二次根式的化简 教学设计.
- 格式:docx
- 大小:16.56 KB
- 文档页数:5
二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。
二次根式与分式的化简教案一、引言本教案旨在帮助学生理解和掌握二次根式与分式的化简方法。
通过本教案的学习,学生将能够准确地化简二次根式和分式,并能够运用所学知识解决实际问题。
二、知识概述1. 二次根式的定义与性质:二次根式是形如√a的表达式,其中a为非负实数。
二次根式有以下性质:- 二次根式的值是非负实数。
- 二次根式具有分布律。
- 二次根式的乘法和除法运算。
2. 分式的定义与性质:分式是形如a/b的表达式,其中a和b为实数且b≠0。
分式有以下性质:- 分式的值可以通过除法运算得到。
- 分式的约简与等值转化。
三、教学目标1. 理解二次根式与分式的定义和性质。
2. 掌握二次根式和分式的化简方法。
3. 能够运用所学知识解决实际问题。
四、教学内容与步骤1. 二次根式的化简方法:1.1 提取平方因子。
- 对于形如√(a^2 * b)的二次根式,可化简为|a|√b。
- 对于形如√(a * b^2)的二次根式,可化简为b√a。
- 对于形如√(a^2 * b^2)的二次根式,可化简为|a|b。
1.2 合并同类项。
- 对于形如√a ± √b的二次根式,可化简为√(a ± b)。
1.3 分解因式。
- 对于形如√(a^2 + 2ab + b^2)的二次根式,可使用完全平方公式进行分解。
2. 分式的化简方法:2.1 约分。
- 将分子与分母的最大公因数约掉,使分式保持等值。
2.2 合并同类项。
- 对于形如a/b ± c/d的分式,可化简为(ad ± bc)/bd。
2.3 拆分与合并。
- 对于形如a/(b ± c)的分式,可化简为a/b ± a/c。
3. 实际问题的应用:3.1 物理问题的应用。
- 利用二次根式和分式的化简方法解决与物体运动、力学等相关的问题。
3.2 几何问题的应用。
- 运用二次根式和分式的化简方法解决与几何图形、空间等相关的问题。
3.3 经济问题的应用。
《二次根式及其化简》教案
一、教学目标
1.理解二次根式的概念,掌握二次根式的性质和化简方法。
2.会进行二次根式的化简和运算。
3.培养学生的观察、比较、分析、推理能力。
二、教学重点难点
1.重点:掌握二次根式的性质和化简方法。
2.难点:正确运用二次根式的性质进行化简和运算。
三、教学方法与手段
1.通过实例引入,让学生感受二次根式在生活中的应用。
2.通过讲解和示范,让学生掌握二次根式的性质和化简方法。
3.通过练习和反馈,让学生深入理解并掌握二次根式的化简和运算。
4.通过小组合作和讨论,让学生互相交流和学习。
四、教学过程
1.复习导入:复习整式、一元二次方程等知识,为学习二次根式做准备。
2.新课引入:通过实例引入二次根式的概念,引导学生探索二次根式的性质
和化简方法。
3.讲解新课:通过讲解和示范,让学生掌握二次根式的性质和化简方法,包
括化简的步骤、注意事项等。
4.巩固练习:通过练习和反馈,让学生深入理解并掌握二次根式的化简和运
算,包括简单的一元二次方程的解法等。
5.课堂小结:总结二次根式的性质、化简方法和应用,强调正确运用二次根
式的性质进行化简和运算的步骤和方法。
6.作业布置:布置相关练习题,巩固所学知识。
五、教学反思与改进
1.通过观察学生的表现,了解学生对二次根式的掌握情况。
2.根据学生的反馈情况,进行相应的反思和改进,调整教学方法和手段。
3.加强与学生的沟通和交流,及时发现和解决学生在学习过程中遇到的问
题。
二次根式的化简数学教案标题:二次根式的化简数学教案一、教学目标:1. 理解并掌握二次根式的概念和性质。
2. 能够运用二次根式的性质进行简单的化简计算。
3. 培养学生的逻辑思维能力和解决实际问题的能力。
二、教学内容:1. 二次根式的定义与性质2. 二次根式的化简方法三、教学过程:(一)引入新课教师可以利用生活中的实例,如测量物体的长度或体积等,引出二次根式的概念。
然后,通过一些简单的例子,让学生初步理解二次根式的基本性质。
(二)讲解新课1. 二次根式的定义与性质教师首先给出二次根式的定义,即若a≥0,则√a表示a的平方根。
接着,介绍二次根式的性质,包括:① √a²=a;② √ab=√a×√b(a≥0,b≥0);③ (√a)²=a;④ √(a/b)=√a/√b(a≥0,b>0)。
2. 二次根式的化简方法教师以具体的二次根式为例,逐步引导学生学习二次根式的化简方法。
主要的方法有:① 利用二次根式的性质进行化简;② 利用完全平方公式进行化简。
(三)课堂练习设计一些针对二次根式化简的题目,让学生在课堂上完成,以此检查学生对二次根式化简的理解和掌握程度。
(四)作业布置设计一些课外练习题,让学生在课后进行自我检测和巩固。
四、教学反思:在教学过程中,教师应注意观察学生的反应,及时调整教学策略。
同时,应鼓励学生积极参与,提高他们的主动性和积极性。
五、教学评价:通过对学生的课堂表现、作业完成情况以及测试成绩的综合评价,了解学生的学习进度和理解程度。
六、总结:本节课的教学目标是让学生理解和掌握二次根式的概念和性质,以及如何进行二次根式的化简。
通过实例引入、理论讲解、课堂练习和作业布置等方式,使学生能够熟练地运用二次根式的性质进行化简计算,培养他们的逻辑思维能力和解决实际问题的能力。
八年级数学上册2.7二次根式第2课时二次根式的运算教学设计(新版北师大版)一. 教材分析二次根式的运算是在学生已经掌握了二次根式的性质和运算法则的基础上进行教学的。
这一节的内容主要包括二次根式的加减乘除运算,以及如何化简二次根式。
通过这一节的学习,学生能够进一步理解和掌握二次根式的运算规则,提高解决实际问题的能力。
二. 学情分析八年级的学生已经具备了一定的数学基础,对二次根式有一定的了解。
但是在实际操作中,部分学生可能会对二次根式的化简和运算规则理解不深,导致在解决问题时出现困难。
因此,在教学过程中,需要针对学生的实际情况进行讲解,引导学生理解和掌握二次根式的运算规则。
三. 教学目标1.知识与技能目标:学生能够理解和掌握二次根式的加减乘除运算规则,能够熟练地进行二次根式的运算。
2.过程与方法目标:通过实例分析和练习,学生能够掌握二次根式的化简方法,提高解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心,使学生能够积极主动地参与数学学习。
四. 教学重难点1.重点:二次根式的加减乘除运算规则。
2.难点:二次根式的化简方法。
五. 教学方法采用讲解法、引导法、练习法进行教学。
通过实例分析,引导学生理解和掌握二次根式的运算规则,通过练习,巩固所学知识,提高学生的实际操作能力。
六. 教学准备1.教学课件:制作二次根式运算的教学课件,用于辅助教学。
2.练习题:准备一些有关二次根式运算的练习题,用于课堂练习和课后作业。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入二次根式的运算。
例如:一个正方形的对角线长为8cm,求这个正方形的面积。
2.呈现(10分钟)讲解二次根式的加减乘除运算规则,并通过实例进行分析。
3.操练(10分钟)让学生进行二次根式的运算练习,教师巡回指导,解答学生的疑问。
4.巩固(10分钟)通过一些变式练习,巩固学生对二次根式运算规则的理解。
5.拓展(5分钟)讲解二次根式的化简方法,并进行一些化简练习。
二次根式的化简教学目标:1、掌握最简二次根式概念及分母有理化。
2、利用二次根式的性质和乘除法化简二次根式。
3、通过对本节课的学习,提高学生的合作探究能力,培养学生的数学学习兴趣。
教学重点:最简二次根式教学难点:二次根式的性质的应用和分母有理化课时安排:1课时教学工具:多媒体设备教学过程:一、复习1、二次根式的性质: 当a ≥0时,a 2= a 当a <0时,a 2= -a 也就是说:a 2 = |a|即 2、二次根式的乘除法:二、创设情境、引入新课 1、提问:(1分别等于多少?学生讨论并回答。
(22、新课引入:(1)根据以上问题的回答,有些二次根式的被开方数不能开的尽方,例如32不是某个有理数的平方。
(2)教师讲解:对于有些二次根式虽然不能直接开方但是我们可以化简,使得最终的被开方数最简。
三、新课探究⎪⎪⎩⎪⎪⎨⎧<-=>)0a (a )0a (00a (a a a 2,,),==0,0)a b =≥≥0,0)a b =≥>1、概念引入-----最简二次根式:①被开方数中不能含有能开的尽方的因数或因式②分母里不能有根号③被开方数的因数是整数,因式是整式-----分母有理化:把分母中的根号化去,使分母变成有理数的过程叫做分母有理化2、典例分析例1解:(1(2注:(1)根号下是一个正整数时:将该数字拆分成一个完全平方数和某一个数的乘积,然后将完全平方数开平方放到根号外面。
例2、化简:解:10(15(2 注:分母含有一个单独根式时:①先将分子、分母化成最简二次根式,能约分的进行约分②将分子、分母都乘以分母的有理化因式(分母有理化)③最后结果化成最简二次根式例3、化简解:1=====注:分母含有两项时:①先将分子、分母化成最简二次根式,能约分的进行约分。
②借助平方差公式 进行分母有理化 。
22))((b a b a b a -=-+最后结果化成最简二次根式。
有理化因式:如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式。
八年级数学二次根式的化简教学设计2_2一、教学目标1.知识与技能:(1)掌握二次根式的化简方法;(2)能够运用化简方法化简二次根式。
2.过程与方法:(1)采用讲解和示范相结合的方法,引导学生理解和掌握二次根式的化简方法;(2)运用举例和练习相结合的方式,帮助学生熟练掌握化简二次根式的方法。
3.情感态度与价值观:(1)培养学生对数学的兴趣,提高数学学习的积极性;(2)培养学生合作意识和团队精神,通过小组合作学习,培养学生的互助精神。
二、教学重点掌握二次根式的化简方法。
三、教学难点运用化简方法化简二次根式。
四、教学过程与内容1.导入新知识(1)教师出示一个二次根式,如√(180);(2)引导学生思考,如何将√(180)进行化简?2.引入化简二次根式方法(1)引导学生回顾基本的化简方法:将含有平方数因子的根式进行合并;(2)引导学生回忆上节课学习的对数的性质,特别是乘法、除法和幂运算的性质;(3)引导学生观察已知例子的化简方法,如将√(180)分解为√(36)×√(5);(4)提示学生进行思考,思考其他化简方法。
3.讲解化简二次根式方法(1)讲解化简二次根式的方法。
首先,要观察根号内的数,找出平方数因子;然后,将平方数因子分解出来,与其他非平方数因子分开;最后,将分开的因子进行合并。
(2)通过讲解示例,如√(50)的化简过程为:将50分解为25×2,√(25)×√(2)=5√(2)。
4.练习与巩固(1)用几个简单的例子巩固学生对于化简二次根式方法的掌握;(2)让学生在小组内互相提问,解答各自的问题;(3)引导学生观察一些特殊的化简方法,如√(72)的化简过程为:将72分解为36×2,√(36)×√(2)=6√(2)。
五、课堂小结与作业布置1.小结本节课所学的内容,强调掌握二次根式的化简方法;2.布置作业:完成课堂练习笔记,巩固化简二次根式方法;3.预习下节课内容:解一元二次方程。
湘教版数学八年级上册5.1《二次根式的化简》教学设计2一. 教材分析《二次根式的化简》是湘教版数学八年级上册第五章第一节的内容。
本节主要让学生掌握二次根式的性质和化简方法,为后续学习二次根式的运算打下基础。
教材通过实例引入二次根式的化简,接着介绍二次根式的性质,然后引导学生探究化简的方法,最后通过练习巩固所学知识。
二. 学情分析八年级的学生已经学习了实数、有理数和无理数等基础知识,对数学运算有一定的掌握。
但二次根式作为新的概念,对学生来说较为抽象,需要通过实例和引导让学生理解和掌握。
同时,学生需要克服对二次根式的恐惧心理,培养自信心,积极参与课堂活动。
三. 教学目标1.理解二次根式的概念,掌握二次根式的性质。
2.学会二次根式的化简方法,提高运算能力。
3.培养学生的抽象思维能力,提高学生分析问题、解决问题的能力。
4.激发学生学习数学的兴趣,增强学生对数学的自信心。
四. 教学重难点1.重点:二次根式的性质和化简方法。
2.难点:二次根式的化简方法的灵活运用。
五. 教学方法1.实例导入:通过具体的例子引导学生认识二次根式,激发学生的兴趣。
2.自主探究:让学生通过小组合作、讨论,发现二次根式的性质和化简方法。
3.讲解示范:教师对二次根式的性质和化简方法进行讲解,让学生清晰地理解。
4.练习巩固:设计有针对性的练习,让学生在实践中掌握二次根式的化简方法。
5.拓展提高:引导学生运用所学知识解决实际问题,提高学生的应用能力。
6.小结反思:让学生总结本节课所学内容,巩固知识。
六. 教学准备1.课件:制作课件,展示二次根式的化简过程和实例。
2.练习题:设计具有梯度的练习题,巩固所学知识。
3.黑板:准备好黑板,用于板书关键步骤和结论。
七. 教学过程1.导入(5分钟)利用实例引入二次根式,让学生观察并思考:如何化简二次根式?引发学生的思考,激发学生的学习兴趣。
2.呈现(10分钟)展示二次根式的性质和化简方法,引导学生自主探究,发现规律。
二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。
2、会进行简单的二次根式的乘法运算。
3、使学生能联系几何课中学习的勾股定理解决实际问题。
二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。
2、难点:二次根式的乘法与积的算术平方根的关系及应用。
重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。
积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。
二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。
本节难点是二次根式的乘法与积的算术平方根的关系及应用。
积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。
要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。
综合应用性质或乘法公式时要注意题目中的条件一定要满足。
三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。
1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。
在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。
2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。
由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。
四、教学手段利用投影仪。
五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。
二次根式的化简及计算(学生基础版)教案一、教学目标:1. 让学生理解二次根式的概念,掌握二次根式的化简方法。
2. 能够正确计算含有二次根式的数学问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容:1. 二次根式的概念与性质2. 二次根式的化简方法3. 二次根式的计算法则4. 实际应用问题三、教学重点与难点:1. 教学重点:二次根式的化简方法,二次根式的计算法则。
2. 教学难点:理解二次根式的性质,掌握化简和计算的方法。
四、教学方法:1. 采用讲授法,讲解二次根式的概念、性质、化简方法和计算法则。
2. 利用例题,演示二次根式的化简和计算过程。
3. 引导学生进行分组讨论和练习,巩固所学知识。
4. 利用信息技术辅助教学,展示二次根式的图像,增强学生的直观感受。
五、教学过程:1. 导入:回顾一次根式的相关知识,引导学生思考二次根式的概念。
2. 新课讲解:讲解二次根式的性质,引导学生掌握二次根式的化简方法。
3. 例题演示:展示典型例题,引导学生跟随步骤进行二次根式的化简和计算。
4. 练习环节:布置练习题,组织学生进行分组讨论和练习,解答疑难问题。
5. 课堂小结:总结本节课所学内容,强调二次根式的化简和计算方法。
6. 课后作业:布置课后作业,巩固所学知识。
7. 教学反思:根据学生反馈,调整教学方法,提高教学效果。
六、教学评价:1. 课堂提问:通过提问了解学生对二次根式概念、性质和化简方法的掌握情况。
2. 练习题:评估学生在练习中的表现,检验他们对二次根式计算法则的掌握。
3. 课后作业:分析课后作业的完成质量,了解学生对课堂所学知识的巩固程度。
4. 小组讨论:观察学生在分组讨论中的参与程度和合作能力。
七、教学拓展:1. 邀请数学专家或相关领域的从业者进行讲座,加深学生对二次根式在实际应用中的理解。
2. 组织数学竞赛或挑战活动,激发学生对二次根式计算的兴趣和潜能。
3. 推荐学生阅读相关的数学书籍或文章,拓宽他们的数学视野。
二次根式教案(优秀5篇)次根式教案篇一目标1.熟练地运用二次根式的性质化简二次根式;2.会运用二次根式解决简单的实际问题;3.进一步体验二次根式及其运算的实际意义和应用价值。
教学设想本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。
教学程序与策略一、预习检测:1、解决节前问题:如图,架在消防车上的云梯AB长为15m,AD:BD=1 :0.6,云梯底部离地面的距离BC为2m。
你能求出云梯的顶端离地面的距离AE吗?归纳:在日常生活和生产实际中,我们在解决一些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。
二、合作交流:1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:0.8,滑梯CD的坡比为1:1.6,AE= 米,BC= CD。
一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到0.01米)让学生有充分的时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?注意解题格式教学程序与策略三、巩固练习:完成课本P17、1,组长检查反馈;四、拓展提高:1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。
(1)分别求出3张长方形纸条的长度。
(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。
师生共同分析解题思路,请学生写出解题过程。
五、课堂小结:1、谈一谈:本节课你有什么收获?2、运用二次根式解决简单的实际问题时应注意的的问题六、堂堂清1: 作业本(2)2:课本P17页:第4、5题选做。
次根式教案篇二一、教学目标1、使学生知道什么是最简二次根式,遇到实际式子能够判断是不是最简二次根式。
二次根式的化简及计算(学生基础版)教案第一章:二次根式的概念与性质1.1 引入二次根式的概念,让学生了解二次根式是由二次方程的根演变而来的数学表达式。
1.2 解释二次根式的性质,包括:a) 二次根式中的被开方数必须是非负数;b) 二次根式具有非负性、非负数的乘除法性质;c) 二次根式可以进行乘除运算,乘除运算规则与整数相同。
第二章:二次根式的化简2.1 介绍二次根式化简的方法和步骤:a) 提取二次根式中的最大公因数;b) 将二次根式中的括号展开;c) 合并同类项。
2.2 进行几个简单的例子,让学生熟悉化简方法。
第三章:二次根式的加减法运算3.1 讲解二次根式加减法的运算规则:a) 确保二次根式中的被开方数相同;b) 将同类二次根式相加减;c) 化简结果,确保最简二次根式形式。
3.2 进行几个具体的例子,让学生掌握二次根式的加减法运算。
第四章:二次根式的乘除法运算4.1 讲解二次根式乘除法的运算规则:a) 将二次根式相乘除,确保被开方数相乘除;b) 化简结果,确保最简二次根式形式。
4.2 进行几个具体的例子,让学生掌握二次根式的乘除法运算。
第五章:二次根式的实际应用5.1 引入二次根式在实际问题中的应用,例如:计算物体的体积、面积等。
5.2 进行几个具体的实际应用例子,让学生了解二次根式在实际问题中的应用方法和步骤。
第六章:含绝对值的二次根式6.1 引入绝对值的概念,并解释绝对值与二次根式的关系。
6.2 讲解如何处理含绝对值的二次根式,包括:a) 分析绝对值内的表达式正负,确定二次根式的性质;b) 利用绝对值的性质进行化简和运算。
6.3 进行几个例子,让学生掌握处理含绝对值的二次根式的方法。
第七章:含指数的二次根式7.1 引入指数的概念,并解释指数与二次根式的关系。
7.2 讲解如何处理含指数的二次根式,包括:a) 将指数形式转换为根式形式;b) 利用指数的性质进行化简和运算。
7.3 进行几个例子,让学生掌握处理含指数的二次根式的方法。
二次根式的化简及计算(学生基础版)教案一、教学目标1. 让学生掌握二次根式的概念,理解二次根式的性质。
2. 培养学生运用二次根式进行化简和计算的能力。
3. 提高学生解决实际问题的能力,培养学生的数学思维。
二、教学内容1. 二次根式的概念与性质2. 二次根式的化简方法3. 二次根式的计算法则4. 实际问题中的二次根式计算5. 巩固与拓展三、教学重点与难点1. 重点:二次根式的概念、性质、化简方法及计算法则。
2. 难点:二次根式在实际问题中的运用。
四、教学方法1. 采用问题驱动法,引导学生主动探究二次根式的化简与计算方法。
2. 利用案例分析,让学生学会将实际问题转化为二次根式计算问题。
3. 运用小组讨论法,培养学生的合作意识和团队精神。
4. 采用分层教学法,关注学生的个体差异,提高教学效果。
五、教学过程1. 导入:通过生活实例,引出二次根式的概念,激发学生的学习兴趣。
2. 知识讲解:讲解二次根式的性质,引导学生掌握化简方法。
3. 案例分析:分析实际问题,让学生学会将问题转化为二次根式计算。
4. 课堂练习:布置具有代表性的练习题,巩固所学知识。
5. 拓展延伸:引导学生思考二次根式在实际问题中的应用,提高学生的解决问题的能力。
6. 总结:对本节课内容进行总结,强调重点知识点。
7. 作业布置:布置适量作业,巩固所学知识。
六、教学评价1. 评价目标:检查学生对二次根式概念、性质、化简方法和计算法则的理解与应用。
2. 评价方法:课堂问答:通过提问,了解学生对知识的掌握程度。
练习题:设计不同难度的练习题,评估学生的应用能力。
小组讨论:评估学生在团队合作中的表现和问题解决能力。
3. 评价内容:学生能否正确识别二次根式。
学生能否运用二次根式的性质进行化简。
学生能否应用计算法则进行二次根式的计算。
学生能否将实际问题转化为二次根式计算问题。
七、教学资源1. 教学PPT:制作包含二次根式概念、性质、化简方法和计算法则的PPT。
二次根式教学设计五篇二次根式教学设计1一.教学目标:(一)知识与技能:1.了解二次根式的概念,会确定二次根式成立的条件。
2.会用二次根式性质进行有关计算。
3.了解逆用公式在实数范围内因式分解。
(二)过程与方法:体验性质的推导过程,感受由特殊到一般的方法。
(三)情感态度:激发对数学的兴趣。
二.教学重点:二次根式成立的条件,双重非负性;用性质进行计算。
三.教学难点性质的逆用。
四.教学准备:课件五.教学过程(一)复习提问1.什么叫二次根式?2.下列各式是二次根式,求式子中的字母所满足的条件:(3)∵x取任何值都有2x2≥0,因此2x2+1>0,故x的取值为任意实数.(二)二次根式的简单性质上节课我们已经学习了二次根式的定义,并了解了第一个简单性质我们知道,正数a有两个平方根,分别记作零的平方根是零。
引导学生总结出,其中,就是一个非负数a的算术平方根。
将符号“”看作开平方求算术平方根的运算,看作将一个数进行平方的运算,而开平方运算和平方运算是互为逆运算,因而有:这里需要注意的是公式成立的条件是a≥0,提问学生,a可以代表一个代数式吗?请分析:引导学生答如时才成立。
时才成立,即a取任意实数时都成立。
我们知道如果我们把,同学们想一想是否就可以把任何一个非负数写成一个数的平方形式了.(三)小结1.继续巩固二次根式的定义,及二次根式中被开方数的取值范围问题.2.有关公式的应用。
(1)经常用于乘法的运算中.(2)可以把任何一个非负数写成一个数的平方的形式,解决在实数范围内因式分解等方面的问题.二次根式教学设计2一.情境导入问题1:你能用带有根号的式子填空吗?(1)面积为3的正方形的边长为xx,面积为S的正方形的边长为xx(2)一个长方形围栏,长是宽的2倍,面积为130m2,则它的宽为xxm。
(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与落下的高度h(单位:m)满足关系h=5t2,如果用含有h的式子表示t,则t=xx。
二次根式的化简教学设计【一】教学目标1.掌握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法【二】教学设计对比、归纳、总结【三】重点和难点1.重点:理解并掌握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.【四】课时安排1课时【五】教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学步骤(一)教学过程【复习引入】1.求值、、、求值、、、结论:当时, ;当时, .2.求值、结论:当时,式子有意义,,对于,不能为负数.3.求值、结论:当时, .问:假设根号内这个式子中的底数,根式还有意义吗?其值等于什么?例如,,其中-2与2互为相反数; ,其中-3与3互为相反数; ,其中与互为相反数.【讲解新课】提出问题:等于什么?引导学生讨论、猜测、联想,得到结论:教师可结合学生的具体情况,将上面公式用最简练的语句表达,并反复提问中差学生,加深其印象,进一步提问:假设时,能否等于,以增强学生的辨别能力,加强学生对公式的理解和记忆. 例1 化简:(1) ; (2) .解:(略).注:可看作,把先写为 ;可看作,把先写为 .例2 化简: .分析:底数是非负数还是负数将直接影响结果,这时要注意条件,由条件,可得 .解:(略).例3 化简以下各式:(1) ( ); (2) ( );(3) ( ); (4) ( ).解:(1)∵(2)∵,即 .(3)∵,即 .(4)∵ ,∵ ,即 .注:要从条件出发,判断根号下面式子的底数是非负数还是负数,再根据公式计算出结果,因此在解题过程中,也是先写出条件,后进行变形,判断底数的正、负.在写解题步骤上,尽量完整,以减少失误,并训练学生的逻辑思维能力.(二)随堂练习1.求值:(1) ;(2) ;(3) ( );(4) ;(5) .解:(1) .(3) .(4) .(5) .注:,学生易与相混淆.2.化简:(1) ;(2) ;(3) ;(4) ( ); (5) ( ).解:(1) .(2) .(3) .(4) .(5) .(三)总结、扩展对公式,一定要在理解在基础上牢固掌握,要准确地运用公式进行二次根式的化简,关键是对根号内式子的底数的判断. (四)布置作业教材P213中1(2)、(3);2(1)、(2).(五)板书设计标题1.复习题 4.练习题3.例题。
二次根式教案优秀6篇次根式教案篇一【教学目标】1.运用法则进行二次根式的乘除运算;2.会用公式化简二次根式。
【教学重点】运用进行化简或计算【教学难点】经历二次根式的乘除法则的探究过程【教学过程】一、情境创设:1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?2.计算:二、探索活动:1.学生计算;2.观察上式及其运算结果,看看其中有什么规律?3.概括:得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。
将上面的公式逆向运用可得:积的算术平方根,等于积中各因式的算术平方根的积。
三、例题讲解:1.计算:2.化简:小结:如何化简二次根式?1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;2.P62结果中,被开方数应不含能开得尽方的因数或因式。
四、课堂练习:(一).P62练习1、2其中2中(5)注意:不是积的形式,要因数分解为36×16=242.(二).P673计算(2)(4)补充练习:1.(x0,y0)2.拓展与提高:化简:1).(a0,b0)2).(y2.若,求m的取值范围。
☆3.已知:,求的值。
五、本课小结与作业:小结:二次根式的乘法法则作业:1).课课练P9-102).补充习题次根式教案篇二教材分析:本节内容出自九年级数学上册第二十一章第三节的第一课时,本节在研究最简二次根式和二次根式的乘除的基础上,来学习二次根式的加减运算法则和进一步完善二次根式的化简。
本小节重点是二次根式的加减运算,教材从一个实际问题引出二次根式的加减运算,使学生感到研究二次根式的加减运算是解决实际问题的需要。
通过探索二次根式加减运算,并用其解决一些实际问题,来提高我们用数学解决实际问题的意识和能力。
另外,通过本小节学习为后面学生熟练进行二次根式的加减运算以及加、减、乘、除混合运算打下了铺垫。
学生分析:本节课的内容是知识的延续和创新,学生积极主动的投入讨论、交流、建构中,自主探索、动手操作、协作交流,全班学生具有较扎实的知识和创新能力,通过自学、小组讨论大部分学生能够达到教学目标,少部分学生有困难,基础差、自学能力差,因此要提供赏识性评价教学策略,给予个别关照、心理暗示以及适当的精神激励,克服自卑心理,让他们逐步树立自尊心与自信心,从而完成自己的学习任务。
二次根式教学设计6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如讲话致辞、报告体会、合同协议、策划方案、职业规划、规章制度、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as speeches, report experiences, contract agreements, planning plans, career planning, rules and regulations, emergency plans, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次根式教学设计6篇下面是本店铺收集的二次根式教学设计6篇,供大家参阅。
第二讲二次根式的化简求值
[教学内容]
八年级第二讲“二次根式的化简求值”(第2课时).
[教学目标]
知识技能
1.熟练掌握二次根式的运算技巧,能够对复杂的二次根式进行化简求值;
2.理解分母有理化的思想方法;
3.会对二次根式的大小进行比较.
数学思考
体会分母有理化的基本思想方法,能够举一反三,在实例中体会整体思想的妙用.
问题解决
经历二次根式分母有理化以及二次根式比较大小方法的探究与发现过程,培养学生自主学习的能力,加强练习,提高学生的计算能力.
情感态度
1.通过解决现实情境中问题,增强数学素养,用数学的眼光看世界;
2.通过小组活动,培养学生的合作意识和能力.
[教学重点、难点]
重点:二次根式分母有理化、二次根式的化简求值以及比较大小.
难点:二次根式分母有理化.
[教学准备]
动画多媒体语言课件
第二课时 ,则
222012)(2012)2012x x y y
, 分母有理化得 ①, ②.(下一步),所以x 2=y ,所以x=y ,(下一步)
x -3y -2011
+3x -3x -2011
222012
20122012
x x y y 2220122012x
x y y 2220122012y y x x 22201220120x y 0y
,
,
,
,
=, ,
个数是.
11⎛⎫÷- ⎪,其中31323312
431)9333
1012。
二次根式的化简教案设计二次根式的化简教学建议知识结构重难点分析本节的重点是的化简.本章自始至终围绕着二次根式的化简与计算进行,而的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中经常需要对字母进行分类讨论.本节的难点是正确理解与应用公式这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往轻易出现错误.教法建议1.性质的引入方法很多,以下2种比较常用:(1)设计问题引导启发:由设计的问题1) 、、各等于什么?2) 、、各等于什么?启发、引导学生猜想出(2)从算术平方根的意义引入.2.性质的巩固有两个方面需要注重:(1)注重与性质进行对比,可出几道类型不同的题进行比较;(2)学生初次接触这种形式的表示方式,在教学时要注重细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.(第1课时)一、教学目标1.把握二次根式的性质2.能够利用二次根式的性质化简二次根式3.通过本节的学习渗透分类讨论的数学思想和方法二、教学设计对比、归纳、总结三、重点和难点1.重点:理解并把握二次根式的性质2.难点:理解式子中的可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.四、课时安排1课时五、教具学具预备投影仪、胶片、多媒体六、师生互动活动设计复习对比,归纳整理,应用提高,以学生活动为主七、教学过程一、导入新课我们知道,式子( )表示非负数的算术平方根.问:式子的意义是什么?被开方数中的表示的是什么数?答:式子表示非负数的算术平方根,即,且,从而可以取任意实数.二、新课计算下列各题,并回答以下问题:(1) ;(2) ;(3) ;(4) ;(5) ;(6)(7) ;(8)1.各小题中被开方数的幂的底数都是什么数?2.各小题的结果和相应的被开方数的幂的底数有什么关系?3.用字母表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.答:(1) ;(2) ;(3) ;(4) ;(5) ;(6)(7) ;(8) .1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.3.用字母表示(1),(2),(3),(8)各题中被开方数的幂的底数,有( ),用字母表示(4),(5),(6),(7)各题中被开方数的幂的底数,有( ).一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.问:请把上述讨论结论,用一个式子表示.(注重表示条件和结论)答:请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?答:填空:1.当_________时, ;2.当时, ,当时, ;3.若,则________;4.当时, .答:。
最简二次根式教学设计示例教学设计示例:最简二次根式教学目标:1.了解什么是最简二次根式;2.学会把二次根式写成最简形式;3.掌握用分配律和合并同类项来简化二次根式的方法;4.能够独立解决相关的练习和问题。
教学准备:教师:黑板、粉笔、讲义;学生:课本、笔记本。
教学步骤:一、导入(15分钟)1.教师出示几个二次根式的例子,例如√12、√20、√75等,让学生观察这些根式有何特点。
2.引导学生回顾一次根式与二次根式的概念,回忆一次根式的最简形式是什么。
3.教师出示√12和√20,让学生比较这两个根式的大小,并与学生合作讨论如何将它们化简为最简二次根式。
二、概念讲解(15分钟)1.通过黑板上的例子,教师向学生解释何为最简二次根式。
2.教师引导学生总结化简最简二次根式的规律,即不含有完全平方数因子的根式。
三、化简方法(30分钟)1.教师介绍化简最简二次根式的基本方法:a.通过将根号内的因数进行分解,找出完全平方数因子;b.将所找出的完全平方数因子提出根号外;c.将根号内剩下的非完全平方数因子合并。
2.教师通过示范做一些化简最简二次根式的例题,解释做法及注意事项。
四、练习与提高(30分钟)1.学生独立完成一些例题,巩固所学知识。
例如:将√80化简为最简二次根式。
2.学生合作完成一些练习题,提高解决问题的能力。
例如:小明能够看到一个正方形的墙面,其中一个角被一本书遮住了二分之一,那么小明能够看到的墙面占整个墙面的多少比例?(答案:3/4)3.教师巡视课堂,对学生的解题过程进行指导和评价。
五、总结与拓展(10分钟)1.教师与学生一起总结今天所学内容,查漏补缺。
2.引导学生思考二次根式在实际问题中的应用,拓展思维。
3.提出相关拓展问题,鼓励学生独立思考和解决。
六、课堂作业(5分钟)1.学生独立完成教师布置的作业,巩固今天所学内容。
2.教师明确作业要求和截止时间。
七、课堂巩固(5分钟)1.学生展示自己的作业答案,教师点评并辅导其中出现的问题。