售额之间存在的关系(3)分析利润问题中的已知数和未知数的相等关系,并列出我们所学的方程(4)背诵并了解有关的公式商品利润=售价-进价商品售价=标价×折扣销售总额=售价×销售数量总利润=(售价-成本)×销售数量商品利润率=商品利润商品进价=售价-进价商品进价×100%(5)如何将实际问题转化为数学问题(6)掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值(7)二次函数的一般式为:y=ax2+b x+c(a≠0)化为顶点式为y=a(x+b2a)2+4ac-b24a如果自变量的取值范围是全体实数,那么函数在顶点处取得最大或者最小值典例1:某商品的进价为1000元,售价为1500元,求商品的利润和利润率?【答案】由题意得因为进价为1200元,售价为1600元则有;利润=售价-进价=1600-1200=400元利润率【答案】由题意得商品售价-商品成本商品成本=1500-10001000=50%【精准解析】本道题主要考查进价,售价和利润,利润率之间的关系,所以要求学生们要熟练公式即可典例2:某潮流商品店上衣进价为60元,当售价为100元,每星期可卖出400件.经过调研,该上衣每降价2元,每星期可多卖出20件,上衣如何定价商店才能取得最大利润呢?【答案】由题意得,设降价x元,商店取得最大利润w则有:W最大=(100-60-x)(400+20x)=(40-x)(400+20x)=-20x2+400x+16000因此,当x=10,w最大=18000【精准解析】本道题主要考查总利润最大问题,所以我们需要把实际问题转化为数学问题,列出二元一次方程即可.典例3:皮衣专卖店销售一种皮衣,因销售有一定的困难,店老板核算了一下:如果按销售价打八折出售,每件可盈利80元,如果打六折出售,每件就要亏损40元.这种皮衣的进价是多少元?【答案】由题意得,设销售价为x元,则有:0.8x-80=0.6+40解得x=600因此进价为:0.8x-80=0.8×600-80=400元【精准解析】本道题主要考查如何寻找方程的等量关系,很明显,同一件毛衣,他们的成本一样,因此我们构成成本的等量关系解方程即可典例4:文具店购进一批钢笔,进价是每支16元,售价是每支18元.现在商店还有40支笔,这时已经收回了全部成本,并且盈利200元.求这批钢笔共有多少支?【答案】由题意得,设这批钢笔为x支,则有:16x+200=(x-40)×18解得x=460【精准解析】本道题需要我们找到方程直接的等量关系,我们可以直接列出总销售额的等量关系,解出这批钢笔的数量x即可.典例5:某超市要批发一批水果,平均每天可售出20箱,每箱盈利40元.为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,但要求每件盈利不得低于26元每箱.经调查发现,如果每箱降价1元,商场平均每天可多售出2箱.(1)若超市平均每天要盈利1200元,每箱水果应降价多少元?(2)每箱水果降低多少元时,超市平均每天盈利最多?【答案】(1)由题意得,设每箱水果应该降价x元,则有:(40-x)(20+2x)=1200整理得x2-30x+200=0解得x1=10,x2=20(舍去)因此每箱水果降价10元,超市平均每天要盈利1200元(2)由上面得,可设W为最大盈利则有W最大=(40-x)(20+2x)整理得W最大=-2x2+60x+800=-2(x2+30x)+800=-2(x-15)2+1310因此,当x=15时,总利润取得最大w=1310【精准解析】这道题主要考查二元一次方程最大值问题,需要我们把实际问题转化为数学问题,关键要找出他们之间的等量关系.典例6某品牌不同的玩具均按照相同的折数打折销售,如果原价400元的文具,打折后售价为360,那么原价是76元的文具,打折后售价为()元A.74B.68.4C.76.8D.56【答案】B由题意得,设商品按x折出售则有400×0.1x=360解得x=9因此打折后的售价为:76×0.9=68.4【精准解析】由原价的400元,打折后售价为360,元,即得他们的折扣数为9折,然后已知原价为76,所以把9折代入即可.典例7,服装店销售某款服装,一件服装的标价为400元,若按标价的7折销售,仍可获利40元,如果需要进货这款衣服50件,需要多少资金呢【答案】由题意得解:设这款衣服的进价为x400×70%=x+40解得x=24050×240=12000元答:进货这款衣服50件,需要12000元【精准解析】首先我们需要找出售价,利润,和成本直接的等量关系,先求出成本,在联系数量即可求出总资金.典例8某地区的商场以200元/台的价格购进某款电风扇若干台,很快就可以售完,商场用相同的货款再次购进这款电风扇,因价格提高50元,进货量少了20台.(1)这两次各购进电风扇多少台(2)商场以350/台的售价卖完这两批电风扇,商场获利多少元?【答案】由题意得设第一次购进x台,则第二次购进x-20台200x=(200+50)(x-20)解得x=100因此第一次购进100台,第二次购进80台(2)第一次获利为(350-250)×100=10000第二次获利为(350-250)×80=8000所以总获利为:10000+8000=18000典例9某地区旅游度假村接待旅游住宿需要,开设来了100张床位的旅馆,当每张的床位的收费为10元,床位可以每天全部出租完,若每张床位提高2元,则相对减少10张床位租出,如果每张床每天以2元为单位提高租出,为了使得租金最大化,那么每天最合适的收费为多少元呢,租金最高为多少钱?【答案】由题意得设每张提高x元,则租金为y元则有:y=(100-10×x2)(10+x)=-5x 2+50x+1000=-5(x-5)2+1125所以,当x=5时租金取得最大但是租金是以2元为单位提高租金的,x=5时奇数,所以不符合条件.只能选4或者6,他们两个的租金数是一样的,最终的目的是最小成本取得最大利益,所以x=6Y 最大=(100-5×6)(10+6)=1120元【精准解析】这道题也是考查二次函数的最值问题,需要根据他们的等量关系“每天收入=每张床位×每张费用”即可求出租金y 和x 之间的函数关系.典例10某商品每件成本是10元,试销阶段每件产品的销售价x 与产品的日销售量y 之间的关系如下图:X(元)152030……..Y(件)252010若日销售量y 是销售价x 的一次函数.(1)求出销售量y 与销售价x 的函数关系式(2)要想使得每日的销售利润取得最大,每件产品的销售价应该定为多少钱,此时的每日销售利润是多少钱?(3)【答案】由题意得,设销售量y 与销售价x 的函数关系式为:y=k x+b则有25151030k b k b =⎨=⎧⎩++,解得k=-1,b=40因此销售量y 与销售价x 的函数关系式为:y=-x+40第二问:由(1)得,设最大利润w则有w=(x-10)(-x+40)整理得:w=-x2+50x-400=-(x-25)2+225当x=25时销售利润取得最大为w=225【精准解析】这道题也是考查二次函数的最值问题,根据总利润=销售数量×(售价-成本)列出他们存在的二次函数关系即可.。
初中数学试卷分析初中数学试卷分析初中数学试卷分析1这次数学试卷检测的范围应该说内容是非常全面的,难易也适度,比较能如实反映出学生的实际数学知识的掌握情况。
也应证了平常我对学生说的那句话:“书本知识真正掌握了,试卷的85分就能拿下了,还有的15分来源于你的理解、分析、拓展能力了。
”而从考试成绩来看,基本达到了预期的目标。
一、从卷面看,大致可以分为两大类,第一类是基础知识,通过填空、判断、选择、口算、列竖式计算和画图以及操作题的检测。
第二类是综合应用,主要是考应用实践题。
无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。
试卷能从检测学生的学习能力入手,细致、灵活地来抽测每册的数学知识。
打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
二、学生的基本检测情况如下:总体来看,学生都能在检测中发挥出自己的实际水平,合格率都在96%以上,优秀率在55%左右。
1、在基本知识中,填空的情况基本较好。
应该说题目类型非常好,而且学生在先前也已练习过,因此正确较高,这也说明学生初步建立了数感,对数的领悟、理解能力有了一定的发展,学生良好思维的培养就在于做像这样的数学题,改变以往的题目类型,让学生的思维很好的调动起来,而学生缺少的就是这个,以致失分严重。
2、此次计算题的考试,除了一贯有的口算、递等式计算以外,最要的是多了学生自主编题、用不同方法计算的题型,通过本次测验,我认识到学生的计算习惯真的要好好培养。
3、对于应用题,培养学生的读题能力很关键。
自己读懂题意,分析题意在现在来看是一种不可或缺的能力,很多学生因为缺少这种能力而在自己明明会做的题上失了分,太可惜了。
4、还有平时应该多让学生动手操作,从自己的操作中学会灵活运用知识。
这方面有一定的差距。
三、今后的教学建议从试卷的方向来看,我认为今后在教学中可以从以下几个方面来改进:1、立足于教材,扎根于生活。
教材是我们的教学之本,在教学中,我们既要以教材为本,扎扎实实地渗透教材的重点、难点,不忽视有些自己以为无关紧要的知识;又要在教材的基础上,紧密联系生活,让学生多了解生活中的数学,用数学解决生活的问题。
人教版七年级下册数学期中考试试卷一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+12.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)B.C.(3,4)D.(4,3)二、填空题(共8小题,每小题3分)11.2﹣的绝对值是.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=度.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=.16.﹣4是的立方根.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=°三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C与∠AED的大小关系吗?并说明理由.参考答案与试题解析一、选择题(共10小题,每小题2分,满分20分)1.的相反数是()A.B.C.﹣D.+1【考点】实数的性质.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是﹣,故选:B.【点评】本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.点P(﹣2,1)在平面直角坐标系中所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【专题】常规题型.【分析】根据各象限点的坐标的特点解答.【解答】解:点P(﹣2,1)在第二象限.故选B.【点评】本题考查了点的坐标,熟记四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣)是解题的关键.3.如图,已知∠1=∠2,∠3=80°,则∠4=()A.80°B.70°C.60°D.50°【考点】平行线的性质.【分析】本题主要利用两直线平行,内错角相等进行做题.【解答】解:根据∠1=∠2,∠1=∠5得到:∠5=∠2,则a∥b∴∠4=∠3=80度.故选A.【点评】本题在证明两直线平行的基础上,进一步运用了平行线的性质,两直线平行,内错角相等.4.下面四个图形中,∠1与∠2是邻补角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】根据邻补角的定义,相邻且互补的两个角互为邻补角进行判断.【解答】解:A、B选项,∠1与∠2没有公共顶点且不相邻,不是邻补角;C选项∠1与∠2不互补,不是邻补角;D选项互补且相邻,是邻补角.故选D.【点评】本题考查邻补角的定义,是一个需要熟记的内容.5.在数﹣3.14,,0,π,,0.1010010001…中无理数的个数有()A.3个B.2个C.1个D.4个【考点】无理数.【分析】由于无理数就是无限不循环小数,利用无理数的概念即可判定选择项.【解答】解:在数﹣3.14,,0,π,,0.1010010001…中,∵=4,∴无理数有,π,0.1010010001…共3个.故选A.【点评】此题要熟记无理数的概念及形式.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那小明沿着小路的中间,从出口A到出口B所走的路线(图中虚线)长为()A.100米B.99米C.98米D.74米【考点】生活中的平移现象.【分析】根据已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,求出即可.【解答】解:利用已知可以得出此图形可以分为横向与纵向分析,横向距离等于AB,纵向距离等于(AD﹣1)×2,图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=25米,为50+(25﹣1)×2=98米,故选:C.【点评】此题主要考查了生活中的平移现象,根据已知得出所走路径是解决问题的关键.7.点(﹣1,0)在()A.x轴的正半轴B.x轴的负半轴C.y轴的正半轴D.y轴的负半轴【考点】点的坐标.【分析】根据坐标轴上点的坐标特征解答即可.【解答】解:点(﹣1,0)在x轴的负半轴.故选B.【点评】本题考查了点的坐标,熟记坐标轴上点的坐标特征是解题的关键.8.如图,AB∥CD,那么∠A+∠C+∠AEC=()A.360°B.270°C.200°D.180°【考点】平行线的性质.【专题】计算题.【分析】过点E作EF∥AB,根据平行线的性质,∠A+∠C+∠AEC就可以转化为两对同旁内角的和.【解答】解:过点E作EF∥AB,∴∠A+∠AEF=180°;∵AB∥CD,∴EF∥CD,∴∠C+∠FEC=180°,∴(∠A+∠AEF)+(∠C+∠FEC)=360°,即:∠A+∠C+∠AEC=360°.故选A.【点评】有两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.9.三个实数﹣,﹣2,﹣之间的大小关系是()A.﹣>﹣>﹣2B.﹣>﹣2>﹣C.﹣2>﹣>﹣D.﹣<﹣2<﹣【考点】实数大小比较.【分析】根据两个负数绝对值大的反而小来比较即可解决问题.【解答】解:∵﹣2=﹣,又∵<<∴﹣2>﹣>﹣.故选C.【点评】本题考查了用绝对值比较实数的大小,比较简单.10.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)【考点】坐标确定位置.【分析】根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标.【解答】解:如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.【点评】本题利用平面直角坐标系表示点的位置,是学数学在生活中用的例子.二、填空题(共8小题,每小题3分,满分24分)11.2﹣的绝对值是﹣2.【考点】实数的性质.【分析】根据差的绝对值是大数减小数,可得答案.【解答】解:2﹣的绝对值是﹣2.故答案为:﹣2.【点评】本题考查了实数的性质,利用差的绝对值是大数减小数是解题关键.12.已知点P的坐标为(﹣2,3),则点P到y轴的距离为2.【考点】点的坐标.【分析】根据点到y轴的距离等于横坐标的长度解答.【解答】解:∵点P的坐标为(﹣2,3),∴点P到y轴的距离为2.故答案为:2.【点评】本题考查了点的坐标,熟记点到y轴的距离等于横坐标的长度是解题的关键.13.如图,已知AB、CD相交于点O,OE⊥AB,∠EOC=28°,则∠AOD=62度.【考点】垂线;对顶角、邻补角.【分析】根据垂直的性质可以得到∠BOC的度数,然后利用对顶角的性质即可求解.【解答】解:∵OE⊥AB,∴∠EOB=90°,∴∠BOC=90°﹣∠EOC=90°﹣28°=62°,∴∠AOD=∠BOC=62°.故答案是:62°.【点评】此题主要考查了垂线和角平分线的定义,要注意领会由直角得垂直这一要点.14.在平面直角坐标系中,一青蛙从点A(﹣1,0)处向右跳2个单位长度,再向上跳2个单位长度到点A′处,则点A′的坐标为(1,2).【考点】坐标与图形变化-平移.【专题】常规题型.【分析】根据向右移动,横坐标加,纵坐标不变;向上移动,纵坐标加,横坐标不变解答.【解答】解:点A(﹣1,0)向右跳2个单位长度,即﹣1+2=1,向上2个单位,即:0+2=2,∴点A′的坐标为(1,2).故答案为:(1,2).【点评】本题考查了平移与坐标与图形的变化,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.15.如图,直线AB、CD相交于点E,DF∥AB.若∠D=65°,则∠AEC=115°.【考点】平行线的性质.【分析】根据平行线性质求出∠BED,根据对顶角相等求出∠AEC即可.【解答】解:∵DF∥AB,∴∠BED=180°﹣∠D,∵∠D=65°,∴∠BED=115°,∴∠AEC=∠BED=115°,故答案为:115°.【点评】本题考查了对顶角和平行线的性质的应用,注意:两直线平行,同旁内角互补.16.﹣4是﹣64的立方根.【考点】立方根.【分析】根据立方根的定义,即可解答.【解答】解:∵=﹣4,∴﹣4是﹣64的立方根.故答案为:﹣64.【点评】本题考查了立方根,解决本题的关键是熟记立方根的定义.17.A、B两点的坐标分别为(1,0)、(0,2),若将线段AB平移至A1B1,点A1、B1的坐标分别为(2,a),(b,3),则a+b=2.【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向右平移1个单位,向上平移了1个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向右平移1个单位,向上平移了1个单位,∵A、B两点的坐标分别为(1,0)、(0,2),∴点A1、B1的坐标分别为(2,1),(1,3),∴a+b=2,故答案为:2.【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.18.如图,a∥b,∠1+∠2=70°,则∠3+∠4=110°.【考点】平行线的性质.【分析】先根据平行线的性质得出∠3=∠5,故可得出∠4+∠5=110°,再由三角形外角的性质得出∠6的度数,根据三角形内角和定理即可得出结论.【解答】解:∵a∥b,∴∠3=∠5.∵∠1+∠2=70°,∴∠6=110°,∴∠3+∠4=∠4+∠5=∠6=110°,故答案为:110°.【点评】本题考查的是平行线的性质,在解答此题时熟知三角形内角和定理这一隐藏条件.三、解答题(共6小题,满分56分)19.计算:﹣|2﹣|﹣.【考点】实数的运算.【专题】计算题.【分析】原式第一项利用二次根式的性质化简,第二项利用绝对值的代数意义化简,最后一项利用立方根定义计算即可得到结果.【解答】解:原式=5﹣2++3=6+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.一个正数x的平方根是3a﹣4和1﹣6a,求x的值.【考点】平方根.【分析】根据一个正数的平方根有两个,且互为相反数,可得出a的值,继而得出x的值.【解答】解:由题意得3a﹣4+1﹣6a=0,解得:a=﹣1,则3a﹣4=﹣7,故x的值是49.【点评】本题考查了平方根的知识,解答本题关键是掌握一个正数的平方根有两个,且互为相反数.21.如图,平移坐标系中的△ABC,使AB平移到A1B1的位置,再将△A1B1C1向右平移3个单位,得到△A2B2C2,画出△A2B2C2,并写出△A2B2C2各顶点的坐标.【考点】作图-平移变换.【分析】根据图形平移的性质画出△A2B2C2,并写出各点坐标即可.【解答】解:如图所示,△A2(6,4),B2(5,﹣1),C2(8,2).【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.22.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.【点评】本题考查了平行线的性质和角平分线定义等知识点,解此题的关键是求出∠ABD的度数,题目较好,难度不大.23.如图所示,△ABO中,A,B两点的坐标分别为(2,4),(7,2),C,G,F,E分别为过A,B两点所作的y轴、x轴的垂线与y轴、x轴的交点.求△AOB 的面积.【考点】坐标与图形性质;三角形的面积.【分析】根据点A、B的坐标求出AC、CO、OE、BE、AF、EF的长度,然后根据S△AOB=S矩形ACOF+S梯形AFEB﹣S△ACO﹣S△BOE列式计算即可得解.【解答】解:∵A(2,4),B(7,2),∴AC=2、CO=4、OE=7、BE=2、AF=4、EF=OE﹣OF=7﹣2=5,由图可知,S △AOB =S 矩形ACOF +S 梯形AFEB ﹣S △ACO ﹣S △BOE ,=2×4+(2+4)×5﹣×2×4﹣×7×2,=8+15﹣4﹣7,=23﹣11,=12.【点评】本题考查了坐标与图形性质,三角形的面积,仔细观察图形,列出△AOB 的面积表达式是解题的关键.24.如图,已知∠1+∠2=180°,∠B=∠3,你能判断∠C 与∠AED 的大小关系吗?并说明理由.【考点】平行线的判定与性质.【专题】探究型.【分析】∠C 与∠AED 相等,理由为:由邻补角定义得到∠1与∠DFE 互补,再由已知∠1与∠2互补,根据同角的补角相等可得出∠2与∠DFE 相等,根据内错角相等两直线平行,得到AB 与EF 平行,再根据两直线平行内错角相等可得出∠3与∠ADE 相等,由已知∠B 与∠3相等,利用等量代换可得出∠B 与∠ADE 相等,根据同位角相等两直线平行得到DE 与BC 平行,再根据两直线平行同位角相等可得证.【解答】解:∠C 与∠AED 相等,理由为:证明:∵∠1+∠2=180°(已知),∠1+∠DFE=180°(邻补角定义),∴∠2=∠DFE (同角的补角相等),∴AB ∥EF (内错角相等两直线平行),∴∠3=∠ADE (两直线平行内错角相等),又∠B=∠3(已知),∴∠B=∠ADE(等量代换),∴DE∥BC(同位角相等两直线平行),∴∠C=∠AED(两直线平行同位角相等).【点评】此题考查了平行线的判定与性质,以及邻补角定义,利用了转化及等量代换的思想,灵活运用平行线的判定与性质是解本题的关键.。
2022-2023学年广东省汕尾市中考数学专项提升仿真模拟试题(3月)一、选一选(本大题共10小题,每小题3分,共30分)1.﹣1+3的结果是()A.﹣4B.4C.﹣2D.22.毕业前夕,同学们准备了一份礼物送给自己的母校,现用一个正方体盒子进行包装,六个面上分别写上“祝、母、校、更、美、丽”,其中“祝”与“更”,“母”与“美”在相对的面上.则此包装盒的展开图(没有考虑文字方向)没有可能是()A.B.C.D.3.下列运算正确的是()A.a2+a3=a5B.a(b﹣1)=ab﹣aC.3a﹣1=13a D.(3a2﹣6a+3)÷3=a2﹣2a4.2017年四川省经济总量达到3.698万亿元,居全国第6位,在全国发展大局中具有重要地位.把3.698万亿用科学记数法表示(到0.1万亿)为()A.3.6×1012B.3.7×1012C.3.6×1013D.3.7×10135.在创建平安校园中,九年级一班举行了“知识竞赛”,小组6名同学的成绩(单位:分)分别是:87,91,93,87,97,96,下列关于这组数据说正确的是()A.中位数是90B.平均数是90C.众数是87D.极差是96.如图,在△ABC中,点D,E分别是边AC,AB的中点,BD与CE交于点O,连接DE,下列结论:①OE ODOB OC=;②12DEBC=;③12DOEBOCSS∆∆=;④13DOEDBESS∆∆=.其中正确的个数有()A.1个B.2个C.3个D.4个7.一位篮球运动员在距离篮圈水平距离4m 处起跳投篮,球沿一条抛物线运动,当球运动的水平距离为2.5m 时,达到高度3.5m ,然后准确落入篮框内.已知篮圈距离地面高度为3.05m ,在如图所示的平面直角坐标系中,下列说确的是()A.此抛物线的解析式是y=﹣15x 2+3.5B.篮圈的坐标是(4,3.05)C.此抛物线的顶点坐标是(3.5,0)D.篮球出手时离地面的高度是2m 8.若分式方程231222x a x x x x-+=--有增根,则实数a 的取值是()A.0或2B.4C.8D.4或89.如图,⊙O 中,半径OC ⊥弦AB 于点D ,点E 在⊙O 上,∠E=22.5°,AB=4,则半径OB 等于()A. B.2 C. D.310.如图,在Rt△ABC中,∠C=90°,按下列步骤作图:①以点B为圆心,适当长为半径画弧,与AB,BC分别交于点D,E;②分别以D,E为圆心,大于12DE的长为半径画弧,两弧交于点P;③作射线BP交AC于点F;④过点F作FG⊥AB于点G;下列结论正确的是()A.CF=FGB.AF=AGC.AF=CFD.AG=FG二、填空题(本大题共10小题,每小题3分,共30分。
初中数学课堂教学案例初中数学课堂教学案例一教学目的1、理解并掌握等腰三角形的断定定理及推论2、能利用其性质与断定证明线段或角的相等关系.教学重点:等腰三角形的断定定理及推论的运用教学难点:正确区分等腰三角形的断定与性质,可以利用等腰三角形的断定定理证明线段的相等关系.教学过程:一、复习等腰三角形的性质二、新授:I提出问题,创设情境出示投影片.某地质专家为估测一条东西流向河流的宽度,选择河流北岸上一棵树(B点)为B标,然后在这棵树的正南方(南岸A点抽一小旗作标志)沿南偏东60°方向走一段间隔到C处时,测得∠ACB为30°,这时,地质专家测得AC的长度就可知河流宽度.学生们很想知道,这样估测河流宽度的根据是什么?带着这个问题,引导学生学习“等腰三角形的断定”.II引入新课1.由性质定理的题设和结论的变化,引出研究的内容——在△ABC中,苦∠B=∠C,那么AB=AC吗?作一个两个角相等的三角形,然后观察两等角所对的边有什么关系?2.引导学生根据图形,写出、求证.2、小结,通过论证,这个命题是真命题,即“等腰三角形的断定定理”(板书定理名称).强调此定理是在一个三角形中把角的相等关系转化成边的相等关系的重要根据,类似于性质定理可简称“等角对等边”.4.引导学生说出引例中地质专家的测量方法的根据.III例题与练习1.如图2其中△ABC是等腰三角形的是[]2.①如图3,△ABC中,AB=AC.∠A=36°,那么∠C______(根据什么?).②如图4,△ABC中,∠A=36°,∠C=72°,△ABC是______三角形(根据什么?).③假设∠A=36°,∠C=72°,BD平分∠ABC交AC于D,判断图5中等腰三角形有______.④假设AD=4cm,那么BC______cm.3.以问题形式引出推论l______.4.以问题形式引出推论2______.例:假如三角形一个外角的平分线平行于三角形的一边,求证这个三角形是等腰三角形.分析^p :引导学生根据题意作出图形,写出、求证,并分析^p 证明.练习:5.(l)如图6,在△ABC中,AB=AC,∠ABC、∠ACB 的平分线相交于点F,过F作DE//BC,交AB于点D,交AC于E.问图中哪些三角形是等腰三角形?(2)上题中,假设去掉条件AB=AC,其他条件不变,图6中还有等腰三角形吗?练习:P53练习1、2、3。
初中数学竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2a +12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程⎩⎨⎧=+=+m y x n y 28112004有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式2003200320032003=+--+xy x y x y y x 的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若20011198********⋯⋯++=S ,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰是某正整数的立方,则这样的数共___个。
2023年山东省滨州市中考数学试卷一、选择题(本大题共8小题,共24.0分。
在每小题列出的选项中,选出符合题目的一项)1. −3的相反数是( )A. −13B. 13C. −3D. 32. 下列计算,结果正确的是( )A. a2⋅a3=a5B. (a2)3=a5C. (ab)3=ab3D. a2÷a3=a3.如图所示摆放的水杯,其俯视图为( )A.B.C.D.4. 一元二次方程x2+3x−2=0根的情况为( )A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 不能判定5. 由化学知识可知,用pH表示溶液酸碱性的强弱程度,当pH>7时溶液呈碱性,当pH<7时溶液呈酸性,若将给定的NaOH溶液加水稀释,那么在下列图象中,能大致反映NaOH溶液的pH与所加水的体积V之间对应关系的是( )A. B.C. D.6. 在某次射击训练过程中,小明打靶10次的成绩(环)如表所示:则小明射击成绩的众数和方差分别为( )靶次第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次成绩(环)89910107891010A. 10和0.1B. 9和0.1C. 10和1D. 9和17.如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆⊙O 1,⊙O 2,⊙O 3相互经过彼此的圆心,则图中三个阴影部分的面积之和为( )A. 14πcm 2B. 13πcm 2C. 12πcm 2D. πcm 28. 已知点P 是等边△ABC 的边BC 上的一点,若∠APC =104°,则在以线段AP ,BP ,CP 为边的三角形中,最小内角的大小为( )A. 14° B. 16° C. 24° D. 26°二、填空题(本大题共8小题,共24.0分)9. 计算2−|−3|的结果为______ .10. 一块面积为5m 2的正方形桌布,其边长为______ .11. 不等式组{2x −4≥23x −7<8的解集为______ .12.如图,在平面直角坐标系中,△ABO的三个顶点坐标将△ABO向左平移3个单长度分为A(6,3),B(6,0),O(0,0),若得到△CDE,则点A的对应点C的坐标是______ .13. 同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是______ .14. 如图,PA,PB分别与⊙O相切于A,B两点,且∠APB=56°,若点C是⊙O上异于点A,B的一点,则∠ACB的大小为______ .15. 某广场要建一个圆形喷水池,计划在池中心位置竖直安装一根部带有喷水头的水管,使喷出的抛物线形水柱在与池中心的水距离为1m处达到最高,高度为3m,水柱落地处离池中心的水距离也为3m,那么水管的设计高度应为______ .16.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F分别是线段OB,OA上的点,若AE=BF,AB=5,AF=1,BE=3,则BF的长为______ .三、解答题(本大题共6小题,共72.0分。
山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(三模)一、选一选(本大题共10小题,共30.0分)1.2018的相反数是()A.12018B.2018C.-2018D.12018-2.将一副三角板按如图方式摆放,∠1与∠2没有一定互补的是()A. B. C. D.3.已知某班有40名学生,将他们的身高分成4组,在160165cm ~区间的有8名学生,那么这个小组的人数占全体的()A.10%B.15%C.20%D.25%4.下列变形中没有正确的是()A.若a b >,则22ac bc (c >为有理数)B.由a b ->-得b a >C.由a b >得b a< D.由1x y 2-<得x 2y >-5.二次函数y =2x 2﹣8x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当6<x <7时,它的图象位于x 轴的上方,则m 的值为()A.8B.﹣10C.﹣42D.﹣246.当A 为锐角,且12<cos ∠A <2时,∠A 的范围是()A.0°<∠A <30°B.30°<∠A <60°C.60°<∠A <90°D.30°<∠A<45°7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数没有到8棵若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.()7x 99x 10+--> B.()7x 99x 18+--<C.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩ D.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--≤⎪⎩8.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是()A.﹣4<P <0B.﹣4<P <﹣2C.﹣2<P <0D.﹣1<P <09.如图,直线y =12x 与双曲线y =k x(k>0,x>0)交于点A ,将直线y =12x 向上平移4个单位长度后,与y 轴交于点C ,与双曲线y =kx(k>0,x>0)交于点B ,若OA =3BC ,则k 的值为()A.3B.6C.94D.9210.如图,直线l1∥l2∥l3,直线AC 分别交l1,l2,l3于点A ,B ,C ;直线DF 分别交l1,l2,l3于点D 、E 、F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF=()A.35B.2C.25D.12二、填空题(本大题共6小题,共18.0分)11.17-的倒数是_____________.12.当x=2的值是_________.13.某学生7门学科考试成绩的平均分是80分,其中=门学科都考了78分,则另外4门学科成绩的平均分是_____________.14.如图,在Rt ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 CD 上的一个动点,连接AP,则AP的最小值是_____.15.已知,如图,半径为1的⊙M直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=________.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____.三、计算题(本大题共3小题,共29.0分)17.先化简,再求值:111a1a1a1⎛⎫-÷⎪+--⎝⎭,其中a1=.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A 、B 、C 、D 、E ).19.如图,O 是ABC 的内心,BO 的延长线和ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.()1求证:BOC ≌CDA .()2若AB 3=,求阴影部分的面积.四、解答题(本大题共7小题,共73.0分)20.计算:0112(2018)2sin 60(3π---++︒+21.若没有等式x a 3x 24x 1>⎧⎨+<-⎩的解集是x >3,则a 的取值范围是_______.22.如图,在Rt ABC ,ACB 90∠= ,AC BC =,分别过A 、B 作直线l 的垂线,垂足分别为M 、N .()1求证:AMC ≌CNB ;()2若AM 3=,BN 5=,求AB 的长.23.某商场用36万元购进A 、B 两种商品,完后共获利6万元,其进价和售价如下表:AB进价(元/件)12001000售价(元/件)13801200(注:获利=售价-进价)(1)该商场购进A 、B 两种商品各多少件?(2)商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数没有变,而购进A 种商品的件数是次的2倍,A 种商品按原价出售,而B 种商品打折.若两种商品完毕,要使第二次经营获利没有少于81600元,B 种商品售价为每件多少元?24.已知:关于x 的一元二次方程:()()2m 1x m 2x 10(m -+--=为实数).()1若方程有两个没有相等的实数根,求m 的取值范围;()2若12是此方程的实数根,抛物线()()2y m 1x m 2x 1=-+--与x 轴交于A 、B ,抛物线的顶点为C ,求ABC 的面积.25.如图,在△ABC 中,ABAC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC =4,AC =6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.26.如图,抛物线y=–43x2+bx+c过点A(3,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A没有重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点P、N.(1)求直线AB的解析式和抛物线的解析式;(2)如果点P是MN的中点,那么求此时点N的坐标;(3)如果以B,P,N为顶点的三角形与△APM相似,求点M的坐标.山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(三模)一、选一选(本大题共10小题,共30.0分)1.2018的相反数是()A.12018 B.2018 C.-2018 D.12018【正确答案】C【详解】【分析】根据只有符号没有同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号没有同,由相反数的定义可得2018的相反数是-2018,故选C.本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.将一副三角板按如图方式摆放,∠1与∠2没有一定互补的是()A. B. C. D.【正确答案】D【详解】A选项:∠1+∠2=360°-90°×2=180°;B选项:∵∠2+∠3=90°,∠3+∠4=90°,∴∠2=∠4,∵∠1+∠4=180°,∴∠1+∠2=180°;C选项:∵∠ABC=∠DEC=90°,∴AB∥DE,∴∠2=∠EFC,∵∠1+∠EFC=180°,∴∠1+∠2=180°;D选项:∠1和∠2没有一定互补.故选:D.本题主要掌握平行线的性质与判定定理,关键在于通过角度之间的转化得出∠1和∠2的互补关系.~区间的有8名学生,那么3.已知某班有40名学生,将他们的身高分成4组,在160165cm这个小组的人数占全体的()A.10%B.15%C.20%D.25%【正确答案】C【分析】用这个小组的人数除以全班人数即可求得结果.【详解】根据题意得:84020%÷=.故选C .本题主要考查了有理数除法的应用,掌握理数除法法则是解题的关键.4.下列变形中没有正确的是()A.若a b >,则22ac bc (c >为有理数)B.由a b ->-得b a >C.由a b >得b a <D.由1x y 2-<得x 2y >-【正确答案】A【分析】根据没有等式的性质即可一一判断.【详解】A 、若a b >,则22ac bc (c >为有理数),错误,c 0=时,没有成立;B 、由a b ->-得b a >,正确;C 、由a b >得b a <,正确;D 、由1x y 2-<得x 2y >-,正确;故选A .本题考查没有等式的性质,解题的关键是熟练掌握没有等式的性质,应用没有等式的性质应注意的问题:在没有等式的两边都乘以(或除以)同一个负数时,一定要改变没有等号的方向;当没有等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.5.二次函数y =2x 2﹣8x +m 满足以下条件:当﹣2<x <﹣1时,它的图象位于x 轴的下方;当6<x <7时,它的图象位于x 轴的上方,则m 的值为()A.8B.﹣10C.﹣42D.﹣24【正确答案】D【分析】根据抛物线顶点式得到对称轴为直线x 2=,通过顶点坐标位置特征求出m 的范围,将A 选项剔除后,将B 、C 、D 选项带入其中,并根据二次函数对称性和增减性特点判断是否合理.【详解】 抛物线22y 2x 8x m 2(x 2)8m =-+=--+的对称轴为直线x 2=,而抛物线在2x 1-<<-时,它的图象位于x 轴的下方;当6x 7<<时,它的图象位于x 轴的上方,m 0∴<,当m 10=-时,则2y 2x 8x 10=--,令y 0=,则22x 8x 100--=,解得1x 1=-,2x 5=,则有当2x 1-<<-时,它的图象位于x 轴的上方;当m 42=-时,则2y 2x 8x 42=--,令y 0=,则22x 8x 420--=,解得1x 3=-,2x 7=,则有当6x 7<<时,它的图象位于x 轴的下方;当m 24=-时,则2y 2x 8x 24=--,令y 0=,则22x 8x 240--=,解得1x 2=-,2x 6=,则有当2x 1-<<-时,它的图象位于x 轴的下方;当6x 7<<时,它的图象位于x 轴的上方;故选D .本题考查了抛物线与x 轴的交点以及抛物线的轴对称性:求二次函数2y ax bx c(a,=++b ,c 是常数,a 0)≠与x 轴的交点坐标,令y 0=,即2ax bx c 0++=,解关于x 的一元二次方程即可求得交点横坐标2.b 4ac =- 决定抛物线与x 轴的交点个数:2b 4ac 0=-> 时,抛物线与x 轴有2个交点;2b 4ac 0=-= 时,抛物线与x 轴有1个交点;2b 4ac 0=-< 时,抛物线与x 轴没有交点.6.当A 为锐角,且12<cos ∠A <2时,∠A 的范围是()A.0°<∠A <30°B.30°<∠A <60°C.60°<∠A <90°D.30°<∠A<45°【正确答案】B【详解】试题解析:∵cos60°=12,cos30°=32,∴30°<∠A <60°.故选B .7.八年级某班级部分同学去植树,若每人平均植树7棵,还剩9棵,若每人平均植树9棵,则有1名同学植树的棵数没有到8棵若设同学人数为x 人,下列各项能准确的求出同学人数与种植的树木的数量的是()A.()7x 99x 10+-->B.()7x 99x 18+--<C.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩ D.()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--≤⎪⎩【正确答案】C【分析】没有到8棵意思是植树棵树在0棵和8棵之间,包括0棵,没有包括8棵,关系式为:植树的总棵树()x 1≥-位同学植树的棵树,植树的总棵树()8x 1<+-位同学植树的棵树,把相关数值代入即可.【详解】()x 1-位同学植树棵树为()9x 1⨯-,有1位同学植树的棵数没有到8棵.植树的棵数为()7x 9+棵,∴可列没有等式组为:()()7x 99x 17x 989x 1⎧+≥-⎪⎨+<+-⎪⎩,即()()7x 99x 107x 99x 18⎧+--≥⎪⎨+--<⎪⎩.故选C .本题考查了列一元没有等式组,得到植树总棵树和预计植树棵树之间的关系式是解决本题的关键;理解“有1位同学植树的棵数没有到8棵”是解决本题的突破点.8.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是()A.﹣4<P <0B.﹣4<P <﹣2C.﹣2<P <0D.﹣1<P <0【正确答案】A【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0.∴a<2.∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.故选A.本题考查二次函数图象与系数的关系,利用数形思想解题是本题的解题关键.9.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移4个单位长度后,与y轴交于点C,与双曲线y=kx(k>0,x>0)交于点B,若OA=3BC,则k的值为()A.3B.6C.94 D.92【正确答案】D【详解】∵将直线y=12x向上平移4个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+4,分别过点A 、B 作AD ⊥x 轴,BE ⊥x 轴,CF ⊥BE 于点F,设A(3x,32x),∵OA=3BC,BC ∥OA,CF ∥x 轴,∴△BCF ∽△AOD ,∴CF=13OD ,∵点B 在直线y=12x+4上,∴B(x,12x+4),∵点A.B 在双曲线y=kx上,∴3x ⋅32x=x ⋅(12x+4),解得x=1,∴k=3×1×32×1=92.故选D.10.如图,直线l1∥l2∥l3,直线AC 分别交l1,l2,l3于点A ,B ,C ;直线DF 分别交l1,l2,l3于点D 、E 、F ,AC 与DF 相交于点H ,且AH=2,HB=1,BC=5,则DEEF=()A.35B.2C.25D.12【正确答案】A【分析】由题意易得AB=3,然后根据平行线所截线段成比例直接求解即可.【详解】解: AH=2,HB=1,BC=5,∴AB=3,123////l l l ,∴DE AB3 EF BC5==;故选A.本题主要考查平行线所截线段成比例,熟练掌握平行线所截线段成比例是解题的关键.二、填空题(本大题共6小题,共18.0分)11.17-的倒数是_____________.【正确答案】-7【分析】根据倒数定义可知,−17的倒数是-7.【详解】−17的倒数是-7.故-7.本题主要考查倒数的定义,要求熟练掌握.需要注意的是:倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.12.当x=2的值是_________.【正确答案】1【详解】试题分析:将x=21==.13.某学生7门学科考试成绩的平均分是80分,其中=门学科都考了78分,则另外4门学科成绩的平均分是_____________.【正确答案】81.5【详解】根据题意可得,用7门学科考试成绩的总分-3门学科的总分即为4门学科成绩的总分,再用4门学科成绩的总分除以门数即得4门学科成绩的平均分.由此可得另外4门学科成绩的平均分为:(80×7-78×3)÷4=81.5分.14.如图,在Rt ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是 CD 上的一个动点,连接AP,则AP的最小值是_____.1.【分析】找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,再根据勾股定理求出AE的长,然后减掉半径即可.【详解】解:找到BC的中点E,连接AE,交半圆于P2,在半圆上取P1,连接AP1,EP1,可见,AP1+EP1>AE,即AP2是AP的最小值,∵AE=,P2E=1,∴AP21-.1-15.已知,如图,半径为1的⊙M直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=________.【正确答案】30°,∴cos∠BAO=OAAB =32,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA-∠BOC=30°.故答案是:30°.16.如图,点A(m,6),B(n,1)在反比例函数kyx=的图象上,AD⊥x轴于点D,BC⊥x轴于点C,点E在CD上,CD=5,△ABE的面积为10,则点E的坐标是_____.【正确答案】(3,0)【详解】试题解析:由题意得:65m nm n ⎧⎨+⎩==,解得:16 mn⎧⎨⎩==,∴A(1,6),B(6,1),将A(1,6)代入kyx=得:k=6,则反比例解析式为6 yx =;设E(x,0),则DE=x-1,CE=6-x,∵AD⊥x轴,BC⊥x轴,∴∠ADE=∠BCE=90°,连接AE ,BE ,则S △ABE =S 四边形ABCD -S △ADE -S △BCE=12(BC+AD )•DC-12DE•AD-12CE•BC =12×(1+6)×5-12(x-1)×6-12(6-x )×1=352-52x=10,解得:x=3,则E (3,0).故答案为(3,0)三、计算题(本大题共3小题,共29.0分)17.先化简,再求值:111a 1a 1a 1⎛⎫-÷ ⎪+--⎝⎭,其中a 1=.【正确答案】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】原式()()()a 1a 12a 1a 1a 1a 1---=⋅-=-+-+,当a 1=时,原式=.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.某校开展了“互助、平等、感恩、和谐、进取”主题班会,后,就的个主题进行了抽样(每位同学只选最关注的一个),根据结果绘制了两幅没有完整的统计图.根据图中提供的信息,解答下列问题:(1)这次的学生共有多少名;(2)请将条形统计图补充完整,并在扇形统计图中计算出“进取”所对应的圆心角的度数;(3)如果要在这个主题中任选两个进行,根据(2)中结果,用树状图或列表法,求恰好选到学生关注至多的两个主题的概率(将互助、平等、感恩、和谐、进取依次记为A、B、C、D、E).【正确答案】(1)280名;(2)补图见解析;108°;(3)0.1.【分析】(1)根据“平等”的人数除以占的百分比得到的学生总数即可;(2)求出“互助”与“进取”的学生数,补全条形统计图,求出“进取”占的圆心角度数即可;(3)列表或画树状图得出所有等可能的情况数,找出恰好选到“C”与“E”的情况数,即可求出所求的概率.【详解】解:(1)56÷20%=280(名),答:这次的学生共有280名;(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),补全条形统计图,如图所示,根据题意得:84÷280=30%,360°×30%=108°,答:“进取”所对应的圆心角是108°;(3)由(2)中结果知:学生关注至多的两个主题为“进取”和“感恩”用列表法为:AB C D E A (A,B)(A,C)(A,D)(A,E)B (B,A)(B,C)(B,D)(B,E)C (C,A)(C,B)(C,D)(C,E)D (D,A)(D,B)(D,C)(D,E)E(E,A)(E,B)(E,C)(E,D)用树状图为:共20种情况,恰好选到“C”和“E”有2种,∴恰好选到“进取”和“感恩”两个主题的概率是0.1.19.如图,O 是ABC 的内心,BO 的延长线和ABC 的外接圆相交于D ,连结DC 、DA 、OA 、OC ,四边形OADC 为平行四边形.()1求证:BOC ≌CDA .()2若AB 3=,求阴影部分的面积.【正确答案】(1)证明见解析(2)4π9-【分析】()1由点O 为三角形的内心,得到BO 与CO 都为角平分线,再由四边形AOCD 为平行四边形,得到对边平行且相等,进而利用AAS 得到三角形全等;()2由()1三角形全等得到对应边相等,对应角相等,确定出三角形ABC 为等边三角形,可得出内心与外心重合,即OA OB OC ==,阴影部分面积等于扇形AOB 面积减去三角形AOB 面积,求出即可.【详解】()1O 是ABC 的内心,23∠∠∴=,56∠∠=,12∠∠= ,13∠∠∴=,由AD //CO ,AD CO =,46∠∠∴=,在BOC 和CDA 中,1346AD CO ∠=∠⎧⎪∠=∠⎨⎪=⎩,BOC ∴ ≌()CDA AAS;()2由()1得,BC AC =,346∠∠∠==,ABC ACB ∠∠∴=,AB AC ∴=,ABC ∴ 是等边三角形,O ∴是ABC 的内心也是外心,OA OB OC ∴==,设E 为BD 与AC 的交点,BE 垂直平分AC ,在Rt OCE 中,11CE AC AB 122===,OCE 30∠= ,23OA OB OC 3∴===,AOC 120∠=,2AOB AOB 23120π(14π3S S S 2360239⨯-∴=-=-⨯⨯=阴影扇形.此题考查了三角形内心与外心,全等三角形的判定与性质,平行四边形的性质,扇形面积的计算,熟练掌握各自的性质是解本题的关键.四、解答题(本大题共7小题,共73.0分)20.计算:0112(2018)2sin 60(3π---++︒+【正确答案】4【详解】分析:根据值的概念、负整数指数幂、零指数幂的法则、锐角三角函数计算.详解:原式=321232+⨯+=1+3=4点睛:本题考查了实数运算,解题的关键掌握相关运算法则.21.若没有等式x a 3x 24x 1>⎧⎨+<-⎩的解集是x >3,则a 的取值范围是_______.【正确答案】a≤3.【详解】化简没有等式组可知x a{x 3>>.∵解集为x >3,∴根据“同大取大,同小取小,大小小大中间找,小小解没有了(无解)”法则,得a≤3.22.如图,在Rt ABC ,ACB 90∠= ,AC BC =,分别过A 、B 作直线l 的垂线,垂足分别为M 、N .()1求证:AMC ≌CNB ;()2若AM 3=,BN 5=,求AB 的长.【正确答案】(1)证明见解析(2)【分析】()1根据AM l ⊥,BN l ⊥,ACB 90∠= ,可得MAC NCB ∠∠=,再根据AAS 即可判定AMC ≌CNB ;()2根据AMC ≌CNB ,即可得出CM BN 5==,再根据Rt ACM 中,AC 的长,即可得出等腰直角三角形ABC 中AB 的长.【详解】()1AM l ⊥ ,BN l ⊥,ACB 90∠= ,AMC ACB BNC 90∠∠∠∴=== ,MAC MCA 90∠∠∴+= ,MCA NCB 1809090∠∠+=-= ,MAC NCB ∠∠∴=,在AMC 和CNB 中,AMC BNC MAC NCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,AMC ∴ ≌()CNB AAS ;()2AMC ≌CNB ,CM BN 5∴==,Rt ACM ∴中,AC ===Rt ABC ,ACB 90∠=,AC BC ==,AB ∴===.本题主要考查了全等三角形的判定与性质,等腰直角三角形的性质的运用,解题时注意:两角及其中一个角的对边对应相等的两个三角形全等.23.某商场用36万元购进A 、B 两种商品,完后共获利6万元,其进价和售价如下表:A B进价(元/件)12001000售价(元/件)13801200(注:获利=售价-进价)(1)该商场购进A 、B 两种商品各多少件?(2)商场第二次以原进价购进A 、B 两种商品.购进B 种商品的件数没有变,而购进A 种商品的件数是次的2倍,A 种商品按原价出售,而B 种商品打折.若两种商品完毕,要使第二次经营获利没有少于81600元,B 种商品售价为每件多少元?【正确答案】(1)该商场购进A 、B 两种商品分别为200件和120件.(2)B 种商品售价为每件1080元.【分析】(1)设购进A 种商品x 件,B 种商品y 件,列出方程组即可求得.(2)由(1)得A 商品购进数量,再利用没有等关系“第二次经营获利没有少于81600元”可得出B 商品的售价.【详解】(1)设购进A 种商品x 件,B 种商品y 件,根据题意得()()12001000360000,138012001200100060000.x y x y +=⎧⎨-+-=⎩解得200,120.x y =⎧⎨=⎩故该商场购进A 、B 两种商品分别为200件和120件.(2)由于A 商品购进400件,获利为(1380﹣1200)×400=72000(元)从而B 商品售完获利应没有少于81600﹣72000=9600(元)设B 商品每件售价为z 元,则120(z ﹣1000)≥9600解之得z≥1080故B 种商品售价为每件1080元.本题主要考查了二元方程组的应用和一元没有等式的应用,构建数学模型是解答本题的关键.24.已知:关于x 的一元二次方程:()()2m 1x m 2x 10(m -+--=为实数).()1若方程有两个没有相等的实数根,求m 的取值范围;()2若12是此方程的实数根,抛物线()()2y m 1x m 2x 1=-+--与x 轴交于A 、B ,抛物线的顶点为C ,求ABC 的面积.【正确答案】()1m 0<或()m 0m 1>≠;()22732【分析】()1根据2b 4ac -与零的关系即可判断出的关于x 的一元二次方程()()2m 1x m 2x 10(m -+--=为实数)的解的情况;()2把1x 2=代入方程,求出m 的值,得出函数的解析式,求出A 、B 、C 的坐标,求出AB ,根据三角形面积公式求出即可.【详解】()1根据题意,得()()2(m 2)4m 110=--⨯-⨯-> ,即2m 0>,解得m 0>或m 0<①,又m 10-≠ ,m 1∴≠②,由①②,得m 0<或()m 0m 1>≠;()122是此方程的实数根,()()211m 1(m 21022∴-⨯+-⨯-=,解此方程得:m 3=,∴抛物线的解析式为2y 2x x 1=+-,化成顶点式是:219y 2(x )48=+-,∴顶点C 的坐标为19,48⎛⎫-- ⎪⎝⎭,令y 0=,得22x x 10+-=,解得:x 1=-或12,得13AB 122=--=,所以ABC 13927S 22832=⨯⨯= .本题考查了用待定系数法求出二次函数的解析式、二次函数图象上点的坐标特征,一元二次方程的解等知识点,能求出对应的二次函数的解析式是解此题的关键.25.如图,在△ABC 中,ABAC ,AE 是∠BAC 的平分线,∠ABC 的平分线BM 交AE 于点M ,点O 在AB 上,以点O 为圆心,OB 的长为半径的圆点M ,交BC 于点G ,交AB 于点F .(1)求证:AE 为⊙O 的切线;(2)当BC =4,AC =6时,求⊙O 的半径;(3)在(2)的条件下,求线段BG 的长.【正确答案】(1)证明见解析;(2)32;(3)1.【分析】(1)连接OM ,如图1,先证明OM ∥BC ,再根据等腰三角形的性质判断AE ⊥BC ,则OM ⊥AE ,然后根据切线的判定定理得到AE 为⊙O 的切线;(2)设⊙O 的半径为r ,利用等腰三角形的性质得到BE=CE=12BC=2,再证明△AOM ∽△ABE ,则利用相似比得到626r r-=,然后解关于r 的方程即可;(3)作OH ⊥BE 于H ,如图,易得四边形OHEM 为矩形,则HE=OM=32,所以BH=BE-HE=12,再根据垂径定理得到BH=HG=12,所以BG=1.【详解】解:(1)证明:连接OM,如图1,∵BM是∠ABC的平分线,∴∠OBM=∠CBM,∵OB=OM,∴∠OBM=∠OMB,∴∠CBM=∠OMB,∴OM∥BC,∵AB=AC,AE是∠BAC的平分线,∴AE⊥BC,∴OM⊥AE,∴AE为⊙O的切线;(2)解:设⊙O的半径为r,∵AB=AC=6,AE是∠BAC的平分线,∴BE=CE=12BC=2,∵OM∥BE,∴△AOM∽△ABE,∴OM AOBE AB=,即626r r-=,解得r=32,即设⊙O的半径为3 2;(3)解:作OH⊥BE于H,如图,∵OM ⊥EM ,ME ⊥BE ,∴四边形OHEM 为矩形,∴HE=OM=32,∴BH=BE ﹣HE=2﹣32=12,∵OH ⊥BG ,∴BH=HG=12,∴BG=2BH=1.26.如图,抛物线y=–43x 2+bx+c 过点A (3,0),B (0,2).M (m ,0)为线段OA 上一个动点(点M 与点A 没有重合),过点M 作垂直于x 轴的直线与直线AB 和抛物线分别交于点P 、N .(1)求直线AB 的解析式和抛物线的解析式;(2)如果点P 是MN 的中点,那么求此时点N 的坐标;(3)如果以B ,P ,N 为顶点的三角形与△APM 相似,求点M 的坐标.【正确答案】(1)223y x =-+,2410233y x x =-++;(2)110(,23N ;(3)5(,0)2M【分析】(1)运用待定系数法求解即可;(2)设2410,233N m m m ⎛⎫-++ ⎪⎝⎭,2,23P m m ⎛⎫-+ ⎪⎝⎭得2443NP m m =-+223PM m =-+,再由点坐标公式得出方程,求解即可;(3)分两种情况进行讨论即可得解.【详解】(1)解:设直线AB 的解析式为y kx b =+(0k ≠)∵()3,0A ,()0,2B ∴302k b b +=⎧⎨=⎩解得232k b ⎧=-⎪⎨⎪=⎩∴直线AB 的解析式为223y x =-+∵抛物线243y x bx c =-++点()3,0A ,()0,2B ∴493032b c c ⎧-⨯++=⎪⎨⎪=⎩解得1032b c ⎧=⎪⎨⎪=⎩∴2410233y x x =-++(2)∵MN x ⊥轴,(),0M m ∴设2410,233N m m m ⎛⎫-++ ⎪⎝⎭,2,23P m m ⎛⎫-+ ⎪⎝⎭∴2443NP m m =-+,223PM m =-+∵P 点是MN 的中点∴NP PM =∴2424233m m m -+=-+解得112m =,23m =(没有合题意,舍去)∴110,23N ⎛⎫⎪⎝⎭(3)∵()3,0A ,()0,2B ,2,23P m m ⎛⎫-+ ⎪⎝⎭∴AB =133BP m =∴133AP m =-∵BPN APM∠=∠∴当BPN △与APM △相似时,存在以下两种情况:①BP PMPN PA=∴2132233443m m m m -+=-+解得118m =∴11,08M ⎛⎫⎪⎝⎭②BP PA PN PM =∴2131333424233m m m m m =-+-+,解得52m =∴点M 的坐标为5,02M ⎛⎫ ⎪⎝⎭山东省济宁市2022-2023学年中考数学专项突破仿真模拟卷(四模)一、选一选(本大题共8小题,共32.0分)1.据国土资源部数据显示,我国是全球“可燃冰”资源储量至多的国家之一,海、陆总储量约为39000000000吨油当量,将39000000000用科学记数法表示为()A.3.9×1010B.3.9×109C.0.39×1011D.39×1092.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.3.下列运算正确的是()A.a﹣(b+c)=a﹣b+cB.2a2•3a3=6a5C.a3+a3=2a6D.(x+1)2=x2+14.李老师为了了解学生暑期在家的阅读情况,随机了20名学生某的阅读小时数,具体情况统计如下:阅读时间(小时)2 2.53 3.54学生人数(名)12863则关于这20名学生阅读小时数的说确的是()A.众数是8B.中位数是3C.平均数是3D.方差是0.345.若分式242xx-+的值为0,则x的值为()A.-2B.0C.2D.±26.求证:菱形的两条对角线互相垂直.已知:如图所示,四边形ABCD是菱形,对角线AC,BD交于点O.求证:AC ⊥BD .以下是打乱的证明过程:①∵BO=DO ,②∴AO 是BD 的垂直平分线,即AC ⊥BD .③∵四边形ABCD 是菱形,④∴AB=AD .证明步骤正确的顺序是()A.①→③→④→②B.③→②→①→④C.③→④→①→②D.③→④→②→①7.下列方程中,没有实数根的是()A.x 2﹣2x =0B.x 2﹣2x ﹣1=0C.x 2﹣2x +1=0D.x 2﹣2x +2=08.如图,正方形ABCD 中,BE=EF=FC ,CG=2GD ,BG 分别交AE ,AF 于M ,N .下列结论:①AF ⊥BG ;②BN=NF ;③38MB MG =;④S 四边形CGNF =S 四边形ANGD .其中正确的结论的序号是_______.二、填空题(本大题共6小题,共18.0分)9.16的倒数是______.10.如图,小敏做了一个角平分仪ABCD ,其中AB AD =,BC DC =,将仪器上的点A 与PRQ ∠的顶点R 重合,调整AB 和AD ,使它们分别落在角的两边上,过点A ,C 画一条射线AE ,AE 就是PRQ ∠的平分线.此角平分仪的画图原理是:根据仪器结构,可得ABC ≌ADC ,这样就有QAE PAE.∠∠=则说明这两个三角形全等的依据是______11.下列分式化简运算中,每一步运算都在后面列出了依据,所列依据错误的是______.(只填写序号)计算:3a a b +++4a ba b+解:原式=3+4a a ba b++①同分母分式的加减法法则=4+4a ba b+②合并同类项法则=4(+)a b a b+③提公因式法=4④等式的基本性质12.一副三角尺按如图的位置摆放(顶点C 与F 重合,边CA 与边FE 叠合,顶点B 、C 、D 在一条直线上).将三角尺DEF 绕着点F 按顺时针方向旋转n°后(0<n <180),如果EF ∥AB ,那么n 的值是_____.13.端午节前夕,某超市用1680元购进A ,B 两种商品共60件,其中A 种商品每件24元,B 种商品每件36元,设购买A 种商品x 件,B 种商品y 件,依题意列出的方程组是______.14.“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图,已知底面圆的直径AB 8cm =,圆柱体部分的高BC 6cm =,圆锥体部分的高CD 3cm =,则这个陀螺的表面积是______2cm .三、解答题15.() 1计算:10201912()(3π)(1)3-+----.()2解没有等式组:2x312x x2 33->⎧⎪-⎨>-⎪⎩16.某校园文学社为了解本校学生对本社一种报纸四个版面的喜欢情况,随机抽查部分学生做了问卷,要求学生选出自己最喜欢的一个版面,将数据进行了整理、绘制成部分统计图如下:请根据图中信息,解答下列问题:(1)该的样本容量为,a=%,“版”对应扇形的圆心角为°;(2)请你补全条形统计图;(3)若该校有1000名学生,请你估计全校学生中最喜欢“第三版”的人数.17.为了弘扬传统文化,某校组织了“诗词大会”,小明和小丽同时参加,其中,有一道必答题是:从如图所示的九宫格中选取七个字组成一句唐诗,其答案为“两个黄鹂鸣翠柳”.(1)小明回答该问题时,对第二个字是选“个”还是选“只”难以抉择,若随机选择其中一个,则小明回答正确的概率是__________;(2)小丽回答该问题时,对第二个字是选“个”还是选“只”、第五个字是选“鸣”还是选“明”都难以抉择,若分别随机选择,请用列表或画树状图的方法求小丽回答正确的概率.18.如图,一枚运载火箭从距雷达站C 处5km 的地面O 处发射,当火箭到达点A ,B 时,在雷达站C 处测得点A ,B 的仰角分别为34°,45°,其中点O ,A ,B 在同一条直线上.求A ,B 两点间的距离(结果到0.1km ).(参考数据:sin34°=0.56,cos34°=0.83,tan34°=0.67.)19.在求24567813333333+++++++的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:2345678S 133333333=++++++++①,然后在①式的两边都乘以3,得:234567893S 333333333=++++++++②,-②①得:93S S 31-=-,即92S 31=-,931S 2-∴=.请阅读张红发现的规律,并帮张红解决下列问题:()1爱动脑筋的张红想:如果把“3”换成字母m(m 0≠且m 1)≠,应该能用类比的方法求出23420181m m m m m +++++⋯+的值,对该式的值,你的猜想是______(用含m 的代数式表示).()2证明你的猜想是正确的.20.如图,在平面直角坐标系中,将坐标原点O 沿x 轴向左平移2个单位长度得到点A ,过点A 作y 轴的平行线交反比例函数k y x=的图象于点B ,AB =32.(1)求反比例函数的解析式;(2)若P 1x 1y 、Q 2x 2y 是该反比例函数图象上的两点,且12x x <时,12y y >,指出点P 、Q 各位于哪个象限?并简要说明理由.21.如图所示,在ABC 中,ACB 90∠= ,O 是边AC 上一点,以O 为圆心,OA 为半径的圆分别交AB ,AC 于点E ,D ,在BC 的延长线上取点F ,连接EF 交AC 于点G .()1若BF EF =,试判断直线EF 与O 的位置关系,并说明理由;()2若OA 2=,A 30∠= ,求弧DE 的长.22.青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间比淡季上涨,下表是去年该酒店豪华间某两天的相关记录:旺季淡季未入住房间数100日总收入(元)2400040000(1)该酒店豪华间有多少间?旺季每间价格为多少元(2)今年旺季来临,豪华间的间数没有变.经市场发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.没有考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入?日总收入是多少元?23.平面直角坐标系xOy 中,点A 、B 的横坐标分别为a 、a 2+,二次函数。
2022-2023学年天津市河东区中考数学专项突破仿真模拟试题(一模)一、选一选1. 下表是某水库一周内水位高低的变化情况(用负数记水位比前一日上升数,用负数记下降数).那么本周星期几水位( )星期一二三四五六日水位变化/0.12 0.02 0.13 0.20 0.08 0.020.32米A. 星期二B. 星期四C. 星期六D. 星期五2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×1083. 如图,AB∥CD,∠ABK的角平分线BE的反向延伸线和∠DCK的角平分线CF的反向延伸线交于点H,∠K ∠H=27°,则∠K=( )A. 76°B. 78°C. 80°D. 82°4. 如图一枚骰子抛掷三次,得三种不同的结果,则写有“?”一面上的点数是( )A. 1B. 2C. 3D. 65. 下列运算正确的是( )A. (π﹣3)0=1=±3 C. 2﹣1=﹣2 D. (﹣a2)3=a66. 在2016年泉州市初中体育中考中,随意抽取某校5位同窗一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )A. 平均数为160B. 中位数为158C. 众数为158D. 方差为20.37. 一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( )A. 300°B. 150°C. 120°D. 75°8. 若α、β为方程2x 2-5x -1=0的两个实数根,则的值为( )2235++ααββA. -13 B. 12 C. 14D. 159. 如图,P(m ,m)是反比例函数y =在象限内的图象上一点,以P 为顶点作等边△PAB ,使9x AB落在x 轴上,则△POB 的面积为( )A.9210. 如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC 于点F ,连接DF ,分析下列五个结论:①△AEF ∽△CAB;②CF=2AF ;③DF=DC ;④tan ∠;⑤S 四边形CDEF =S △ABF ,其52中正确的结论有( )A . 5个 B. 4个 C. 3个 D. 2个二、填 空 题11. 数学家发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b +1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m ,再将实数对(m ,1)放入其中后,得到的实数是_____.12. 一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .13. 小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A ,出水口B 和落水点C 恰好在同不断线上,点A 至出水管BD 的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线点D 和杯子上底面E ,则点E 到洗手盆内侧的距离EH 为_____cm.14. 如图,铁路的路基是等腰梯形ABCD ,斜坡AD 、BC 的坡度i =1:1.5,路基AE 高为3米,现由单线改为复线,路基需加宽4米,(即AH =4米),加宽后也成等腰梯形,且GH 、BF 斜坡的坡度=1:2,若路长为10000米,则加宽的土石方量共是_____立方米.i'15. 同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数相反的概率是____.16. 在平面直角坐标系中,点A 坐标为(1,0),线段OA 绕原点O 沿逆时针方向旋转45°,并且每次的长度添加一倍,例如:OA 1=2OA ,∠A 1OA=45°.按照这种规律变换下去,点A 2017的纵坐标为_____.三、解 答 题17. 计算下列各式:(1) ;322441124a a a b a b a b a b +++-+++(2) ;()()()222222x yz y zx z xy x y z x yz y z x y zx z x y z xy +-++++--+++---(3) ()2333232221112212211x x x x x x x x x x +-++-+++-+--(4).()()()()()()()()()()()()222222y x z x z y x y x z y z x y z x y z x y z y z x y z x x y z ------++-++-+-+-+--+18. 解不等式组:,并将解集在数轴上表示出来.3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩19. 图(a )是正方形纸板制成的一副七巧板.(1)请你在图(a )中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:条件1:编号为①~③的三小块可以拼成一个轴对称图形;条件2:编号为④~⑥的三小块可以拼成一个对称图形;条件3:编号为⑦的小块是对称图形.(2)请你在图(b )中画出编号为①~③的三小块拼出的轴对称图形;在图(c )中画出编号为④~⑥的三小块拼出的对称图形.(留意:没有编号不得分)20. 近几年,随着电子商务的发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(估计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?21. 如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.(1)求证:AD平分∠CAE;(2)若DE=4cm,AE=2cm,求⊙O的半径.22. 某学校要制造一批工作的宣传材料.甲公司提出:每份材料免费10元,另收1000元的版面设计费;乙公司提出:每份材料免费20元,不收版面设计费.请你协助该学校选择制造.23. 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).(1)求证无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的整数值.24. 如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P 从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P中止运动时,点Q也中止运动.连接PQ,设运动工夫为t(0<t<4)s,解答下列成绩:(1)求证:△BEF∽△DCB;(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;(3)如图2过点Q作QG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请阐明理由;(4)当t为何值时,△PQF为等腰三角形?试阐明理由.25. 建立模型:如图1,已知△ABC ,AC =BC ,∠C =90°,顶点C 在直线l 上.理论操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E ,求证:△CAD ≌△BCE .模型运用:(1)如图2,在直角坐标系中,直线l 1:y =x +4与y 轴交于点A ,与x 轴交于点43B ,将直线l 1绕着点A 顺时针旋转45°得到l 2.求l 2的函数表达式.(2)如图3,在直角坐标系中,点B (8,6),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a 6)位于象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请阐明理由.2022-2023学年天津市河东区中考数学专项突破仿真模拟试题(一模)一、选一选1. 下表是某水库一周内水位高低的变化情况(用负数记水位比前一日上升数,用负数记下降数).那么本周星期几水位( )星期一二三四五六日水位变化/0.12 0.02 0.13 0.20 0.08 0.020.32米A. 星期二B. 星期四C. 星期六D. 星期五【正确答案】C【详解】解:由于用负数记水位比前一日上升数,用负数记下降数,由图表可知,周一水位比上周末上升0.12米,从周二开始水位下降,不断降到周六,所以星期六水位.故选C.点睛:本题次要考查正负数在实践生活中的运用,所以先生在学这一部分内容时一定要联系实践,不能死学.2. 据悉,超级磁力风力发电机可以大幅度提升风力发电效率,但其造价高昂,每座磁力风力发电机,其建造花费估计要5300万美元,“5300万”用科学记数法可表示为( )A. 5.3×103B. 5.3×104C. 5.3×107D. 5.3×108【正确答案】C【分析】科学记数法的表示方式为a×10n的方式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点挪动了多少位,n 的值与小数点挪动的位数相反.当原数值>1时,n 是负数;当原数的值<1时,n 是负数.【详解】解:5300万=53000000=.75.310⨯故选C.在把一个值较大的数用科学记数法表示为的方式时,我们要留意两点:①必须满足:10n a ⨯a ;②比原来的数的整数位数少1(也可以经过小数点移位来确定).110a ≤<n n 3. 如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延伸线和∠DCK 的角平分线CF 的反向延伸线交于点H ,∠K ∠H=27°,则∠K=( )A. 76°B. 78°C. 80°D. 82°【正确答案】B 【详解】如图,分别过K 、H 作AB 的平行线MN 和RS ,∵AB ∥CD ,∴AB ∥CD ∥RS ∥MN ,∴∠RHB=∠ABE=∠ABK ,∠SHC=∠DCF=∠DCK ,∠NKB+∠ABK=∠MKC+∠DCK=1801212°,∴∠BHC=180° ∠RHB ∠SHC=180° (∠ABK+∠DCK ),12∠BKC=180° ∠NKB ∠MKC=180° (180° ∠ABK ) (180° ∠DCK )=∠ABK+∠DCK 180°,∴∠BKC=360° 2∠BHC 180°=180° 2∠BHC ,又∠BKC ∠BHC=27°,∴∠BHC=∠BKC 27°,∴∠BKC=180° 2(∠BKC 27°),∴∠BKC=78°,故选B .4. 如图一枚骰子抛掷三次,得三种不同的结果,则写有“?”一面上的点数是( )A. 1B. 2C. 3D. 6【正确答案】D 【详解】解:根据前2个正方体可判断出三个正方体的六个面依次是,其中正面“4”与背面“3”绝对,左面“5”与左面“2”绝对,“4”,“5”,“1”是三个邻面,当正方体是第三种地位关系时,“1”在底面,故“?”在正上面是“6”.故选D .点睛:留意正方体的空间图形,从绝对面和相邻面入手,分析及解答成绩.5. 下列运算正确的是( )A. (π﹣3)0=1 C. 2﹣1=﹣2 D. (﹣a 2)3=a 6【正确答案】A【详解】根据零次幂的性质a 0=1(a≠0),可知(π 3)0=1,故正确;,故不正确;根据负整指数的性质,可知2﹣1=,故不正确;12根据幂的乘方和积的乘方,可知( a 2)3=-a 6,故不正确.故选A.6. 在2016年泉州市初中体育中考中,随意抽取某校5位同窗一分钟跳绳的次数分别为:158,160,154,158,170,则由这组数据得到的结论错误的是( )A. 平均数为160B. 中位数为158C. 众数为158D. 方差为20.3【正确答案】D【详解】解:A .平均数为(158+160+154+158+170)÷5=160,正确,故本选项不符合题意;B .按照从小到大的顺序陈列为154,158,158,160,170,位于两头地位的数为158,故中位数为158,正确,故本选项不符合题意;C .数据158出现了2次,次数最多,故众数为158,正确,故本选项不符合题意;D .这组数据的方差是S 2=[(154 160)2+2×(158 160)2+(160 160)2+(170 160)2]=28.8,错15误,故本选项符合题意.故选D .点睛:本题考查了众数、平均数、中位数及方差,解题的关键是掌握它们的定义,难度不大.7. 一个扇形的弧长是10πcm ,面积是60πcm 2,则此扇形的圆心角的度数是( )A . 300° B. 150° C. 120° D. 75°【正确答案】B【分析】利用扇形面积公式1求出R 的值,再利用扇形面积公式2计算即可得到圆心角度数.【详解】∵一个扇形的弧长是10πcm ,面积是60πcm 2,∴S=Rl ,即60π=×R×10π,解得:R=12,1212∴S=60π=,212360n π⨯解得:n=150°,故选B .8. 若α、β为方程2x 2-5x -1=0的两个实数根,则的值为()2235++ααββA. -13 B. 12 C. 14 D. 15【正确答案】B 【详解】解:∵α、β为方程2x 2-5x -1=0的两个实数根,∴,,52b a αβ+=-=12c a αβ==-因此可得2α2=5α+1,代入2α2+3αβ+5β=5α+1+3αβ+5β=5(α+β)+3αβ+1=5×+3×(-)+15212=12;故选B .此题次要考查了一元二次方程的根与系数的关系,关键是利用一元二次方程的普通式,得到根与系数的关系x 1+x 2=-,x 1·x 2=,然后变形代入即可.ba c a 9. 如图,P(m ,m)是反比例函数y =在象限内的图象上一点,以P 为顶点作等边△PAB ,使9x AB 落在x 轴上,则△POB 的面积为( )A. B.92【正确答案】D【详解】试题解析:作PD ⊥OB ,∵P (m ,m )是反比例函数在象限内的图象上一点,∴9y x =,解得:m =3,∴PD =3,∵△ABP 是等边三角形,∴BD ∴S △9m m =POB =OB •PD =(OD +BD )•PD D .121210. 如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列五个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠;⑤S四边形CDEF=S△ABF,其52中正确的结论有( )A. 5个B. 4个C. 3个D. 2个【正确答案】B【详解】过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴,∵AE=AD=BC,∴,∴CF=2AF,故②AE AFBC CF=121212AFCF=正确,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DF=DC,故12③正确;设AD=a,AB=b,易知△BAE∽△ADC,有,即ADADB AEC=2aba b=∵tan∠CAD=,∴tan∠,故④错误;=CD bAD a∵△AEF ∽△CBF ,∴,∴S △AEF =S △ABF ,S △ABF =S 矩形ABCD ,∵S △ABE =S 矩形ABCD ,S △12EF AE BF BC ==121614ACD =S 矩形ABCD ,∴S △AEF =S 四边形ABCD ,又∵S 四边形CDEF =S △ACD ﹣S △AEF =S 矩形ABCD ﹣S 矩形ABCD=1211212112S 矩形ABCD ,∴S 四边形CDEF =S △ABF ,故⑤正确;51252故选B .考点:1.类似三角形的判定与性质;2.矩形的性质;3.综合题.二、填 空 题11. 数学家发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b +1.例如把(3,﹣2)放入其中,就会得到32+(﹣2)+1=8.现将实数对(﹣2,3)放入其中得到实数m ,再将实数对(m ,1)放入其中后,得到的实数是_____.【正确答案】66【分析】根据题中规定的运算,先求m 的值,再求(m ,1)的值.【详解】由(a ,b )=a2+b+1,得(-2,3)=(-2)2+3+1=8,所以,m=8,(m ,1)=(8,1)=82+1+1=66,故答案为66.12. 一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .【正确答案】3750【详解】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换地位前走了5000k3000k xkm ,交换地位后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有,两式相加,得,则+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩()()250003000k x y k x y k+++=x+y==3750(千米).21150003000+故答案为3750.点睛:本题考查了二元方程组的运用.解题关键是要读懂标题的意思,根据标题给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元方程组求解的运用题普通情况下题中要给出两个等量关系,精确的找到等量关系并用方程组表示出来是解题的关键.13. 小明家的洗手盆上装有一种抬启式水龙头(如图1),完全开启后,水流路线呈抛物线,把手端点A,出水口B 和落水点C 恰好在同不断线上,点A 至出水管BD的距离为12cm ,洗手盆及水龙头的相关数据如图2所示,现用高10.2cm 的圆柱型水杯去接水,若水流所在抛物线点D 和杯子上底面E ,则点E 到洗手盆内侧的距离EH 为_____cm .【正确答案】.【详解】试题解析:如图所示,建立直角坐标系,过A 作AG ⊥OC 于G ,交BD 于Q ,过M 作MP ⊥AG 于P ,由题可得,AQ =12,PQ =MD =6,故AP =6,AG =36,∴Rt △APM 中,MP =8,故DQ =8=OG ,∴BQ =12 8=4,由BQ ∥CG 可得,△ABQ ∽△ACG ,∴,即,BQ AQ CG AG =41236CG =∴CG =12,OC =12+8=20,∴C (20,0),又∵水流所在抛物线点D (0,24)和B (12,24),∴可设抛物线为,把C (20,0),B (12,24)代入抛物线,可得: 224y ax bx =++24144122404002024a b a b =++⎧⎨=++⎩,解得:,∴抛物线为,又∵点E 的纵坐标为10.2,∴令32095a b ⎧=-⎪⎪⎨⎪=⎪⎩23924205y x x =-++y =10.2,则,解得x 1=,x 2=(舍去),∴点E 的横坐23910.224205x x =-++6+6-标为,又∵ON =30,∴EH =30 ()=.故答案为.6+6+24-24-点睛:本题以水龙头接水为载体,考查了二次函数的运用以及类似三角形的运用,在运用数学知识处理成绩过程中,关注核心内容,经历测量、运算、建模等数学理论为主线的成绩探求过程,突出考查数学的应意图识和处理成绩的能力,包含数学建模,引导先生关注生活,利用数学方法处理实践成绩.14. 如图,铁路的路基是等腰梯形ABCD ,斜坡AD 、BC 的坡度i =1:1.5,路基AE 高为3米,现由单线改为复线,路基需加宽4米,(即AH =4米),加宽后也成等腰梯形,且GH 、BF 斜坡的坡度=1:2,若路长为10000米,则加宽的土石方量共是_____立方米.i'【正确答案】1.65×105【详解】过H 点作HJ⊥GF 于J ,∵i=1:1.5,AE=3,∴DE=4.5,∴DC=13.∴S 梯形ABCD =(4+13)×3÷2=25.5(米2).又∵GH、BF 斜坡的=1:2,i ∴GJ 为6,∴GF=2GJ+8=20,S 梯形BFGH =(8+20)×3÷2=42(米2).∴加宽的土石方量=(42-25.5)×10000=165000=1.65×105立方米.故1.65×105.15. 同时掷两个质地均匀的六面体骰子,两个骰子向上一面点数相反的概率是____.【正确答案】16【详解】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)∴一共有36种情况,两个骰子点数相反为(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6种可能.∴两个骰子点数相反的概率是.16列表法可以不反复不遗漏的列出一切可能的结果,合适于两步完成的;解题时还要留意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16. 在平面直角坐标系中,点A 坐标为(1,0),线段OA 绕原点O 沿逆时针方向旋转45°,并且每次的长度添加一倍,例如:OA 1=2OA ,∠A 1OA=45°.按照这种规律变换下去,点A 2017的纵坐标为_____.【正确答案】22016【详解】根据点A 0的坐标为(1,0),可得OA=1.然后根据题意,将线段OA 绕原点O 沿逆时针方向旋转45°,可知360°÷45°=8,可得A 1、A 9、A 17、···A 2017都在象限,再根据OA 1=2OA=2,∠A 1OA=45°,可求得A 1,同理可得,A9;∴A2017.2016故答案为.20162三、解 答 题17. 计算下列各式:(1) ;322441124a a a b a b a ba b +++-+++(2) ;()()()222222x yz y zx z xy x y z x yz y z x y zx z x y z xy+-++++--+++---(3) ()2333232221112212211x x x x x x x x x x +-++-+++-+--(4).()()()()()()()()()()()()222222y x z x z y x y x z y z x y z x y z x y z y z x y z x x y z ------++-++-+-+-+--+【正确答案】(1)(2)0(3)0(4)17888a a b -【详解】试题分析:(1)先根据异分母的分式的加减法,先把前两个分式通分,再求和,依次计算下去即可;(2)先把分子添项,构成能分组分解因式的式子,把分母利用整式的乘法展开,然后把分母分子分解因式,利用同分母的分式相加减的逆运算约分化简即可;(3)根据立方差和立方和公式进行分子分母的因式分解,然后再约分化简即可;(4)设x﹣y=a,y﹣z=b,z﹣x=c,利用换元法进行约分化简即可.试题解析:(1)=++=+=;(2)=++=++ =0;(3)=+ =+ =0;(4)设x﹣y=a,y﹣z=b,z﹣x=c,则= = ==1.18. 解不等式组:,并将解集在数轴上表示出来.3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩【正确答案】-7<≤1.数轴见解析.x 【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:3(2)421152x x x x --≥⎧⎪⎨-+<⎪⎩①②解不等式①,得≤1,x 解不等式②,得>-7,x ∴不等式组的解集为-7<≤1.x在数轴上表示不等式组的解集为故答案为-7<≤1.x 本题考查了解一元不等式组,熟知“取大,小小取小,大小小大两头找,小小找不了“的准绳是解此题的关键.19. 图(a )是正方形纸板制成的一副七巧板.(1)请你在图(a )中给它的每一小块用①~⑦编号(编号直接标在每一小块对应图形内部的空白处;每小块只能与一个编号对应,每个编号只能和一个小块对应),并同时满足以下三个条件:条件1:编号为①~③的三小块可以拼成一个轴对称图形;条件2:编号为④~⑥的三小块可以拼成一个对称图形;条件3:编号为⑦的小块是对称图形.(2)请你在图(b)中画出编号为①~③的三小块拼出的轴对称图形;在图(c)中画出编号为④~⑥的三小块拼出的对称图形.(留意:没有编号不得分)【正确答案】答案见解析【详解】试题分析:(1)根据七巧板的结构组成及条件1、2和3的叙说分别标上数字即可;(2)根据轴对称图形的性质,拼凑出任一轴对称图形即可(答案不);拼凑一个平行四边形即可.试题解析:答案不,如下图:(留意:没有编号不得分)点睛:此题次要考查了对称图形以及轴对称图形的拼凑方法,灵活运用对称图形以及轴对称图形性质是处理成绩的关键.20. 近几年,随着电子商务的发展,“电商包裹件”占“快递件”总量的比例逐年增长,根据企业财报,某网站得到如下统计表:年份2014201520162017(估计)快递件总量(亿件)140207310450电商包裹件(亿件)98153235351(1)请选择适当的统计图,描述2014﹣2017年“电商包裹件”占当年“快递件”总量的百分比(到1%);(2)若2018年“快递件”总量将达到675亿件,请估计其中“电商包裹件”约为多少亿件?【正确答案】(1)图形见解析(2)估计其中“电商包裹件”约为540亿件【详解】试题分析:(1)分别计算各年的百分比,并画统计图,也可以画条形图;(2)从2014到2017发现每年上涨两个百分点,所以估计2018年的百分比为80%,据此计算即可.试题解析:(1)2014:98÷140=0.7,2015:153÷207≈0.74,2016:235÷310≈0.76,2017:351÷450=0.78,画统计图如下:(2)根据统计图,可以预估2018年“电商包裹件”占当年“快递件”总量的80%,所以,2018年“电商包裹件”估计约为:675×80%=540(亿件),答:估计其中“电商包裹件”约为540亿件.点睛:本题考查了统计图的选择、百分比的计算,明确折线统计图的特点:①能清楚地反映事物的变化情况.②显示数据变化趋势.21. 如图,直线EF交⊙O于A、B两点,AC是⊙O直径,DE是⊙O的切线,且DE⊥EF,垂足为E.(1)求证:AD平分∠CAE;(2)若DE=4cm,AE=2cm,求⊙O的半径.【正确答案】(1)证明见解析;(2)⊙O的半径是5.【详解】图形的认识→角平分线及其性质;圆→切线的性质和判定;圆→圆及其有关概念;22. 某学校要制造一批工作的宣传材料.甲公司提出:每份材料免费10元,另收1000元的版面设计费;乙公司提出:每份材料免费20元,不收版面设计费.请你协助该学校选择制造.【正确答案】当制造材料为100份时,两家公司免费一样,选择哪家都可行;当制造材料超过100份时,选择甲公司比较合算;当制造材料少于100份时,选择乙公司比较合算.【详解】试题分析:设制造x份材料时,甲公司免费y1元,乙公司免费y2元,分别表示出甲乙两公司的免费标准,然后经过y1=y2,y1>y2,y1<y2,分别求出x的值或范围,比较即可设计. 试题解析:设制造x份材料时,甲公司免费y1元,乙公司免费y2元,则y1=10x+1000,y2=20x,由y1=y2,得10x+1000=20x,解得x=100由y1>y2,得10x+1000>20x,解得x<100由y1<y2,得10x+1000<20x,解得x>100所以,当制造材料为100份时,两家公司免费一样,选择哪家都可行;当制造材料超过100份时,选择甲公司比较合算;当制造材料少于100份时,选择乙公司比较合算.23. 已知关于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k为常数).(1)求证无论k为何值,方程总有两个不相等实数根;(2)已知函数y=x2+(k﹣5)x+1﹣k的图象不第三象限,求k的取值范围;(3)若原方程的一个根大于3,另一个根小于3,求k的整数值.【正确答案】(1)证明见解析;(2)k≤1;(3)2.【详解】试题分析:(1)求出方程的判别式△的值,利用配方法得出△>0,根据判别式的意义即可证明;(2)由于二次函数的图象不第三象限,又△=(k ﹣5)2﹣4(1﹣k )()251y x k x k =+-+-=(k ﹣3)2+12>0,所以抛物线的顶点在x 轴的下方一、二、四象限,根据二次项系数知道抛物线开口向上,由此可以得出关于k 的不等式组,解不等式组即可求解;(3)设方程的两个根分别是x 1,x 2,根据题意得(x 1﹣3)(x 2﹣3)<0,根据一元二次方程根与系数的关系求得k 的取值范围,再进一步求出k 的整数值.试题解析:(1)证明:∵△=(k ﹣5)2﹣4(1﹣k )=k 2﹣6k +21=(k ﹣3)2+12>0,∴无论k 为何值,方程总有两个不相等实数根;(2)解:∵二次函数的图象不第三象限,∵二次项系数a =1,∴抛()251y x k x k =+-+-物线开口方向向上,∵△=(k ﹣3)2+12>0,∴抛物线与x 轴有两个交点,设抛物线与x 轴的交点的横坐标分别为x 1,x 2,∴x 1+x 2=5﹣k >0,x 1x 2=1﹣k ≥0,解得k ≤1,即k 的取值范围是k ≤1;(3)解:设方程的两个根分别是x 1,x 2,根据题意,得(x 1﹣3)(x 2﹣3)<0,即x 1x 2﹣3(x 1+x 2)+9<0,又x 1+x 2=5﹣k ,x 1x 2=1﹣k ,代入得,1﹣k ﹣3(5﹣k )+9<0,解得k <.则k 的整数值为2.5224. 如图1,在矩形ABCD 中,AB=6cm ,BC=8cm ,E 、F 分别是AB 、BD 的中点,连接EF ,点P 从点E 出发,沿EF 方向匀速运动,速度为1cm/s ,同时,点Q 从点D 出发,沿DB 方向匀速运动,速度为2cm/s ,当点P 中止运动时,点Q 也中止运动.连接PQ ,设运动工夫为t (0<t <4)s ,解答下列成绩:(1)求证:△BEF ∽△DCB ;(2)当点Q 在线段DF 上运动时,若△PQF 的面积为0.6cm 2,求t 的值;(3)如图2过点Q 作QG ⊥AB ,垂足为G ,当t 为何值时,四边形EPQG 为矩形,请阐明理由;(4)当t 为何值时,△PQF 为等腰三角形?试阐明理由.【正确答案】(1)证明见解析(2)2;(3);(4)t=1或3或或秒时,△PQF 是4013207196等腰三角形【详解】解:(1)∵四边形是矩形,ABCD 8//90AD BC AD BC A C ∴==∠=∠=︒,,,在中,Rt △ABD 10BD =,分别是的中点,E F 、AB BD 、1//452EF AD EF AD BF DF ∴====,,,90BEF A C EF BC ∴∠=∠=︒=∠ ,,BFE DBC ∴∠=∠,BEF DCB ∽;∴(2)如图1,过点作于,Q QM EF ⊥M QM BE ∴ ,QMF BEF ∴ ∽,,QM QF BE BF =52,35QM t -∴=()3525QM t ∴=-, ()()1134520.6225PFQ S PF QM t t ∴=⨯=-⨯-= ,(舍)或秒;92t ∴=2t =四边形为矩形时,如图所示:()3EPQG QPF BEF∽,,QF PF BF EF =254,54t t --∴=解得:40.13t =当点在上时,如图2,()4Q DF PF QF =,452t t ∴-=-,1.t ∴=当点在上时, 如图3,Q BF PF QF =,425t t ∴-=-,3.t ∴=时,如图4,PQ FQ= ()1442.255t t -=-20.7t ∴=时,如图5,PQ PF =()12542.45t t -=-19.6t ∴=综上所述,或或或秒时,是等腰三角形.1t =3207196PQF △25. 建立模型:如图1,已知△ABC ,AC =BC ,∠C =90°,顶点C 在直线l 上.理论操作:过点A 作AD ⊥l 于点D ,过点B 作BE ⊥l 于点E ,求证:△CAD ≌△BCE .模型运用:(1)如图2,在直角坐标系中,直线l 1:y =x +4与y 轴交于点A ,与x 轴交于点43B ,将直线l 1绕着点A 顺时针旋转45°得到l 2.求l 2的函数表达式.(2)如图3,在直角坐标系中,点B (8,6),作BA ⊥y 轴于点A ,作BC ⊥x 轴于点C ,P 是线段BC 上的一个动点,点Q (a ,2a 6)位于象限内.问点A 、P 、Q 能否构成以点Q 为直角顶点的等腰直角三角形,若能,请求出此时a 的值,若不能,请阐明理由.【正确答案】理论操作:详见解析;模型运用:(1)y=x+4;(2)A 、P 、Q 可以构成以点Q 为17直角顶点的等腰直角三角形,a 的值为或4.203【分析】操作:根据余角的性质,可得∠ACD =∠CBE ,根据全等三角形的判定,可得答案;运用(1)根据自变量与函数值的对应关系,可得A 、B 点坐标,根据全等三角形的判定与性质,可得CD ,BD 的长,根据待定系数法,可得AC 的解析式;(2)分两种情况讨论:①当Q 在直线AP 的下方时,②当Q 在直线AP 的上方时.根据全等三角形的性质,可得关于a 的方程,根据解方程,可得答案.【详解】操作:如图1:∵∠ACD +∠BCE =90°,∠BCE +∠CBE =90°,∴∠ACD =∠CBE .在△ACD 和△CBE 中,∵,∴△CAD ≌△BCE (AAS );ACD CBE ADC CEB AC BC ∠∠∠∠=⎧⎪=⎨⎪=⎩(1)∵直线y x +4与y 轴交于点A ,与x 轴交于点B ,∴A (0,4)、B ( 3,0).如图2:43=过点B 做BC ⊥AB 交直线l 2于点C ,过点C 作CD ⊥x 轴.在△BDC 和△AOB 中,∵,∴△BDC ≌△AOB (AAS ),CBD BAO CDB AOB BC AB ∠∠∠∠=⎧⎪=⎨⎪=⎩∴CD =BO =3,BD =AO =4.OD =OB +BD =3+4=7,∴C 点坐标为(﹣7,3).设l 2的解析式为y =kx +b ,将A ,C 点坐标代入,得:,解得:,l 2的函数表达734k b b -+=⎧⎨=⎩174k b ⎧=⎪⎨⎪=⎩式为y x +4;17=(2)由题意可知,点Q 是直线y =2x 6上一点.分两种情况讨论:①当Q 在直线AP 的下方时,如图3,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F .在△AQE 和△QPF 中,∵,∴△AQE ≌△QPF (AAS ),AE =QF ,即AQE QPF AEQ QFP AQ PQ ∠∠∠∠=⎧⎪=⎨⎪=⎩6 (2a 6)=8 a ,解得:a =4.②当Q 在直线AP 的上方时,如图4,过点Q 作EF ⊥y 轴,分别交y 轴和直线BC 于点E 、F ,AE =2a 12,FQ =8 a .在△AQE 和△QPF 中,∵,∴△AQE ≌△QPF (AAS ),AE =QF ,即AQE QPF QEA PFQ AQ PQ ∠∠∠∠=⎧⎪=⎨⎪=⎩2a 12=8 a ,解得:a .203=综上所述:A .P 、Q 可以构成以点Q 为直角顶点的等腰直角三角形,a 的值为或4.203本题考查了函数综合题,利用余角的性质得出∠ACD =∠CBE 是解题的关键,又利用了全等三角形的判定;利用了全等三角形的性质得出CD ,BD 的长是解题的关键,又利用了待定系数法求函数解析式;利用全等三角形的性质得出关于a 的方程是解题的关键,要分类讨论,以防遗漏.2022-2023学年天津市河东区中考数学专项突破仿真模拟试题(二模)一、选一选(本大题共8小题,每小题3分,共24分)1. 对于两个数,M=2008×20092009,N=2009×20082008.则( )A. M=NB. M >NC. M <ND. 无法确定2. 已知水星的半径约为24000000米,用科学记数法表示为 米( )A. B. C. D. 80.2410⨯62.410⨯72.410⨯62410⨯3. 下列算式中,结果等于a 5的是( )A. a 2+a 3B. a 2•a 3C. a 5÷aD. (a 2)34. 一个几何体的三视图如图所示,则此几何体是( )A. 棱柱B. 正方体C. 圆柱D. 圆锥5. 如图是一个长方形的铝合金窗框,其长为,高为,①②③处装有异样大小的塑钢玻am bm璃,当第②块向右拉到与第③块堆叠,再把第①块向右拉到与第②块堆叠时,用含与1213a 的式子表示这时窗户的通风面积( )b A. B. 21718abm 21318abm C. D. 2518abm 2118abm 6. 已知a ,b ,c 为△ABC 的三边长,关于x 的一元二次方程(a+c )x 2+2bx+(a﹣c)=0有两个相等的实数根,则△ABC 为( )A. 等腰三角形 B. 等边三角形C. 直角三角形D. 等腰直角三角形7. 如图,四边形ABCD 是⊙O 的内接四边形,⊙O 的半径为4,∠B=135°,则劣弧AC 的长( )A .B.C. 2πD. π8. 在平面直角坐标系xOy 中,将一块含有45°角的直角三角板如图放置,直角顶点C 的坐标为(1,0),顶点A 的坐标为(0,2),顶点B 恰好落在象限的双曲线上,现将直角三角板沿x 轴正方向平移,当顶点A 恰好落在该双曲线上时中止运动,则此时点C 的对应点C ′的坐标为( )。
滨州市二〇二三年初中学业水平考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试题卷上;4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题;在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分24分.1.﹣3的相反数是()A.13- B.13C.3-D.32.下列计算,结果正确的是()A.235a a a ⋅=B.()325a a = C.33()ab ab = D.23a a a ÷=3.如图所示摆放的水杯,其俯视图为()A. B. C. D.4.一元二次方程2320x x +-=根的情况为()A.有两个不相等的实数根B.有两个相等的实数根 C.没有实数根 D.不能判定5.由化学知识可知,用pH 表示溶液酸碱性的强弱程度,当pH 7>时溶液呈碱性,当pH 7<时溶液呈酸性.若将给定的NaOH 溶液加水稀释,那么在下列图象中,能大致反映NaOH 溶液的pH 与所加水的体积V 之间对应关系的是()A. B. C. D.6.在某次射击训练过程中,小明打靶10次的成绩(环)如下表所示:靶次第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次成绩(环)89910107891010则小明射击成绩的众数和方差分别为()A.10和0.1 B.9和0.1 C.10和1 D.9和17.如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆123,,O O O e e e 相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.21cm 4π B.21cm 3π C.21cm 2π D.2cm π8.已知点P 是等边ABC 的边BC 上的一点,若104APC ∠=︒,则在以线段,,AP BP CP 为边的三角形中,最小内角的大小为()A.14︒ B.16︒ C.24︒ D.26︒第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9.计算23--的结果为___________.10.一块面积为25m 的正方形桌布,其边长为___________.11.不等式组242,378x x -≥⎧⎨-<⎩的解集为___________.12.如图,在平面直角坐标系中,ABO 的三个顶点坐标分别为()()()6,3,6,0,0,0A B O .若将ABO 向左平移3个单位长度得到CDE ,则点A 的对应点C 的坐标是___________.13.同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.14.如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.15.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管长度应为____________.16.如图,矩形ABCD 的对角线,AC BD 相交于点O ,点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为___________.三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.17.中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t 表示,单位h )状况设置了如下四个选项,分别为A :1t ≤,B :1 1.5t <≤,C :1.52t <≤,D :2t >,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上提供的信息解答下列问题:(1)此次调查,选项A 中的学生人数是多少?(2)在扇形统计图中,选项D 所对应的扇形圆心角的大小为多少?(3)如果该县有15000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?(4)请回答你每天完成书面作业的时间属于哪个选项,并对老师的书面作业布置提出合理化建议.18.先化简,再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.19.如图,直线(,y kx b k b =+为常数)与双曲线m y x=(m 为常数)相交于()2,A a ,()1,2B -两点.(1)求直线y kx b =+的解析式;(2)在双曲线m y x =上任取两点()11,M x y 和()22,N x y ,若12x x <,试确定1y 和2y 的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式m kx b x+>的解集.20.(1)已知线段,m n ,求作Rt ABC △,使得90,,C CA m CB n ∠=︒==;(请用尺规作图,保留作图痕迹,不写作法.)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明.)21.如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为(2,23,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF OB ∥交边BC 于点F ,连接EF .设,OD x DEF =△的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.22.如图,点E 是ABC 的内心,AE 的延长线与边BC 相交于点F ,与ABC 的外接圆相交于点D .(1)求证:::ABF ACF S S AB AC =△△;(2)求证:::AB AC BF CF =;(3)求证:2AF AB AC BF CF =⋅-⋅;(4)猜想:线段,,DF DE DA 三者之间存在的等量关系.(直接写出,不需证明.)滨州市二〇二三年初中学业水平考试数学试题温馨提示:1.本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页,满分120分,考试用时120分钟.考试结束后,将试题卷和答题卡一并交回.2.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、准考证号、座号填写在试题卷和答题卡规定的位置上.3.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案标号,答案不能答在试题卷上;4.第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.第Ⅰ卷(选择题共24分)一、选择题:本大题共8个小题;在每小题的四个选项中只有一个是正确的,请把正确的选项选出来,用2B 铅笔把答题卡上对应题目的答案标号涂黑.每小题涂对得3分,满分24分.1.﹣3的相反数是()A.13- B.13 C.3- D.3【答案】D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选D .【点睛】本题考查相反数,题目简单,熟记定义是关键.2.下列计算,结果正确的是()A.235a a a ⋅= B.()325a a = C.33()ab ab = D.23a a a÷=【答案】A【解析】【分析】根据同底数幂的乘法可判断A ,根据幂的乘方可判断B ,根据积的乘方可判断C ,根据整数指数幂的运算可判断D ,从而可得答案.【详解】解:235a a a ⋅=,运算正确,故A 符合题意;()326a a =,原运算错误,故B 不符合题意;333()ab a b =,原运算错误,故C 不符合题意;231a a a÷=,原运算错误,故D 不符合题意;故选A .【点睛】本题考查的是同底数幂的乘法,幂的乘方,积的乘方,同底数幂的除法运算,负整数指数幂的含义,整数指数幂的运算,熟记运算法则是解本题的关键.3.如图所示摆放的水杯,其俯视图为()A. B. C. D.【答案】D【解析】【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】解:俯视图是从上面看到的图形,应该是:故选:D .【点睛】本题主要考查简单几何体的三视图,掌握俯视图是从上边看得到的图形是解题的关键.4.一元二次方程2320x x +-=根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能判定【答案】A【解析】【分析】根据题意,求得2498170b ac ∆=-=+=>,根据一元二次方程根的判别式的意义,即可求解.【详解】解:∵一元二次方程2320x x +-=中,1,3,2a b c -==-,∴2498170b ac ∆=-=+=>,∴一元二次方程2320x x +-=有两个不相等的实数根,故选:A .【点睛】本题考查了一元二次方程的根的判别式的意义,熟练掌握一元二次方程根的判别式的意义是解题的关键.5.由化学知识可知,用pH 表示溶液酸碱性的强弱程度,当pH 7>时溶液呈碱性,当pH 7<时溶液呈酸性.若将给定的NaOH 溶液加水稀释,那么在下列图象中,能大致反映NaOH 溶液的pH 与所加水的体积V 之间对应关系的是()A. B. C. D.【答案】B【解析】【分析】根据题意,NaOH 溶液呈碱性,随着加入水的体积的增加,溶液的浓度越来越低,pH 的值则接近7,据此即可求解.【详解】解:∵NaOH 溶液呈碱性,则pH 7>,随着加入水的体积的增加,溶液的浓度越来越低,pH 的值则接近7,故选:B .【点睛】本题考查了函数的图象,数形结合是解题的关键.6.在某次射击训练过程中,小明打靶10次的成绩(环)如下表所示:靶次第1次第2次第3次第4次第5次第6次第7次第8次第9次第10次成绩(环)89910107891010则小明射击成绩的众数和方差分别为()A.10和0.1B.9和0.1C.10和1D.9和1【答案】C【解析】【分析】根据众数的定义,以及方差的定义,即可求解.【详解】解:这组数据中,10出现了4次,故众数为10,平均数为:()178293104910+⨯+⨯+⨯=,方差为()2222121214110S =+⨯+⨯=,故选:C .【点睛】本题考查了众数的定义,以及方差的定义,熟练掌握众数的定义,以及方差的定义是解题的关键.众数:在一组数据中出现次数最多的数.方差:一般地,各数据与平均数的差的平方的平均数叫做这组数据的方差.2222121[(()()]n S x x x x x x n=-+-++-….7.如图,某玩具品牌的标志由半径为1cm 的三个等圆构成,且三个等圆123,,O O O e e e 相互经过彼此的圆心,则图中三个阴影部分的面积之和为()A.21cm 4π B.21cm 3π C.21cm 2π D.2cm π【答案】C【解析】【分析】根据圆的对称性可知:图中三个阴影部分的面积相等,只要计算出一个阴影部分的面积即可,如图,连接1212,,AO AO O O ,阴影12AO O 的面积=扇形12AO O 的面积,据此即可解答.【详解】解:根据圆的对称性可知:图中三个阴影部分的面积相等;如图,连接1212,,AO AO O O ,则1212AO AO O O ==,12AO O △是等边三角形,∴1260AO O ∠=︒,弓形1212,,AO AO O O 的面积相等,∴阴影12AO O 的面积=扇形12AO O 的面积226011cm 3606ππ⨯==,∴图中三个阴影部分的面积之和2113cm 62ππ=⨯=;故选:C .【点睛】本题考查了不规则图形面积的计算,正确添加辅助线、掌握求解的方法是解题关键.8.已知点P 是等边ABC 的边BC 上的一点,若104APC ∠=︒,则在以线段,,AP BP CP 为边的三角形中,最小内角的大小为()A.14︒B.16︒C.24︒D.26︒【答案】B【解析】【分析】将ABP 绕点A 逆时针旋转60︒得到ACQ ,可得以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,根据邻补角以及旋转的性质得出76AQC APB ∠=∠=︒,进而即可求解.【详解】解:如图所示,将ABP 绕点A 逆时针旋转60︒得到ACQ ,∴,60AP AQ PAQ =∠=︒,BP CQ =,AQC APB ∠=∠,∴APQ △是等边三角形,∴PQ AP =,∴以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,∵104APC ∠=︒,∴76APB ∠=︒∴76AQC APB ∠=∠=︒∴PQC ∠766016=︒-︒=︒,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键.第Ⅱ卷(非选择题共96分)二、填空题:本大题共8个小题,每小题3分,满分24分.9.计算23--的结果为___________.【答案】1-【解析】【分析】化简绝对值,根据有理数的运算法则进行计算即可.【详解】23231--=-=-,故答案为:1-.【点睛】本题考查有理数的加减法则,熟练掌握有理数的加减法则是解题的关键.10.一块面积为25m 的正方形桌布,其边长为___________.【解析】【分析】由正方形的边长是其面积的算术平方根可得答案.【详解】解:一块面积为25m ,【点睛】本题考查的是算术平方根的含义,理解题意,利用算术平方根的含义表示正方形的边长是解本题的关键.11.不等式组242,378x x -≥⎧⎨-<⎩的解集为___________.【答案】35x ≤<【解析】【分析】分别解两个不等式,再取两个解集的公共部分即可.【详解】解:242378x x -≥⎧⎨-<⎩①②,由①得:3x ≥,由②得:5x <,∴不等式组的解集为:35x ≤<;故答案为:35x ≤<【点睛】本题考查的是一次不等式组的解法,掌握一元一次不等式组的解法步骤与方法是解本题的关键.12.如图,在平面直角坐标系中,ABO 的三个顶点坐标分别为()()()6,3,6,0,0,0A B O .若将ABO 向左平移3个单位长度得到CDE ,则点A 的对应点C 的坐标是___________.【答案】()3,3【解析】【分析】根据平移的性质即可得出答案.【详解】将ABO 向左平移3个单位长度得到CDE ,()6,3A ,()3,3C ∴,故答案为:()3,3.【点睛】本题考查平移的性质,熟知左右平移纵坐标不变是解题的关键.13.同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是___________.【答案】16【解析】【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为61366=故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.14.如图,,PA PB 分别与O 相切于,A B 两点,且56APB ∠=︒.若点C 是O 上异于点,A B 的一点,则ACB ∠的大小为___________.【答案】62︒或118︒【解析】【分析】根据切线的性质得到90∠=∠=︒PAO PBO ,根据四边形内角和为360︒,得出AOB ∠,然后根据圆周角定理即可求解.【详解】解:如图所示,连接,AC BC ,当点C 在优弧 AB 上时,∵,PA PB 分别与O 相切于,A B 两点∴90∠=∠=︒PAO PBO ,∵56APB ∠=︒.∴360909056124AOB ∠=︒-︒-︒-︒=︒∵ AB AB=,∴1622ACB AOB ∠=∠=︒,当点C '在 AB 上时,∵四边形AC BC '是圆内接四边形,∴180118C C '∠=︒-∠=︒,故答案为:62︒或118︒.【点睛】本题考查了切线的性质,圆周角定理,多边形内角和,熟练掌握切线的性质与圆周角定理是解题的关键.15.要修一个圆形喷水池,在池中心竖直安装一根水管,水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m 处达到最高,高度为3m ,水柱落地处离池中心3m ,水管长度应为____________.【答案】2.25m ##2.25米##124米##124m##94米##94m 【解析】【分析】以池中心为原点,竖直安装的水管为y 轴,与水管垂直的水平面为x 轴建立直角坐标系,设抛物线的解析式为()()21303y a x x =-+≤≤,将()3,0代入求得a 值,则0x =时得的y 值即为水管的长.【详解】解:以池中心为原点,竖直安装的水管为y 轴,与水管垂直的水平面为x 轴建立直角坐标系.由于在距池中心的水平距离为1m 时达到最高,高度为3m ,则设抛物线的解析式为:()()21303y a x x =-+≤≤,代入()3,0求得:34a =-.将a 值代入得到抛物线的解析式为:()()2313034y x x =--+≤≤,令0x =,则9 2.254y ==.故水管长度为2.25m .故答案为:2.25m .【点睛】本题考查了二次函数在实际生活中的运用,重点是二次函数解析式的求法,正确建立平面直角坐标系是解题的关键.16.如图,矩形ABCD 的对角线,AC BD 相交于点O ,点,E F 分别是线段,OB OA 上的点.若,5,1,3AE BF AB AF BE ====,则BF 的长为___________.【答案】【解析】【分析】过点,A B 分别作,BD AC 的垂线,垂足分别为,N M ,等面积法证明AM BN =,进而证明Rt Rt AME BNF ≌,Rt Rt AMB BNA ≌,根据全等三角形的性质得出ME FN =,BM AN =,根据已知条件求得1EM =,进而勾股定理求得,AM AE ,进而即可求解.【详解】解:如图所示,过点,A B 分别作,BD AC 的垂线,垂足分别为,N M ,∵四边形ABCD 是矩形,∴BC AD =,∵11,22ABC ABD S AB BC S AB AD =⨯=⨯ ,∴=ABC ABD S S ,∴1122AC BN BD AM ⨯=⨯,∴AM BN =,∵BF AE =,∴Rt Rt AME BNF≌∴ME FN=设ME FN =x=在Rt ,Rt AMB BNA 中,AB BA AM BN=⎧⎨=⎩∴Rt Rt AMB BNA≌∴BM AN =,∴BE ME AF FN-=+∴31x x-=+解得:1x =∴2BM AN ==在Rt ABM 中,AM ===,在Rt AME △中,AE ===∴BF AE ==.【点睛】本题考查了矩形的性质,全等三角形的性质与判定,勾股定理,熟练掌握以上知识是解题的关键.三、解答题:本大题共6个小题,满分72分.解答时请写出必要的演推过程.17.中共中央办公厅、国务院办公厅印发的《关于进一步减轻义务教育阶段学生作业负担和校外培训负担的意见》中,对学生每天的作业时间提出明确要求:“初中书面作业平均完成时间不超过90分钟”.为了更好地落实文件精神,某县对辖区内部分初中学生就“每天完成书面作业的时间”进行了随机调查,为便于统计学生每天完成书面作业的时间(用t 表示,单位h )状况设置了如下四个选项,分别为A :1t ≤,B :1 1.5t <≤,C :1.52t <≤,D :2t >,并根据调查结果绘制了如下两幅不完整的统计图.请根据以上提供的信息解答下列问题:(1)此次调查,选项A 中的学生人数是多少?(2)在扇形统计图中,选项D 所对应的扇形圆心角的大小为多少?(3)如果该县有15000名初中学生,那么请估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有多少人?(4)请回答你每天完成书面作业的时间属于哪个选项,并对老师的书面作业布置提出合理化建议.【答案】(1)8人(2)43.2︒(3)9600人(4)见解析【解析】【分析】(1)用选项C 中的学生人数除以其所占比例求出总人数,然后用总人数减去其它三个组的人数即可求出选项A 的人数;(2)用360︒乘以其所占比例即可求出答案;(3)利用样本估计总体的思想解答即可;(4)答案不唯一,合理即可;如可以结合(3)小题的结果分析.【小问1详解】解:此次调查的总人数是2424%100÷=人,所以选项A 中的学生人数是1005624128---=(人);【小问2详解】1236043.2100︒⨯=︒,选项D 所对应的扇形圆心角的大小为43.2︒;【小问3详解】856150009600100+⨯=;所以估算该县“每天完成书面作业的时间不超过90分钟”的初中学生约有9600人;【小问4详解】我的作业时间属于B 选项;从调查结果来看:仅有64%的学生符合“初中书面作业平均完成时间不超过90分钟”,还有36%的学生每天完成书面作业的时间超过了90分钟,所以布置的作业应该精简量少.(答案不唯一,合理即可).【点睛】本题考查了条形统计图和扇形统计图以及利用样本估计总体等知识,正确理解题意、从统计图中获取解题所需要的信息是解题的关键.18.先化简,再求值:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭,其中a 满足1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝.【答案】244a a -+;1【解析】【分析】先根据分式的加减计算括号内的,然后将除法转化为乘法,再根据分式的性质化简,根据负整数指数幂,特殊角的三角函数值,求得2430a a -+=的值,最后将2430a a -+=代入化简结果即可求解.【详解】解:22421244a a a a a a a a -+-⎛⎫÷- ⎪--+⎝⎭()()()()()22221422a a a a a a a a a a ⎡⎤+---=÷-⎢⎥--⎢⎥⎣⎦()()()()222142a a a a a a a a +----=÷-()222244a a a a a a a--=⨯--+()22a =-244a a =-+;∵1216cos6004a a -⎛⎫-⋅+ ⎪⎭︒=⎝,即2430a a -+=,∴原式2=431011a a -++=+=.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则以及负整数指数幂,特殊角的三角函数值进行求解.19.如图,直线(,y kx b k b =+为常数)与双曲线m y x=(m 为常数)相交于()2,A a ,()1,2B -两点.(1)求直线y kx b =+的解析式;(2)在双曲线m y x=上任取两点()11,M x y 和()22,N x y ,若12x x <,试确定1y 和2y 的大小关系,并写出判断过程;(3)请直接写出关于x 的不等式m kx b x +>的解集.【答案】(1)1y x =-+(2)当120x x <<或120x x <<时,12y y <;当120x x <<时,12y y >(3)1x <-或02x <<【解析】【分析】(1)将点B 代入反比例函数m y x =,求得2m =-,将点A 代入2y x =-,得出()2,1A -,进而待定系数法求解析式即可求解;(2)根据反比例函数的性质,反比例函数在第二四象限,在每个象限内,y 随x 的增大而增大,进而分类讨论即可求解;(3)根据函数图象即可求解.【小问1详解】解:将点()1,2B -代入反比例函数m y x =,∴2m =-,∴2y x=-将点()2,A a 代入2y x=-∴()2,1A -,将()2,1A -,()1,2B -代入y kx b =+,得212k b k b +=-⎧⎨-+=⎩解得:11k b =-⎧⎨=⎩,∴1y x =-+【小问2详解】∵2y x=-,0k <,∴反比例函数在第二四象限,在每个象限内,y 随x 的增大而增大,∴当120x x <<或120x x <<时,12y y <,当120x x <<时,根据图象可得12y y >,综上所述,当120x x <<或120x x <<时,12y y <;当120x x <<时,12y y >,【小问3详解】根据图象可知,()2,1A -,()1,2B -,当m kx b x+>时,1x <-或02x <<.【点睛】本题考查了一次函数与反比例函数综合,一次函数与反比例函数交点问题,待定系数法求一次函数的解析式,反比例函数图象的性质,熟练掌握反比例函数图象的性质是解题的关键.20.(1)已知线段,m n ,求作Rt ABC △,使得90,,C CA m CB n ∠=︒==;(请用尺规作图,保留作图痕迹,不写作法.)(2)求证:直角三角形斜边上的中线等于斜边的一半.(请借助上一小题所作图形,在完善的基础上,写出已知、求证与证明.)【答案】(1)见解析;(2)见解析【解析】【分析】(1)作射线AP ,在AP 上截取AC m =,过点C 作AC 的垂线MN ,在CN 上截取CB n =,连接AB ,则Rt ABC △,即为所求;(2)先根据题意画出图形,再证明.延长CD 至E 使CD DE =,连接AE 、BE ,因为D 是AB 的中点,所以AD BD =,因为CD DE =,所以四边形ACBE 是平行四边形,因为90ACB ∠=︒,所以四边形ACBE 是矩形,根据矩形的性质可得出结论.【详解】(1)如图所示,Rt ABC △即为所求;(2)已知:如图,CD 为Rt ABC △中斜边AB 上的中线,90ACB ∠=︒,求证:12CD AB =.证明:延长CD 并截取DE CD =.∵CD 为AB 边中线,∴BD AD =,∴四边形ACBE 为平行四边形.∵90ACB ∠=︒,∴平行四边形ACBE 为矩形,∴2AB CE CD ==,∴12CD AB =【点睛】本题考查了作直角三角形,直角三角形的性质,矩形的性质与判定,解答此题的关键是作出辅助线,构造出矩形,利用矩形的性质解答.21.如图,在平面直角坐标系中,菱形OABC 的一边OC 在x 轴正半轴上,顶点A 的坐标为(,点D 是边OC 上的动点,过点D 作DE ⊥OB 交边OA 于点E ,作DF OB ∥交边BC 于点F ,连接EF .设,OD x DEF =△的面积为S .(1)求S 关于x 的函数解析式;(2)当x 取何值时,S 的值最大?请求出最大值.【答案】(1)22S x =-+(2)当2x =时,S 的最大值为【解析】【分析】(1)过点A 作AG OC ⊥于点G ,连接AC ,证明AOC 是等边三角形,可得DE x =,进而证明CDF COB ∽,得出)4DF x =-,根据三角形面积公式即可求解;(2)根据二次函数的性质即可求解.【小问1详解】解:如图所示,过点A 作AG OC ⊥于点G ,连接AC ,∵顶点A 的坐标为(,∴4OA ==,2OG =,AG =∴1cos 2AOG AO ∠==,∴60AOG ∠=︒∵四边形OABC 是菱形,∴30BOC AOB ∠=∠=︒,AC BD ⊥,AO OC =,∴AOC 是等边三角形,∴60ACO ∠=︒,∵DE OB ⊥,∴DE AC ∥,∴60EDO ACO ∠=∠=︒∴EOD △是等边三角形,∴ED OD x==∵DF OB ∥,∴CDF COB ∽,∴DF CD OB CO=∵A (,4AO =,则(B ,∴OB ==44x-=∴)4DF x =-∴)21422S x x x =-=-+∴()2042S x x =-+≤≤【小问2详解】解:∵()2233222S x x =-+=--+∵302-<,∴当2x =时,S 的值最大,最大值为.【点睛】本题考查了等边三角形的判定与性质,菱形的性质,坐标与图形,特殊角的三角函数值,二次函数的性质,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.22.如图,点E 是ABC 的内心,AE 的延长线与边BC 相交于点F ,与ABC 的外接圆相交于点D .(1)求证:::ABF ACF S S AB AC =△△;(2)求证:::AB AC BF CF =;(3)求证:2AF AB AC BF CF =⋅-⋅;(4)猜想:线段,,DF DE DA 三者之间存在的等量关系.(直接写出,不需证明.)【答案】(1)见解析(2)见解析(3)见解析(4)2DE DF AD=⋅【解析】【分析】(1)过点F 作,FH AC FG AB ⊥⊥,垂足分别为,H G ,则FG FH =,进而表示出两个三角形的面积,即可求解;(2)过点A 作AM BC ⊥于点M ,表示出两三角形的面积,即可求解;(3)连接,DB DC ,证明BFD AFC ∽得出BF CF AF DF ⋅=⋅,证明ABF ADC △∽△,得出AB AC AD AF ⋅=⋅,即可()AB AC AF DF AF ⋅=+⋅,恒等式变形即可求解;(4)连接BE ,证明ABD BFD ∽,得出DB DA DF =⋅,证明BED DBE ∠=∠,得出DB DE =,即可求解.【小问1详解】证明:如图所示,过点F 作,FH AC FG AB ⊥⊥,垂足分别为,H G ,∵点E 是ABC 的内心,∴AD 是BAC ∠的角平分线,∵,FH AC FG AB ⊥⊥,∴FG FH =,∵1122ABF ACF S AB FG S AC FH =⋅=⋅ ,,∴::ABF ACF S S AB AC =△△;【小问2详解】证明:如图所示,过点A 作AM BC ⊥于点M ,∵1122ABF ACF S BF AM S FC AM =⋅=⋅ ,,∴::ABF ACF S S BF FC =△△,由(1)可得::ABF ACF S S AB AC =△△,∴::AB AC BF CF =;【小问3详解】证明:连接,DB DC ,∵,AB AB DC DC ==∴,ACF BDF FAC FBD∠=∠∠=∠∴BFD AFC∽∴BF DF AF CF =,∴BF CF AF DF⋅=⋅∵ AC AC =,∴FBA ADC ∠=∠,又BAD DAC ∠=∠,∴ABF ADC △∽△,∴AB AF AD AC =,∴AB AC AD AF ⋅=⋅;∴()2·AB AC AF DF AF AF AF DF ⋅=+⋅=+,∴2AF AB AC BF CF =⋅-⋅,【小问4详解】解:如图所示,连接BE ,∵点E 是ABC 的内心,∴BE 是BAC ∠的角平分线,∴ABE FBE ∠=∠,∵CBD CAD BAD ∠=∠=∠,ADB BDF∠=∠∴ABD BFD ∽,∴DB DA DF DB=,∴2DB DA DF =⋅,∵1122BED BAE ABE BAC ABC ∠=∠+∠=+∠,1122DBE DBC FBE DAC FBE BAC ABC ∠=∠+∠=∠+∠=∠+∠,∴BED DBE ∠=∠,∴DB DE =,∴2DE DA DF =⋅.【点睛】本题考查了三角形内心的定义,同弧所对的圆周角相等,角平分线的性质与定义,相似三角形的性质与判定,三角形的外角性质,三角形的面积公式等知识,熟练掌握相似三角形的性质与判定是解题的关键.。
2023年天津市部分区中考一模数学试卷学校:___________姓名:___________班级:___________考号:___________....【答案】DA....【答案】C【分析】根据从正面看到的图形是主视图进行判断即可.【详解】解:由题意得,主视图如下:故选:C.【点睛】本题考查了主视图.解题的关键在于熟练掌握从正面看到的图形是主视图.6.估计37的值应在(A.5和6之间10,8B.(6,8 A.()【答案】D⊥轴,根据【分析】过A点作AC x【点睛】本题考查了点的坐标,等腰三角形的性质,勾股定理,掌握并会利用等腰三角形的性质,勾股定理是解题的关键.9.已知一元二次方程2x-∴123632y y y ==-=-,,,∴231y y y <<.故选:B .【点睛】本题考查了反比例函数图象上点的坐标特点,理解题意,求出1y ,2y ,3y 的值是解题关键,本题也可以利用反比例函数的性质求解.11.如图,ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),下列结论不正确...的是()A .1AP A P=B .ABC 与111A B C △的面积相等C .MN 垂直平分线段1AA D .直线11,AB A B 的交点不一定在MN 上【答案】D【分析】根据轴对称的性质依次进行判断,即可得.【详解】解:∵ABC 与111A B C △,关于直线MN 对称,P 为MN 上任一点(P 不与1AA 共线),∴1AP A P =,ABC 与111A B C △的面积相等,MN 垂直平分线段1AA ,即选项A 、B 、C 正确,∵直线11,AB A B 关于直线MN 对称,∴直线11,AB A B 的交点一定在MN 上,即选项D 不正确,故选:D .【点睛】本题考查了轴对称的性质,解题的关键是掌握轴对称的性质.12.已知拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,其顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,有下列结论:①3c ≤;②当0x >时,y 随x 的增大而减小;③若2x 的最大值为4,则1x 的最小值为7-.其中,正确结论的个数是()A .0B .1C .2D .3【答案】C【分析】根据抛物线开口向下可知函数有最大值3,即可判断①;根据抛物线的性质可知当1x >时,y 随x 的增大而减小即可判断②;根据2x 的最大值为4,则此时对称轴为直线1x =,则由对称性可得1x 的最小值为()4417---=-,即可判断③.【详解】解:∵拋物线()2<0y ax bx c a =++与x 轴交于()1,0x ,()()212,0x x x <,且抛物线顶点在线段AB 上运动(形状保持不变),()4,3A -,()13B ,,∴抛物线的函数值有最大值3,∴3c ≤,故①正确;∵抛物线顶点在线段AB 上运动(形状保持不变),且()4,3A -,()13B ,,∴抛物线对称轴在直线4x =-和直线1x =之间,∴当1x >时,y 随x 的增大而减小,故②错误;∵2x 的最大值为4,∴此时对称轴为直线1x =,∴由对称性可知,1x 的最小值为()4417---=-,故③正确;故选C .【点睛】本题主要考查了抛物线的性质,熟知抛物线的性质是解题的关键.二、填空题【答案】2【分析】如图,连接AE ,490AE AEO =∠=︒,,在Rt OB OA =,根据BE OB OE =-【详解】解:如图,连接AE 由题意知,OF 是ACE △的中位线,∴12OF AE =,OF AE ∥,∴490AE AEO =∠=︒,,在Rt AEO △中,由勾股定理得由矩形的性质可得OB OA =∴2BE OB OE =-=,故答案为:2.【点睛】本题考查了中位线,勾股定理,矩形的性质等知识.解题的关键在于添加辅助线,构造中位线.18.如图,在每个小正方形的边长为B 在圆上.(1)线段AC 的长等于________(2)过点D 作DF AC ∥,直线∵90BAE ∠=︒,∴BE 为圆的直径,∵GK 垂直平分AB ,∴BE 鱼GK 的交点为圆心∵MN AH ∥,∴ AM HN=,∴ANM HMN ∠=∠,∴IM IN =,∵OM ON =,∴IP 垂直平分MN ,即MP NP =.故答案为:取圆与格线的交点连接FD ,与圆交于点M ,N ;取圆与AC 的交点H ,连接MH ,AN ,两线交于点I ;作射线OI ,交MN 于点P ,则点P 即为所求.【点睛】本题主要考查了勾股定理,圆周角定理,垂直平分线的判定,等腰三角形的判定,垂径定理,解题的关键是找出圆心O 和点I .三、解答题19.解不等式组2123x x x +≥⎧⎨≤+⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得________;(2)解不等式②,得________;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为________.【答案】(1)1x ≥-(2)3x ≤(3)解集在数轴上表示见解析(4)13x -≤≤【分析】(1)根据解不等式的方法计算即可;(2)根据解不等式的方法计算即可;(3)根据解集在数轴上表示即可;(4)结合(3)中数轴的图形即可作答.【详解】(1)21x +≥2212x +-≥-1x ≥-,故答案为:1x ≥-;(2)23x x ≤+23x x x x -≤+-3x ≤,故答案为:3x ≤;(3)在数轴上表示如下:(4)结合数轴,取两个解集的公共部分:故答案为:13x -≤≤.【点睛】本题主要考查了求解不等式组的解集以及在数轴上表示不等式解集的知识.练掌握一元一次不等式的解法,熟知小找不到”的原则是解答此题的关键.20.某初中学校为了解学生课外阅读情况,随机调查了部分学生每周平均阅读时间.根据统计结果,绘制出如下统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的学生人数为________,图①中m 的值为________(2)求统计的这组每周平均阅读时间数据的平均数、众数和中位数.【答案】(1)50,6(2)这组数据的平均数是9,众数为9,中位数为9【分析】(1)根据两个统计图可选由具体阅读时间的人数及所占百分比即可求出总人数,进而可求解.(2)根据条形统计图可求出阅读总时间数,可求出平均数,再找出出现次数最多的数据,将这组数据按从小到大的顺序排列,可找出处于中间的两个数,即可求解.【详解】(1)解:由统计图得:每周平均阅读时间7h 的学生有5人,占10%,∴调查的总人数:()55010%=人,由条形统计图得每周平均阅读时间11h 的学生有3人,3%6%50m ∴==.故答案:50,6.(2)解:由条形统计图得:(1)如图①,若D 为 AB 的中点,64A ∠=︒,求∠(2)如图②,若AB CD ⊥,过点D 作O 的切线与求ABD ∠的大小.【答案】(1)64D ∠=︒,45ABD ∠=︒(2)60ABD ∠=︒DE 是O 的切线,OD DE ∴⊥,即ODE ∠又DE CE ⊥ ,即DEC ∠180ODE DEC ∴∠+∠=︒C OD E ∴∥.则90AMF ∠=︒,8.8m CE DF ==在Rt AFM △中,45AFM ∠=︒,则45MAF AFM ∠=∠=︒,设AM FM x ==,在Rt ADM △中,38ADM ∠=︒,(1)如图①,求点B C ,的坐标;(2)将正方形AOBC 沿x 轴向右平移,得到正方形''''A O B C ,点A ,O ,别为A O B C '''',,,.设OO t '=,正方形''''A O B C 与MON △重合部分的面积为①如图②,当14t <≤时,正方形''''A O B C 与MON △重合部分为五边形,直线②当14t <≤时,由题意得21152S t t =-+-解得515t =-或515+当5t =时,点O '与点N 重合,此时2914482S =⨯⨯=>,∴59t <<,∴9A N A F t ''==-,由题意得()219922t -=,解得6t =或12t =(舍去);综上,t 的值是515-或6.故答案为:515-或6.【点睛】本题主要考查了正方形的性质,等腰直角三角形的性质,矩形的性质,平移的性质,图形的面积,二次函数的性质等知识,根据题意分别画出图形,通过面积的和差关系求出S 关于t 的函数表达式是解题的关键.25.抛物线()230y ax bx a =+-≠(1)求抛物线的顶点坐标;(2)点Q 在拋物线对称轴上,当△(3)P 是拋物线对称轴上的一点,M 腰的等腰直角三角形时,求出符合条件的所有点【答案】(1)抛物线顶点坐标为(-点A 、B 关于抛物线的对称轴对称,AQ BQ ∴=,∴当点A 、Q 、C 在一条直线上时, 抛物线23+=2y x x -与∴设直线AC 的解析式为把点()30A -,代入,得1k ∴=-.设点P 的坐标为()1,m -.由PAM PEA AFM ∠=∠=∠PAE MAF PAE ∴∠+∠=∠APE MAF ∴∠=∠.()AAS APE MAF ≌ ∴.PE AF ∴=,AE MF =.2AF PE ∴==,MF AE =∴点M 的坐标为(3,m -+ 点M 在抛物线2+=2y x ()()2323m m ∴-++-+-2420m m ∴-+=,解得22m =+或2m =-∴点M 的坐标为(21,-当点P 在x 轴下方时,如图:同理可以求得点M的坐标为综上所述,当PAM△是以()--或(61,221,2-【点睛】本题考查了求二次函数及一次函数的解析式,二次函数的图象及性质,最短路径问题,全等三角形的判定与性质,试卷第21页,共21页。
人教版七年级下册数学期末考试试题一、单选题1.下列调查中,适合采用抽样调查方式的是()A.调查某灯泡的使用寿命B.对我国首架大型民用直升机各零件部件的调查C.调查乘坐飞机的乘客是否携带违禁物品D.了解九(1)班学生校服的尺码情况2.如果点P(x,6)在第二象限,则x的取值范围是()A.x>0B.x<0C.x≥0D.x≤0 3.下列各式中,没有意义的是()A.B C D4.若a>b,则下列不等式一定成立的是()A.a+b>0B.ba<1C.ac2>bc2D.b﹣a<05.在223,,2.161161116...,0.16,0.383887π+-中,无理数的个数是()A.1个B.2个C.3个D.4个6.不等式2x≤4的解集,在数轴上表示正确的是()A.B.C.D.7.将方程2x+y=3写成用含x的式子表示y的形式,正确的是()A.y=2x-3B.y=3-2x C.x=2−32D.x=32−28.为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,1000是()A.总体B.样本C.个体D.样本容量9.如图,CD⊥AB,BC⊥AC,垂足分别是D,C,则表示点C到线段AB的距离的是()A .线段AC 的长度B .线段BC 的长度C .线段CD 的长度D .线段BD 的长度10.如图,能判断a ∥b 的条件是()A .∠1=∠2B .∠2=∠4C .∠2+∠4=180°D .∠2+∠3=180°二、填空题1164_________.12.方程组213211x y x y +=⎧⎨-=⎩的解是________.13.已知关于x 、y 的方程组3326x ay x by -=⎧⎨+=⎩的解是21x y =⎧⎨=⎩则a +b =_____.14.如图,直线a ,b 被直线c 所截,若a ∥b ,∠1=42°,则∠2=__________度.15.某次知识竞赛共有20题,每一题答对得10分,答错或不答都扣5分,小明想得分不少于90分,他至少要答对________题.三、解答题16.计算:33633264-17.解不等式组31502132xx x-≤⎧⎪-⎨>⎪⎩,并将解集在数轴上表示出来.18.收集某校七年级(1)班学生身高数据(单位:cm),制作下列频数分布表:身高149≤x<154154≤x<159159≤x<164164≤x<169169≤x<174频数41321102(1)组距是多少?组数是多少?(2)现要从该班选择身高为159cm以上的30名学生,应在哪些范围的学生中选择?19.如图,直线EF、CD相交于点O,OA⊥OB,若∠AOE=40°,∠COF=81°,求∠BOD的度20.解方程组34 25206a b ca b ca b c-+=⎧⎪++=⎨⎪++=⎩21.对某校七年级(1)班学生“五一”假期的度假情况进行调查,并根据收集的数据绘制了以下统计图(不完整),请根据图中的信息回答问题:(1)求出该班学生的人数;(2)求出图1中∠α的度数;(3)补全图2中的频数分布直方图.22.购买一个书包和一个文具盒,按原价打八折后应付56元,已知打折前书包的单价比文具盒的单价的3倍少2元,打折前书包、文具盒的单价分别是多少元?23.如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′.(1)画出△A′B′C′;(2)若点P(m,n)是△ABC某边上的点,经上述平移后,点P的对应点为P′,写出点P′的坐标;(3)连接A′A、C′C,求四边形A′ACC′的面积.24.如图,在四边形ABCD中,BE平分∠ABC,∠AEB=∠ABE.(1)判断∠D与∠C的数量关系,并说明理由;(2)若∠C=∠A,判断AB与CD的位置关系,并说明理由.25.如图是一个运算流程.例如:根据所给的运算流程可知,当x=5时,5×3﹣1=14<32,把x=14带入,14×3﹣1=41>32,则输出值为41.(1)填空:当x=15时,输出值为__________;当x=6时,输出值为__________-;(2)若需要经过两次运算,才能运算出y,求x的取值范围.参考答案1.A 【解析】由全面调查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A 、对一批灯泡使用寿命的调查,适合抽样调查,故A 符合题意;B 、对我国首架大型民用直升机各零部件的检查是精确度要求高的调查,适合全面调查,故B 不符合题意;C.调查乘坐飞机的旅客是否携带了危禁物品是事关重大的调查,适合全面调查,故C 不符合题意;D 、了解九(1)班学生校服的尺码情况,调查范围小,要求准确度高,适合全面调查,故D 不符合题意.故选:A .【点睛】本题考查了抽样调查和全面调查的区别,选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行全面调查、或全面调查的意义价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用全面调查.2.B 【解析】根据第二象限内点的横坐标是负数解答.【详解】解: 点(,6)P x 在第二象限,x \的取值范围是0x <.故选:B .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.B 【解析】【分析】二次根式的被开方数是非负数.三次根式的被开方数是实数.【详解】解:A 、的被开方数30>,有意义,故本选项不符合题意;B 30<,没有意义,故本选项符合题意;C 的被开方数2(3)0->,有意义,故本选项不符合题意;D3次方,被开方数10-<,有意义,故本选项不符合题意;故选:B .【点睛】0) 叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.D 【解析】【分析】根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A 、当a >b ,则a-b >0,故此选项错误;B 、若0a >,则b a <1,若0a <,则1ba>,故此选项错误;C 、当0c =,则22=0ac bc =,故此选项错误;D 、当a b >,0b a -<,故此选项正确;故选:D .【点睛】此题主要考查了不等式的性质,关键是掌握不等式的性质.5.C 【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,进行判断即可.【详解】解:在223,,2.161161116...,0.16,0.383887π+- ,3π+,2.161161116...是无理数,共有3个.故选:C .【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式.6.B 【解析】【分析】将不等式系数化为1求得其解集,再根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则即可判断答案.【详解】解:解不等式24x 得:2x,故选:B .【点睛】本题主要考查解一元一次不等式及再数轴上表示不等式解集的能力,掌握“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则是解题的关键.7.B 【解析】【分析】把x 看做已知数求出y 即可.【详解】解:2x+3=y ,移项,得:y=3-2x.故选B.【点睛】本题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.D【解析】【分析】根据:总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目,解答即可.【详解】解:为了了解某市4万多名初中毕业生的中考数学成绩,任意抽取1000名学生的中考数学成绩进行统计分析,这个问题中,1000名学生的中考数学成绩是样本,1000是样本容量,故选:D.【点睛】本题主要考查样本容量的含义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.9.C【解析】【分析】直接根据点到直线距离的定义即可得出结论.【详解】解: 直线外一点到直线的垂线段的长度,叫做点到直线的距离,点C到线段AB的距离是线段CD的长度.故选C.【点睛】本题考查的是点到直线距离,熟知点到直线距离的定义是解答此题的关键.10.C【解析】【分析】根据两条直线被第三条所截,如果同旁内角互补,那么这两条直线平行,即可直接选出答案.【详解】解:A. ∠1=∠2a//b∴,此选项错误;B.∠2=∠4不能判定平行,此选项错误;C. ∠2+∠4=180°,a//b∴,此选项正确;D.∠2+∠3=180°不能判定平行,此选项错误.故选:C.【点睛】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.11.±【解析】【分析】8=,然后根据平方根的定义求出8的平方根.【详解】解: 8=,8∴的平方根为=±故答案为±.【点睛】本题考查了平方根的定义:若一个数的平方等于a,那么这个数叫a的平方根,记作0)a.12.31 xy=⎧⎨=-⎩【解析】【分析】利用加减消元法求出解即可.【详解】解:所选方程组为:213211x y x y +=⎧⎨-=⎩,①+②得412x =,解得:3x =,把3x =代入①得22y =-解得:1y =-,则方程组的解为31x y =⎧⎨=-⎩.故答案为:31x y =⎧⎨=-⎩.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.5【解析】【分析】将x=2和y=1代入方程组求出a 和b 的值,然后进行计算.【详解】解:将x=2和y=1代入方程组得6-a=34+b=6⎧⎨⎩解得:a=3b=2⎧⎨⎩325a b ∴+=+=【点睛】掌握二元一次方程组的解是解题的关键。
2018年(北师大版)初中数学中考数学总复习知识点总结中考数学复习计划一、第一轮复习(3-4周)1、第一轮复习的形式:“梳理知识脉络,构建知识体系”----理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。
②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。
③过基本技能关。
应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。
(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。
①数与代数分为3个大单元:数与式、方程与不等式、函数。
②空间和图形分为3个大单元:几何基本概念(线与角),平面图形,立体图形③统计与概率分为2个大单元:统计与概率2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。
(2)必须深钻教材,不能脱离课本按中考试卷的设计原则,基础题都是送分的题,有不少基础题都是课本上的原题或改造。
(3)掌握基础知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。
相对而言,“题海战术”在这个阶段是不适用的。
二、第二轮复习(3周)1、第二轮复习的形式:“突出重点,综合提高”----练习专题化,专题规律化(1)目的:融会贯通考纲上的所有知识点①进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。
②突出重点,难点和热点的内容在专题训练的基础上,要突出重点,抓住热点,突破难点。
江苏省常州市2022-2023学年中考数学专项突破仿真模拟试卷(A 卷)一、选一选(每题3分,共30分)1.计算3×(﹣2)的结果是()A.5B.﹣5C.6D.﹣62.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25%B.50%C.75%D.85%3.已知等腰三角形的两条边长分别是7和3,则这个三角形的第三条边长是A.8B.7C.4D.34.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.32y x =-B.23y x =-C.32y x =D.23y x =5.如图,是由五个相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.6.如图,ABC 内有一点D ,且DA DB DC ==,若2030DAB DAC ∠=∠= ,,则BDC ∠的大小是()A.100B.80C.70D.507.如图,在⊙O中,OA=AB,OC⊥AB,则下列结论错误的是()A.弦AB的长等于圆内接正六边形的边长B.弦AC的长等于圆内接正十二边形的边长C.AC BC=D.∠BAC=30°8.没有等式110{320xx+>-≥的解集是()A.-<x≤2B.-3<x≤2C.x≥2D.x<-39.如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.6cmB.12cmC.4cmD.8cm10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,则下列结论:①b2﹣4ac>0;②ac<0;③m>2,其中正确结论的个数是()A.0B.1C.2D.3二、填空题(每题4分,共24分)11.分解因式:429ax ay -=________.12.如图,点M 是函数y =与ky x=的图象在象限内的交点,OM =4,则k 的值为_______.13.如图,在ABC 中,AB AC ≠,,D E 分别为边AB 、AC 上的点,AC 3AD =,3AB AE =,点F 为BC 边上一点,添加一个条件:__________,可以使得FDB 与ADE 相似.(只需写出一个)14.如图,点A (t ,3)在象限,OA 与x 轴所夹的锐角为α,tanα=32,则t 的值是________.15.若2y =+,则y x =_____.16.如图,在Rt ABC △中,90,4,2C AC BC ∠=︒==分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为_____.(结果保留π)三、解答题一(每题6分,共18分)17.计算:(﹣1)0+|2﹣18.先化简,再求值:(311x xx x--+)212xx-⋅,其中x=﹣3.19.在Rt△ABC中,∠C=90°.(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,没有写作法)(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.四、解答二(每题7分,共21分)20.某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.(1)求该厂今年产量的月平均增长率为多少?(2)预计7月份的产量为多少万台?21.国家规定“中小学生每天在校体育时间没有低于1小时”.为此,我区就“你每天在校体育时间是多少”的问题随机了区内300名初中学生.根据结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是.(2)本次数据的中位数落在组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育时间的人约有多少?22.如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)23.如图,()()4013A B ,,,,以OA 、OB 为边作平行四边形OACB ,反比例函数ky x=的图象点C .()1求k 的值;()2根据图象,直接写出3y <时自变量x 的取值范围;()3将平行四边形OACB 向上平移几个单位长度,使点B 落在反比例函数的图象上.24.如图,AB 是O 的直径,点C 是O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:AC 平分DAB ∠;(2)求证:PC PF =;(3)若4tan 3ABC ∠=,14AB =,求线段PC 的长.25.已知:把Rt△ABC和Rt△DEF按如图(1)摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠DEF=45°,AC="8"cm,BC="6"cm,EF="9"cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF 移动的同时,点P从△ABC的顶点B出发,以2cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若没有存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若没有存在,说明理由.江苏省常州市2022-2023学年中考数学专项突破仿真模拟试卷(A卷)一、选一选(每题3分,共30分)1.计算3×(﹣2)的结果是()A.5B.﹣5C.6D.﹣6【正确答案】D【分析】根据有理数的乘法法则解决此题.【详解】3×(−2)=-3×2=−6故选D本题主要考查有理数的乘法,熟练掌握有理数的乘法法则是解决本题的关键.2.小张抛一枚质地均匀的硬币,出现正面朝上的可能性是()A.25%B.50%C.75%D.85%【正确答案】B【详解】抛一枚质地均匀的硬币,有正面朝上、反面朝上两种结果,故正面朝上的概率=50%.故选B.3.已知等腰三角形的两条边长分别是7和3,则这个三角形的第三条边长是A.8B.7C.4D.3【正确答案】B【详解】由题意分两种情况讨论如下:①当7为腰长,3为底边时,三边为7、7、3,能组成三角形,故第三边的长为7,②当3为腰长,7为底边时,三边为7、3、3,因为3+3=6<7,所以此种情况没有能组成三角形.综上所述,第三边的长为7.故选B.点睛:已知等腰三角形的两边长,求第三边长时,需注意以下两点:(1)要分已知两边分别为腰这两种情况讨论;(2)求出第三边长后要用三角形三边间的关系进行检验,看是否能够围成三角形,再作结论.4.一个正比例函数的图象过点(2,﹣3),它的表达式为()A.32y x=- B.23y x=- C.32y x= D.23y x=【正确答案】A【分析】根据待定系数法求解即可.【详解】解:设函数的解析式是y=kx,根据题意得:2k=﹣3,解得:k=﹣3 2.故函数的解析式是:y=﹣32x.故选:A.本题考查了利用待定系数法求正比例函数的解析式,属于基础题型,熟练掌握待定系数法求解的方法是解题关键.5.如图,是由五个相同的小正方体组成的几何体,则它的左视图是()A. B. C. D.【正确答案】D【分析】找到从左面看所得到的图形即可.【详解】解:从左面可看到1列小正方形的个数为:3,故选D .本题考查了三视图的知识,左视图是从物体的左面看得到的视图.6.如图,ABC 内有一点D ,且DA DB DC ==,若2030DAB DAC ∠=∠= ,,则BDC ∠的大小是()A.100B.80C.70D.50【正确答案】A【分析】如果延长BD 交AC 于E ,由三角形的一个外角等于与它没有相邻的两个内角的和,得BDC DEC ECD DEC ABE BAE ∠∠∠∠∠∠=+=+,,所以BDC ABE BAE ECD ∠∠∠∠=++,又DA DB DC ==,根据等腰三角形等边对等角的性质得出ABE DAB 20ECD DAC 30∠=∠=∠=∠= ,,进而得出结果.【详解】延长BD 交AC 于E .DA DB DC == ,ABE DAB 20ECD DAC 30∠∠∠∠∴==== ,.又BAE BAD DAC 50∠∠∠=+= ,BDC DEC ECD DEC ABE BAE ∠∠∠∠∠∠=+=+,,BDC ABE BAE ECD 205030100∠∠∠∠∴=++=++= .故选A .本题考查三角形外角的性质及等边对等角的性质,解答的关键是沟通外角和内角的关系.7.如图,在⊙O 中,OA =AB ,OC ⊥AB ,则下列结论错误的是()A.弦AB 的长等于圆内接正六边形的边长B.弦AC 的长等于圆内接正十二边形的边长C. AC BC=D.∠BAC =30°【正确答案】D【详解】A 选项中,因为OA=OB ,OA=AB ,所以OA=OB=AB ,所以△ABO 为等边三角形,∠AOB=60°,以AB 为一边可构成正六边形,故A 正确;B 选项中,因为OC ⊥AB ,根据垂径定理可知, AC BC=;再根据A 中结论,弦AC 的长等于圆内接正十二边形的边长,故B 正确;C 选项中,因为OC ⊥AB ,根据垂径定理可得, AC BC=,故C 正确;D 选项中,根据圆周角定理,圆周角的度数等于它所对的圆心角的度数的一半,∠BAC=12∠BOC=1212⨯∠BOA=14×60°=15°,故D 错误.故选D .8.没有等式110{320x x +>-≥的解集是()A.-<x≤2B.-3<x≤2C.x≥2D.x <-3【正确答案】B【详解】解:解没有等式1103x +>,得x >-3;解没有等式2-x≥0,得x≤2,所以原没有等式组的解集为-3<x≤2.故选:B9.如图,□ABCD的周长是28cm,△ABC的周长是22cm,则AC的长为()A.6cmB.12cmC.4cmD.8cm【正确答案】D【详解】解:∵▱ABCD的周长是28cm,∴AB+AD=14cm,∵△ABC的周长是22cm,∴AB+BC+AC=22cm,∴AC=(AB+BC+AC)-(AB+AC)=22-14=8(cm).故选:D.10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,且关于x的一元二次方程ax2+bx+c﹣m=0没有实数根,则下列结论:①b2﹣4ac>0;②ac<0;③m>2,其中正确结论的个数是()A.0B.1C.2D.3【正确答案】D【分析】根据函数图象和二次函数的性质可以判断对错目中的各个小题是否成立,从而可以解答本题.【详解】解:由二次函数y=ax2+bx+c(a≠0)的图象与x轴两个交点,可得b2﹣4ac>0,故①正确,由二次函数y=ax2+bx+c(a≠0)的图象可知a<0,c>0,则ac<0,故②正确,由二次函数y=ax2+bx+c(a≠0)的图象可知该函数有值,值是y=2,∵关于x 的一元二次方程ax 2+bx +c ﹣m =0没有实数根,则m >2,故③正确,故选:D .此题考查二次函数图象与系数的关系、抛物线与x 轴的交点,解题的关键是明确题意,利用二次函数的性质和数形的思想解答.二、填空题(每题4分,共24分)11.分解因式:429ax ay -=________.【正确答案】a(x 2-3y)(x 2+3y)【详解】解:ax 4﹣9ay 2=a (x 4﹣9y 2)=a (x 2﹣3y )(x 2+3y ).故答案为:a (x 2﹣3y )(x 2+3y ).本题考查分解因式,掌握平方差公式进行因式分解是本题的解题关键.12.如图,点M 是函数y =与k y x=的图象在象限内的交点,OM =4,则k 的值为_______.【正确答案】【分析】根据题意,设M 点的坐标为(x x ),由坐标系中两点之间的距离得出x =2,即可确定点M 的坐标,然后代入反比例函数即可确定k 的值.【详解】解:根据题意,设M 点的坐标为(x x ),根据勾股定理可得)2224x +=,解得x =2,点M (2,)将点M 代入反比例函数可得k =2⨯=,故答案为题目主要考查函数与反比例函数综合,勾股定理等,理解题意,掌握函数与反比例函数的基本性质是解题关键.13.如图,在ABC 中,AB AC ≠,,D E 分别为边AB 、AC 上的点,AC 3AD =,3AB AE =,点F 为BC 边上一点,添加一个条件:__________,可以使得FDB 与ADE 相似.(只需写出一个)【正确答案】DF ∥AC ,或∠BFD=∠A【分析】【详解】试题分析:DF//C ,或∠BFD=∠A .理由:∵AC 3AD =,3AB AE =,∴AD AE 1AC AB 3==又∵∠A=∠A ,∴△ADE ∽△ACB ,∴①当DF//AC 时,△BDF ∽△BAC ,∴△BDF ∽△EAD .②当∠BFD=∠A 时,∵∠B=∠AED ,∴△FBD ∽△AED .故答案为DF//C ,或∠BFD=∠A .考点:相似三角形的判定14.如图,点A (t ,3)在象限,OA 与x 轴所夹的锐角为α,tanα=32,则t 的值是________.【正确答案】2【分析】根据正切的定义即可求解.【详解】解:∵点A (t ,3)在象限,∴AB=3,OB=t ,又∵tanα=AB OB =32,∴t=2.故答案为2.15.若2y =+,则y x =_____.【正确答案】9【详解】要使2y =+有意义,必须30x -≥,30x -≥,解得:x=3,代入得:y=0+0+2=2,∴y x =23=9.故答案为9.16.如图,在Rt ABC △中,90,4,2C AC BC ∠=︒==分别以AC 、BC 为直径画半圆,则图中阴影部分的面积为_____.(结果保留π)【正确答案】54 2π-【分析】图中阴影部分的面积为两个半圆的面积-三角形的面积,然后利用三角形的面积计算即可.【详解】解:设各个部分的面积为:S1、S2、S3、S4、S5,如图所示,∵两个半圆的面积和是:S1+S5+S4+S2+S3+S4,△ABC的面积是S3+S4+S5,阴影部分的面积是:S1+S2+S4,∴图中阴影部分的面积为两个半圆的面积减去三角形的面积.即阴影部分的面积=12π×4+12π×1-4×2÷2=542π-.故54 2π-.三、解答题一(每题6分,共18分)17.计算:(﹣1)0+|2﹣【正确答案】3【详解】试题分析:代入30°角的正切函数值,0指数幂的意义和二次根式的运算法则进行计算即可.试题解析:原式.18.先化简,再求值:(311x xx x--+)212xx-⋅,其中x=﹣3.【正确答案】x+2,-1【详解】试题分析:先按分式的相关运算法则计算化简,再代值计算即可.试题解析:原式=3(1)(1)(1)(1) (1)(1)2x x x x x xx x x+--+--+-=22 332x x x xx+-+=2(2) 2x xx+=2x+.当x=﹣3时,原式=﹣3+2=﹣1.19.在Rt△ABC中,∠C=90°.(1)求作:∠A的平分线AD,AD交BC于点D;(保留作图痕迹,没有写作法)(2)若点D恰好在线段AB的垂直平分线上,求∠A的度数.【正确答案】(1)见解析;(2)60°【详解】试题分析:(1)先以点A为圆心,任意长为半径作弧交∠BAC的两边于两个点,再分别以这两个点为圆心,大于这两个点间的距离的一半为半径作弧,两弧交于一点,过这一点作射线AD交BC边于点D,则射线AD为所求的点;(2)由点D在AB的垂直平分线上可得AD=BD,由此即可得到∠B=∠DBA,平分∠CAB,即可得到∠B=∠DAB=∠DAC,∠B+∠DAB+∠DAC=90°,即可求得∠B=∠DAB=∠DAC=30°.试题解析:(1)如下图所示:AD即为所求:(2)∵点D恰好在线段AB的垂直平分线上,∴DA=DB,∴∠B=∠DAB=∠DAC,∵∠B+∠DAB+∠DAC=90°,∴∠B=∠DAB=∠DAC=30°,∴∠BAC=60°.四、解答二(每题7分,共21分)20.某电冰箱厂每个月的产量都比上个月增长的百分数相同.已知该厂今年4月份的电冰箱产量为5万台,6月份比5月份多生产了1.2万台.(1)求该厂今年产量的月平均增长率为多少?(2)预计7月份的产量为多少万台?【正确答案】(1)20%;(2)8.64万台.【详解】试题分析:(1)设每个月的月平均增长率为x,则5月的产量为5(1+x)台,6月份的产量为5(1+x)2台,由此即可根据6月份比5月份多生产1.2万台可得方程:5(1+x)2﹣5(1+x)=1.2,解方程即可得到所求答案;(2)根据(1)中所得结果即可按7月份的产量为5(1+x)3,即可计算出7月份的产量了.试题解析:(1)设该厂今年产量的月平均增长率是x,根据题意得:5(1+x)2﹣5(1+x)=1.2解得:x=﹣1.2(舍去),x=0.2=20%.答:该厂今年的产量的月增长率为20%;(2)7月份的产量为:5(1+20%)3=8.64(万台).答:预计7月份的产量为8.64万台.21.国家规定“中小学生每天在校体育时间没有低于1小时”.为此,我区就“你每天在校体育时间是多少”的问题随机了区内300名初中学生.根据结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h B组:0.5h≤t<1h C组:1h≤t<1.5h D组:t≥1.5h请根据上述信息解答下列问题:(1)C组的人数是.(2)本次数据的中位数落在组内;(3)若我区有5400名初中学生,请你估计其中达国家规定体育时间的人约有多少?【正确答案】(1)120;(2)C;(3)3240人【详解】试题分析:(1)由被抽查学生总数为300条形统计图中的已知数据即可求出C组的人数;(2)由中位数的定义可知,这300个数据的中位数是:按从小到大的顺序排列后的第150和第151个数据的平均数,而由(1)条形统计图中的数据可知,这两个数据都在C组,故可得这组数据的中位数落在C组;(3)由(1)中所得C组的人数条形统计图中D组的人数可计算出达到国家规定的体育时间的人数所占的百分比,用5400乘以这个百分比即可得到所求的数量了.试题解析:(1)C组的人数是300﹣(20+100+60)=120(人),故答案为120.(2)根据中位数的概念,中位数应是第150、151人时间的平均数,分析可得其均在C组,故数据的中位数落在C组,故答案为C.(3)达国家规定体育时间的人数约占120+60300×=60%.∴达国家规定体育时间的人约有5400×60%=3240(人).22.如图,小丽准备测一根旗杆AB 的高度,已知小丽的眼睛离地面的距离EC=1.5米,次测量点C 和第二次测量点D 之间的距离CD=10米,∠AEG=30°,∠AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)【正确答案】旗杆的高度为(1.5+)米.【详解】试题分析:由已知条件易证∠AEF=30°,从而可得∠EAF=∠FEA ,由此即可得到AF=EF=10,∠AFG=30°,∠AGF=90°,在△AGF 中可求得AG 的长,再由AB=AG+BG 即可得到AB 的长了.试题解析:如下图,由题意知:∠AEG=30°,∠AFG=60°,EF=CD=10米,BG==EC=1.5米,∴∠EAF=∠AFG ﹣∠AEG=30°,∴∠EAF=∠FEA ,可得:AF=EF=10米.则AG=AF•sin ∠AFG=10×32=(米),故AB=AG+GB=(1.5+)米,答:旗杆的高度为(1.5+)米.23.如图,()()4013A B ,,,,以OA 、OB 为边作平行四边形OACB ,反比例函数k y x=的图象点C .()1求k 的值;()2根据图象,直接写出3y <时自变量x 的取值范围;()3将平行四边形OACB 向上平移几个单位长度,使点B 落在反比例函数的图象上.【正确答案】(1)15k =;(2)5x >或0x <;(3)向上平移12个单位.【详解】分析:()1由()()A 40B 13,,,,以OA、OB 为边作平行四边形OACB,可求得点C 的坐标,然后利用待定系数法求得k 的值;()2观察图象即可求得y 3<时自变量x 的取值范围;()3首先求得当x 1=时,反比例函数上的点的坐标,继而可求得将平行四边形OACB 向上平移几个单位长度,使点B 落在反比例函数的图象上.详解:()1 平行四边形OACB 中,()()4013A B ,,,,()53C ,∴,把()53C ,代入k y x =,得:35k =,解得:15k =;()23y <时自变量x 的取值范围为:5x >或0x <;()3把1x =代入15y x=,解得:15y =,∴向上平移15312-=个单位.点睛:此题考查了反比例函数的性质以及平行四边形的性质.注意掌握反比例函数上的点的坐标特征.24.如图,AB 是O 的直径,点C 是O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分ACB ∠,交AB 于点F ,连接BE .(1)求证:AC平分DAB∠;(2)求证:PC PF=;(3)若4tan3ABC∠=,14AB=,求线段PC的长.【正确答案】(1)证明见解析;(2)证明见解析;(3)24.【分析】(1)先证OC∥AD,得到∠ACO=∠DAC.由OC=OA,得到∠ACO=∠,故有∠DAC =∠,即AC平分∠DAB;(2)由AD⊥PD,得到∠DAC+∠ACD=90°,又AB为⊙O的直径,得到∠ACB=90°,故∠PCB +∠ACD=90°,从而有∠DAC=∠PCB,又∠DAC=∠,得到∠=∠PCB,由CE平分∠ACB,得到∠ACF=∠BCF,故有∠+∠ACF=∠PCB+∠BCF,从而∠PFC=∠PCF,故PC=PF;(3)易证∠△PAC∽△PCB,得到PC ACPB BC=.由tan∠ABC=43,得到43ACBC=,故43PCPB=.设4PC k=,3PB k=,则37PO k=+,由勾股定理有222PC OC OP+=,得到222(4)7(37)k k+=+,求出k的值.从而求出PC的长.【详解】(1)∵PD切⊙O于点C,∴OC⊥PD.又AD⊥PD,∴OC∥AD.∴∠ACO=∠DAC.又OC=OA,∴∠ACO=∠,∴∠DAC=∠,即AC平分∠DAB.(2)∵AD⊥PD,∴∠DAC+∠ACD=90°,又AB为⊙O的直径,∴∠ACB =90°,∴∠PCB +∠ACD =90°,∴∠DAC =∠PCB ,又∠DAC =∠,∴∠=∠PCB ,∵CE 平分∠ACB ,∴∠ACF =∠BCF ,∴∠+∠ACF =∠PCB +∠BCF ,∴∠PFC =∠PCF ,∴PC =PF ;(3)∵∠PAC =∠PCB ,∠P =∠P ,∴△PAC ∽△PCB ,∴PC ACPB BC=.又tan ∠ABC =43,∴43AC BC =,∴43PC PB =.设4PC k =,3PB k =,则在Rt △POC 中,37PO k =+,∵AB =14,∴7OC =,∵222PC OC OP +=,∴222(4)7(37)k k +=+,∴k =6(k =0没有合题意,舍去).∴44624PC k ==⨯=.25.已知:把Rt △ABC 和Rt △DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB =∠EDF =90°,∠DEF =45°,AC ="8"cm ,BC ="6"cm ,EF ="9"cm .如图(2),△DEF 从图(1)的位置出发,以1cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ,设移动时间为t(s)(0<t<4.5).解答下列问题:(1)当t为何值时,点A在线段PQ的垂直平分线上?(2)连接PE,设四边形APEC的面积为y(cm2),求y与t之间的函数关系式;是否存在某一时刻t,使面积y最小?若存在,求出y的最小值;若没有存在,说明理由.(3)是否存在某一时刻t,使P、Q、F三点在同一条直线上?若存在,求出此时t的值;若没有存在,说明理由.【正确答案】(1)t=2(2)当t=3时,y最小=84 5(3)当t=1s,点P、Q、F三点在同一条直线上【详解】解:(1)∵点A在线段PQ的垂直平分线上,∴AP=AQ.∵∠DEF=45°,∠ACB=90°,∠DEF+∠ACB+∠EQC=180°,∴∠EQC=45°.∴∠DEF=∠EQC.∴CE="CQ."由题意知:CE=t,BP="2"t,∴CQ=t.∴AQ=8-t.在Rt△ABC中,由勾股定理得:AB="10"cm.则AP=10-2t.∴10-2t=8-t.解得:t=2.答:当t="2"s时,点A在线段PQ的垂直平分线上.(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt △ABC 和Rt △BPM 中,sin AC PMB AB BP==,∴8210PM t =.∴PM =85t .∵BC ="6"cm ,CE =t ,∴BE =6-t.∴y =S △ABC -S △BPE =12BC AC ⋅-12BC AC ⋅=1682⨯⨯-()18625t t ⨯-⨯=()18625t t ⨯-⨯=()18625t t ⨯-⨯.∵8210PM t =,∴抛物线开口向上.∴当t =3时,y 最小=85t .答:当t =3s 时,四边形APEC 的面积最小,最小面积为85t cm 2.(3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵∠PAN=∠BAC ,∴△PAN ∽△BAC.∴PN AP ANBC AB AC==.∴1026108PN t AN-==.∴665PN t =-,665PN t =-.∵NQ =AQ -AN ,∴NQ =8-t -(885t -)=845.∵∠ACB =90°,B 、C (E )、F 在同一条直线上,∴∠QCF =90°,∠QCF =∠PNQ.∵∠FQC =∠PQN ,∴△QCF ∽△QNP.∴12BE PM ⋅.∴636559t t t t -=-.∵PN AC ⊥∴663595tt -=-解得:t =1.答:当t =1s ,点P 、Q 、F 三点在同一条直线上.江苏省常州市2022-2023学年中考数学专项突破仿真模拟试卷(B 卷)一、选一选(每小题3分,共30分)1.-5的倒数是A.15B.5C.-15D.-52.数据99500用科学记数法表示为()A.0.995×105B.9.95×105C.9.95×104D.9.5×1043.下列运算正确的是()A.﹣a•a 3=a 3B.﹣(a 2)2=a 4 C.x ﹣13x=23D.(2))=﹣14.数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.45.如图,现将一块含有30 角的直角三角板的一个顶点放在直尺的一边上,若122∠=∠,那么1∠的度数为()A.50B.60C.70D.806.点A (﹣2,y 1)、B (﹣3,y 2)都在反比例函数y=kx(k >0)的图象上,则y 1、y 2的大小关系为()A.y 1>y 2B.y 1<y 2C.y 1=y 2D.无法确定7.上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是()12345成绩(m )8.28.08.27.57.8A .8.2,8.2B.8.0,8.2C.8.2,7.8D.8.2,8.08.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于()A.1)+mB.1)mC .1)+mD.1)-m9.如图,△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1,l 2,l 3上,且l 1,l 2之间的距离为2,l 2,l 3之间的距离为3,则AC 的长是()A.B. C. D.10.如图5,在反比例函数2y x=-的图象上有一动点A ,连接AO 并延长交图象的另一支于点B ,在象限内有一点C ,满足AC BC =,当点A 运动时,点C 始终在函数ky x=的图象上运动,若tan 2CAB ∠=,则k 的值为()A.2B.4C.6D.8二、填空题(每小题3分,共24分)11.分解因式:a 2-4a +4=___12.一组数据1,2,a ,4,5的平均数是3,则这组数据的方差为_____.13.若一个多边形的内角和比外角和大360°,则这个多边形的边数为_____.14.有一个正六面体,六个面上分别写有1~6这6个整数,投掷这个正六面体,向上一面的数字是2的倍数或3的倍数的概率是____.15.如图,△ABC 中,DE ∥FG ∥BC ,AD ∶DF ∶FB =2∶3∶4,若EG =4,则AC =________.16.如果关于x 的一元二次方程22(21)10k x k x -++=有两个没有相等的实数根,那么k 的取值范围是__________.17.如图,圆柱形容器高为18cm ,底面周长为24cm ,在杯内壁离杯底4cm 的点B 处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm 与蜂蜜相对的点A 处,则蚂蚁从外币A 处到达内壁B 处的最短距离为_______.18.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且45EDF ∠=︒,将DAE ∆绕点D 逆时针旋转90︒,得到DCM ∆.若1AE =,则EF 的长为____.三、解答题:(共76分)19.计算:(1)2-212sin30°;(2)(1+11x-)÷21xx-.20.(1)解方程:x2﹣6x+4=0;(2)解没有等式组312(2)5233x xx x+<+⎧⎪⎨-≤+⎪⎩.21.如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB;(2)以D为圆心,DE为半径作圆弧交AD于点G,若BF=FC=1,试求 EG的长.22.在一个没有透明的布袋中装有三个小球,小球上分别标有数字﹣2、l、2,它们除了数字没有同外,其它都完全相同.(1)随机地从布袋中摸出一个小球,则摸出的球为标有数字l的小球的概率为.(2)小红先从布袋中随机摸出一个小球,记下数字作为k的值,再把此球放回袋中搅匀,由小亮从布袋中随机摸出一个小球,记下数字作为b的值,请用树状图或表格列出k、b的所有可能的值,并求出直线y=kx+b没有第四象限的概率.23.如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD、CE交于点F.(1)求证:AEC ADB ∆≅∆;(2)若AB =2,45BAC ︒∠=,当四边形ADFC 是菱形时,求BF 的长.24.某公司组织员工到附近的景点旅游,根据旅行社提供的收费,绘制了如图所示的图象,图中折线ABCD 表示人均收费y (元)与参加旅游的人数x (人)之间的函数关系.(1)当参加旅游的人数没有超过10人时,人均收费为元;(2)如果该公司支付给旅行社3600元,那么参加这次旅游的人数是多少.25.如图,某人在山坡坡脚A 处测得电视塔尖点C 的仰角为60°,沿山坡向上走到P 处再测得点C 的仰角为45°,已知OA =100米,山坡坡度=1:2,且O 、A 、B 在同一条直线上.求电视塔OC 的高度以及此人所在位置P 的铅直高度PB .(测倾器高度忽略没有计,结果保留根号形式)26.如图,在平面直角坐标系中有Rt △ABC ,∠A=90°,AB=AC ,A (﹣2,0),B (0,1).(1)求点C 的坐标;(2)将△ABC 沿x 轴的正方向平移,在象限内B 、C 两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.(3)若把上一问中的反比例函数记为y 1,点B′,C′所在的直线记为y 2,请直接写出在象限内当y1<y2时x的取值范围.27.如图,已知AB是⊙O的直径,且AB=4,点C在半径OA上(点C与点O、点A没有重合),过点C作AB的垂线交⊙O于点D.连接OD,过点B作OD的平行线交⊙O于点E,交CD的延长线于点F.(1)若点E是 BD的中点,求∠F的度数;(2)求证:BE=2OC;(3)设AC=x,则当x为何值时BE•EF的值?值是多少?28.如图①已知抛物线y=ax2﹣3ax﹣4a(a<0)的图象与x轴交于A、B两点(A在B的左侧),与y的正半轴交于点C,连结BC,二次函数的对称轴与x轴的交点为E.(1)抛物线的对称轴与x轴的交点E坐标为_____,点A的坐标为_____;(2)若以E为圆心的圆与y轴和直线BC都相切,试求出抛物线的解析式;(3)在(2)的条件下,如图②Q(m,0)是x的正半轴上一点,过点Q作y轴的平行线,与直线BC 交于点M,与抛物线交于点N,连结CN,将△CMN沿CN翻折,M的对应点为M′.在图②中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若没有存在,请说明理由.江苏省常州市2022-2023学年中考数学专项突破仿真模拟试卷(B 卷)一、选一选(每小题3分,共30分)1.-5的倒数是A.15 B.5 C.-15 D.-5【正确答案】C【分析】若两个数的乘积是1,我们就称这两个数互为倒数.【详解】解:-5的倒数是15-.故选C .2.数据99500用科学记数法表示为()A.0.995×105B.9.95×105C.9.95×104D.9.5×104【正确答案】C 【详解】分析:按照科学记数法的定义:“把一个数表示为10n a ⨯的形式,其中110a ≤<,n 为整数的记数方法叫做科学记数法”进行解答即可.详解:4995009.5510=⨯.故选C.点睛:本题考查的是用科学记数法表示值大于1的数的方法,解题的关键有两点:①a 必须满足:110a ≤<;②n 比原来的数的整数位数少1(也可以通过小数点移位来确定n ).3.下列运算正确的是()A.﹣a•a 3=a 3B.﹣(a 2)2=a 4 C.x ﹣13x=23 D.(2))=﹣1【正确答案】D【详解】分析:分别根据“同底数幂的乘法法则”、“幂的乘方的运算法则”、“合并同类项的法则”及“二次根式的乘法法则”进行判断即可.详解:A 选项中,因为34a a a -⋅=-,所以A 中运算错误;B 选项中,因为224()a a -=-,所以B 中运算错误;C 选项中,因为1233x x x -=,所以C 中运算错误;D 选项中,因为222)21-=-=-,所以D 中运算正确.故选D.点睛:本题考查的是“同底数幂的乘法”、“幂的乘方”、“合并同类项”和“二次根式的乘法”及“平方差公式的应用”,解题的关键是熟记相关的运算法则并能正确用于计算.4.数学测试后,某班50名学生的成绩被分为5组,第1~4组的频数分别为12、10、15、8,则第5组的频率是()A.0.1B.0.2C.0.3D.0.4【正确答案】A 【详解】解:∵总人数为50,第1~4组的频数分别为12、10、15、8,∴第5组的频数为:50-12-10-15-8=5,∴第5组的频率=5÷50=0.1.故选A.5.如图,现将一块含有30 角的直角三角板的一个顶点放在直尺的一边上,若122∠=∠,那么1∠的度数为()A.50B.60C.70D.80【正确答案】D【分析】先根据“两直线平行,同位角相等”的性质得到∠3=∠2,再根据平角的定义列方程即可得解.【详解】解:∵AB∥CD,∴∠3=∠2,∵∠1=2∠2,∴∠1=2∠3,∴3∠3+60°=180°,∴∠3=40°,∴∠1=2×40°=80°,故选:D..本题考查了平行线的性质,熟记性质是解题的关键.6.点A(﹣2,y1)、B(﹣3,y2)都在反比例函数y=kx(k>0)的图象上,则y1、y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定【正确答案】B【详解】分析:由反比例函数kyx=中,k>0可知,该函数的图象分布在、三象限,且在每个象限内,y随x的增大而减小,点A(﹣2,y1)、B(﹣3,y2)的横坐标分别为-2、-3即可判断出y1、y2的大小关系.详解:∵在反比例函数kyx=中,k>0,。
2023~2024学年成都七中初中学校新初一入学分班考试数学试题(卷)(满分:100分时间:90分钟)一、选择题(将正确答案的番号填在括号里.每小题4分,共20分)1要使四位数104□能同时被3和4整除,□里应填()..A. 1B. 2C. 3D. 4【答案】D【解析】【分析】该题主要考查了数的整除,解答此题应结合题意,根据能被3和4整除的数的特征进行解答即可.根据能被4整除的数的特征:即后两位数能被4整除;能被3整除的数的特征:各个数位上数的和能被3整除,进行解答即可.+++=能被3整除,不【详解】解:A:后两位数是41,不能被4整除,各个数位上数的和是10416,6符合题意;+++=不能被3整除,不符合题意;B:后两位数是42,不能被4整除,各个数位上数的和是10427,7+++=不能被3整除,不符合题意;C:后两位数是43,不能被4整除,各个数位上数的和是10438,8+++=能被3整除,符合题意.D:后两位数是44,能被4整除,各个数位上数的和是10449,9故选:D.2. 用一只平底锅煎饼,每次只能放两只饼,煎熟一只饼需要2分钟(正反两面各需1分钟),那么煎熟3只饼至少需要_____分钟.()A. 4B. 3C. 5D. 6【答案】B【解析】【分析】本题考查了推理与论证,在解答此类题目时要根据实际情况进行推论,既要节省时间又不能造成浪费.若先把两只饼煎熟,则在煎第三张饼时,锅中只有一只饼而造成浪费,所以应把两只饼的两面错开煎,进而求解即可.【详解】∵若先把两只饼煎至熟,势必在煎第三只饼时,锅中只有一只饼而造成浪费,∴应先往锅中放入两只饼,先煎熟一面后拿出一只,再放入另一只,当再煎熟一面时把熟的一只拿出来,再放入早拿出的那只,使两只饼同时熟, ∴煎熟3只饼至少需要3分钟. 故选:B .3. 投掷3次硬币,有2次正面朝上,1次反面朝上,那么第4次投掷硬币正面朝上的可能性是( ) A.12B.14C.13D.23【答案】A 【解析】【分析】本题主要考查可能性的大小,熟练根据概率的知识得出可能性的大小是解题的关键.根据每次投掷硬币正面朝上的可能性都一样得出结论即可. 【详解】解:每次投掷硬币正面朝上的可能性都为12. 故选:A .4. 一串珠子按照8个红色2个黑色依次串成一圈共40粒.一只蟋蟀从第二个黑珠子开始其跳,每次跳过6个珠子落在下一个珠子上,这只蟋蟀至少要( )次,才能又落在黑珠子上. A. 7 B. 8 C. 9 D. 10【答案】A 【解析】【分析】本题关键是理解这只蟋蟀跳跃的规律,难点是得出跳过的珠子数与循环周期之间的关系. 这是一个周期性的问题,蟋蟀每次跳过6粒珠子,则隔7个珠子,把珠子编上号码,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色;蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,因为周期是40,再根据周期性的知识解决即可. 【详解】解:观察可知,每次跳过6粒珠子,则隔7个珠子,将第2粒黑珠记为0,以后依次将珠子记为1,2,3,39….其中0,9,10,19,20,29,30,39的8颗珠子是黑色.蚱蜢跳过的珠子号码依次是0,7,14,21,28,35,42,49…,即7的倍数; 周期应是40,4940−9=,就相当于一圈后落在“9”号黑珠子上; 即这只蟋蟀至少要7次,才能又落在黑珠子上;故选:A.5. 仓库里的水泥要全部运走,第一次运走了全部的12,第二次运走了余下的13,第三次运走了第二次余下的14,第四次运走了第三次余下的15,第五次运走了最后剩下的19吨.这个仓库原来共有水泥_____吨.()A. 78B. 56C. 95D. 135【答案】C【解析】【分析】本题考查分数除法的应用,此题应从后向前推算,分别求出第三,二,一次运过之后,还剩下的数量,即可求解.【详解】∵第五次只剩下19吨,∴第三次运过之后,还剩下195 19154÷−=吨,那么第二次运过之后,还剩下951951443÷−=吨,那么第一次运过之后,还剩951951332÷−=吨那么没经过运输之前,仓库中有9519522÷=吨,故选:C .二、填空题(每小题3分,共30分)6.132吨=()吨()千克.70分=()小时.【答案】①. 3 ②. 500 ③. 7 6【解析】【分析】根据1吨=1000千克、1小时=60分计算即可.【详解】解:∵11000=5002×千克,∴132吨=(3)吨(500)千克.∵70÷60=76小时,∴70分=(76)小时. 故答案为:3,500;76.【点睛】本题考查了单位换算,熟练掌握1吨=1000千克、1小时=60分是解答本题的关键. 7. 把0.45:0.9化成最简整数比是_____∶_____;11:812的比值是_____. 【答案】 ①. 1 ②. 2 ③. 1.5 【解析】【分析】此题主要考查了化简比和求比值的方法,另外还要注意化简比的结果是一个比,它的前项和后项都是整数,并且是互质数;而求比值的结果是一个商,可以是整数、小数或分数.用比的前项除以后项即可.详解】解:0.45:0.91:2=,11111:12 1.58128128=÷=×= 故答案为∶1,2,1.5. 8. 111112123123100+++++++++++ . 【答案】200101【解析】【分析】先确定,分数的变化规律,后整理计算即可. 【详解】∵12112()123n (1)1n n n n ==−++++++ ,∴111112123123100+++++++++++ =1111112()1223100101−+−++−=12(1)101−=200101. 【点睛】本题考查了分数中的规律问题,熟练掌握拆项法找规律计算是解题的关键. 9. 定义运算:35a b a ab kb =++ ,其中a 、b 为任意两个数, k 为常数.比如:27325277k =×+××+ ,若5273= ,则85= _____.【答案】244 【解析】【分析】此题考查了有理数的四则混合运算和解一元一次方程,根据5273= 得到方程,解方程得到4k =,【再计算85 即可.【详解】解:由5235552273k =×+××+= , 解得4k =,∴853*********=×+××+×= , 故答案为:24410. 某年的10月份有四个星期四、五个星期三,这年的10月8日是星期_____. 【答案】一 【解析】【分析】本题主要考查数字规律,有理数混合运算,根据题意,找出循环规律,是解题的关键. 【详解】解:10月有31天,四个星期四,五个星期三,∴31号是星期三,31823−=(天),2373÷=(周) 2(天),把星期三往前推2天,是星期一, ∴10月8号是星期一, 故答案为:一.11. 某小学举行数学、语文、科学三科竞赛,学生中至少参加一科的:数学203人,语文179人, 科学165人,参加两科的:数学、语文143人, 数学、科学116人,语文、科学97人.三科都参加的:89人,这个小学参加竞赛的总人数为_____人. 【答案】280 【解析】【分析】根据题意,至少参加一科的:数学203人,语文179人,常识165人.参加两科的:数学,语文143人,数学、常识116人,语文、常识97人,三科都参加的有89人.根据容斥问题,参加三科的人数为:(20317916514311697)++−−−人,由于三科都参加的有89人,所以这个小学参加竞赛的总人数为:(2031791651431169789)++−−−+.据此解答.本题考查了容斥问题的灵活运用,关键是明确它们之间的包含关系.【详解】解:2031791651431169789280++−−−+=(人) 答:这个小学参加竞赛的总人数有280人. 故答案为:280.12. 一个长方体的长、宽、高之比为3:2:1,若长方体的棱长总和等于正方体的棱长总和,则长方体的表面积与正方体的表面积之比为_____,长方体的体积与正方体的体积之比为_____. 【答案】 ①. 11:12 ②. 3:4【解析】【分析】此题主要考查了长方体和正方体的棱长总和、表面积、体积的计算,直接把数据代入公式解答即可.设长方体的长宽高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.根据长方体和正方体的表面积公式计算求得长方体表面积与正方体的表面积比;根据长方体和正方体的体积公式计算求得长方体体积与正方体的体积之比【详解】设长方体的长、宽、高分别为3a 、2a 和a ,则其棱长之和为()43224a a a a ×++=,从而正方体棱长为24122a a ÷=.长方体表面积为()22323222a a a a a a a ××+×+×=, 正方体表面积为()226224a a ×=,其比为2222:2411:12a a =.长方体体积为 3326a a a a ××=,正方体体积为()3328a a =,其比为336:83:4a a =. 故答案为:11:12; 3:4.13. 甲、乙两地相距300千米,客车和货车同时从两地相向开出,行驶2小时后,余下的路程与已行的路程之比是3:2,两车还需要经过_____小时才能相遇. 【答案】3 【解析】由于客车和货车的速度和一定,行驶的时间和路程成正比例,所以根据“余下的路程与已行的路程之比是3:2”可得:余下的路程需要的时间与已行的时间之比也是3:2,据此求解即可. 【详解】由题意得:2233÷=(小时) 故答案:3.14. 如图,长方形ABCD 中,12AB =厘米,8BC =厘米,平行四边形BCEF 的一边BF 交CD 于G ,若梯形CEFG 的面积为64平方厘米,则DG 长为_____.【答案】4厘米 【解析】为【分析】本题考查了梯形的面积公式,一元一次方程的实际运用,解题的关键是设未知数,找准等量关系,建立方程求解.根据图形可得=64ABGD CEFG S S =梯形梯形,设DG 的长度为x 厘米, 则有()1128642x +××=,解出方程即可. 【详解】解:由图可知:长方形ABCD 和平行四边形BCEF 底边和高相同,故它们面积相同,GCB ABCD ABGD S S S =− 矩形梯形,64BCEF GCB CEFG S S S =−= 梯形平方厘米,, =64ABGD CEFG S S ∴=梯形梯形,设DG 的长度为x 厘米, 则()1128642x +××= ()128642x +××896128x +=832x =4x =,即DG 长为4 厘米, 故答案为:4厘米.15. 自然数按一定的规律排列如下:从排列规律可知,99排第_____行第_____列. 【答案】 ①. 2 ②. 10 【解析】【分析】本题考查了规律问题的探究.通过观察知第1行中的每列中的数依次是1、2、3、4、5…的平方;在第2行中的每列中的数从第2列开始依次比相应的第1行每列中的数少1;据此规律第1行中的10列的数是10的平方,第2行中的10列的数是100199−=.【详解】解:由图表可得规律:每列的第1个数就是列的平方; 10的平方是100,99在100的下方, 所以99排在第2行第10列, 故答案为:2;10.三、计算题(能用简便方法计算的请用简便方法计算.共20分)16. (1) 计算:2255977979 +÷+ ;(2) 计算:121513563+++×; (3) 计算:47911131531220304256−+−+−; (4) 计算:11111155991313171721++++×××××. 【答案】(1)13;(2)136;(3)78;(4)521【解析】(1)将229779 + 变形为551379+,可进行简便运算;(2)利用乘法分配律,将原式变形为11525136353++×+×进行简便运算; (3)利用裂项相消法进行简便运算; (4)利用裂项相消法进行简便运算; 【详解】解 :(1)2255977979 +÷+6565557979+÷+5555137979=+÷+13=;(2)121513563+++× 11525136353=++×+× 35252353=×+× 5223=+ 136=;(3)47911131531220304256−+−+− 4111111111133445566778 =−+++−+++−+4111111111133445566778=−−++−−++−− 118=-78=; (4)11111155991313171721++++××××× 11111111111455991313171721 =×−+−+−+−+−111421 =×−120421=× 521=. 四、解答题(请写出必要的解题过程.每小题6分,共30分)17. 如图所示是两个正方形,大正方形边长为8,小正方形边长为4,求图中阴影部分的面积.(单位:厘米,π取3.14)【答案】20.56平方厘米 【解析】【分析】本题考查计算不规则图形的面积,BEF △的面积减去小正方形与扇形GAF 面积之差,即可求出阴影部分的面积. 【详解】解:()21184444π424 ×+×−×−××24164π=−+ 84 3.14=+×20.56=(平方厘米)答:阴影部分面积为20.56平方厘米.18. 学校计划用一批资金购置一批电脑,按原价可购置60台,现在这种电脑打折优惠,现价只是原价的75%,用这批资金现在可购买这种电脑多少台?【答案】用这批资金现在可购买这种电脑80台. 【解析】1,用1乘上60台,就是总钱数,然后用1乘上75%求出现在的单价,再用总钱数除以现在的单价即可. 【详解】设原来每台的单价是1(160)(175%)80×÷×=台答:用这批资金现在可购买这种电脑80台19. 在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和23.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中纯酒精的量是多少千克?【答案】丙缸中纯酒精的量是12千克 【解析】【分析】本题考查了百分数的应用,一元一次方程的应用;根据题意易得甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量50=千克,从而可设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,然后根据题意可得:()25048%62.5%5010056%3x x ×+−+×,最后进行计算即可解答. 【详解】解: 三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙,丙两缸酒精溶液的总量,∴甲缸酒精溶液的量=乙缸酒精溶液的量+丙缸酒精溶液的量1100502=×=(千克), 设丙缸中酒精溶液的量是x 千克,则乙缸中酒精溶液的量是()50x −千克,由题意得:()25048%62.5%5010056%3x x ×+−+×, 解得:18x =, ∴丙缸中纯酒精量218123=×=(千克), ∴丙缸中纯酒精的量是12千克. 20. 一家工厂里2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件.如果把单独让男工加工和单独让女工加工进行比较,要在一天内完成任务,女工要比男工多多少人?【答案】女工要比男工多18人.【解析】【分析】本题主要考查了二元一次方程组的应用——工程问题.解题的关键是熟练掌握工作量与工作效率和工作时间关系,列方程计算.设男工的工作效率为x ,女工的工作效率为y ,根据2个男工和4个女工一天可加工全部零件的310,8个男工和10个女工一天内可加工完全部零件,列出方程组,解方程组即可.【详解】设男工的工作效率为x ,女工的工作效率为y , 根据题意得,324108101x y x y += +=, 解得,112130x y = =, 如果单独让男工加工或单独让女工加工, 需要女工113030÷=(人), 需要男工111212÷=(人), 女工比男工多181230=−(人). 的故女工比男工要多18人.21. 如图,有一条三角形的环路,A 至B 段是上坡路,B 至C 段是下坡路,A 至C 段是平路,A 至B 、B 至C 、C 至A 三段距离的比是345::,小琼和小芳同时从A 出发,小琼按顺时针方向行走,小芳按逆时针方向行走,2个半小时后在BC 上的D 点相遇,已知两人上坡速度是4千米/小时,下坡速度是6千米/小时,在平路上的速度是5千米/小时.问C 至D 段是多少千米?【答案】2千米【解析】【分析】本题主要考查了二元一次方程组的实际应用,设3km 4km 5km km AB a BC a AC a CD x ====,,,,根据时间=路程÷速度,结合2个半小时后在BC 上的D 点相遇,列出方程组求解即可.【详解】解:设3km 4km 5km km AB a BC a AC a CD x ====,,,, 由题意得,34 2.5465 2.554a a x a x − += += 解得2x a ==,答:CD 的实际距离为2千米。