铁矿(或铁粉)中全铁含量的测定
- 格式:ppt
- 大小:69.50 KB
- 文档页数:7
铁矿(或铁粉)中全铁含量的测定一、前言铁矿(或铁粉)中的全铁含量是制定冶金工艺流程、确定矿山开采方案和铁矿(或铁粉)定价的重要参数之一。
本文将介绍铁矿(或铁粉)中全铁含量的测定方法,包括化学分析法和物理分析法两种方法。
二、化学分析法1. 原理铁矿中的全铁含量可以通过溶解铁矿中的铁化合物,然后将样品中的铁转化为铁离子,用比色法或称重法测定铁离子浓度,进而计算样品中的全铁含量。
常用的铁化合物有氧化铁、碳酸铁、硫酸铁等。
2. 实验步骤(1)样品的制备取适量的样品,通过干燥、破碎和分析等操作将其制备成为均质的细粉末样品。
(2)溶解样品将样品加入到一个混合溶液中,混合溶液通常是由盐酸(或硝酸)和氢氧化钠(或氨水)混合而成。
在加入混合溶液期间,要慢慢地滴加,并且要不断搅拌,直到样品全部溶解。
(3)还原铁离子成为铁离子在样品溶液中加入亚硫酸钠,将Fe3+还原成Fe2+。
(4)测定铁离子的浓度用比色法或称重法测定样品中铁离子的浓度。
3. 注意事项(1)要保证样品制备的均质性,否则测定结果会出现误差。
(2)溶解样品的酸度要保持一致,通常为盐酸(或硝酸)质量分数为20%左右。
(3)亚硫酸钠可以还原多种离子,如铜离子、铅离子等,不同离子的浓度对还原铁离子的影响需要进行校正。
三、物理分析法物理分析法是通过磁滞回线测量铁矿(或铁粉)样品的磁性,从而测定样品中的全铁含量。
铁矿(或铁粉)具有一定磁性,随着铁含量的增加,磁滞回线的面积也随之增加,可以通过磁力计测量出来,从而计算出全铁含量。
(2)测定样品的磁性将样品放置在一个磁场中,测量样品的磁性强度和磁滞回线面积。
(3)计算全铁含量根据样品的磁性数据,使用标准曲线或计算公式计算出样品中的全铁含量。
(1)物理分析法需要测量样品的磁性数据,因此如果样品中存在其他磁性元素或矿物,需要进行校正。
四、总结铁矿(或铁粉)中的全铁含量是衡量矿品质的重要因素,可以通过化学分析法和物理分析法等技术手段进行测定。
实验二 铁矿石中全铁量的测定(三氯化钛还原——重铬酸钾滴定法)一、实验目的1. 了解实践分析过程,并会对此过程中出现的问题进行分析解决。
2. 掌握铁矿石中全铁含量测定的基本原理。
二、主题内容与适用范围 本方法规定三氯化钛还原——重铬酸钾滴定法测定全铁量。
本方法适用于铁矿及人造铁矿中铁量的测定。
三、实验原理试样用硫-磷混酸和氟化钠加热溶解,用二氯化锡还原大部分三价铁,以钨酸钠为指示剂,用三氯化钛还原剩余的三价铁,过量的三价钛还原钨酸钠生成“钨兰”,用重铬酸钾标准溶液滴定至稳定的紫红色即为终点。
试样用硫-磷混酸和氟化钠加热分解,此时铁呈342H [Fe(PO )]状态存在。
其具体过程如下:33-234422Fe O 6H 4PO 2[Fe(PO )]+3H O +-++=33-4242222FeO 8H 4PO SO 2[Fe(PO )]+SO +4H O +-+++=↑32-3-+344422422FeSiO 16H 8NaF+4PO SO 2[Fe(PO )]+SO +2SiF +8Na +8H O +-+++=↑↑加入盐酸:342324H [Fe(PO )]3HCl FeCl +2H PO +=以钨酸钠为指示剂,用三氯化钛将三价铁还原为2Fe +.过量的3Ti +还原24WO -生成“钨蓝”3324Ti +Fe Fe Ti ++++=+234+4252()2WO 2Ti 6H W O 2Ti 3H O -++++=++钨蓝用重铬酸钾将钨兰氧化,使蓝色褪去。
100ω⨯⨯⨯⨯1c (V-V )55.85(Fe)/% = m 1000以二苯胺磺酸钠为指示剂,用227K Cr O 滴定。
此时全部的Fe 2+被氧化成Fe 3+.22-+33+27226Fe +Cr O 14H 2H O 6Fe 2Cr 7H O ++++=++根据滴定中所消耗的重铬酸钾标准溶液的毫升数求得铁含量。
当227K Cr O 标准溶液以6227V K Cr O 为基本单元时,则被测物质铁的基本单元为Fe 。
实验十铁粉中铁含量的测定1.学会酸钾标准溶液的配制及使用;2.学习矿石试样的酸溶法和重铬酸钾法测定铁的原理及方法;3.了解二苯胺磺酸钠指示剂的作用原理。
二.实验原理:1.铁矿石中的铁以氧化物形式存在。
试样经盐酸分解后,在热浓的盐酸溶液中用SnCl2将大部分Fe3+还原为Fe2+,加入钨酸钠作指示剂,剩余的Fe3+用TiCl3溶液还原为Fe2+,过量TiCl3使钨酸钠的W6+还原为W5+(蓝色,俗称钨蓝)。
除去过量TiCl3和W5+,可加几滴CuSO4溶液,摇动至蓝色刚好褪去。
最后,以二苯胺磺酸钠作指示剂,用K2Cr2O7标准溶液滴至紫色为终点。
主要反应式如下Fe2O3+6HCI =2Fe3++6C1—+3H2O,2Fe3++Sn2+=2Fe2++Sn4+ Fe3++Ti3+=Fe2++Ti4+, 6Fe2++Cr2O72-+14H+=6Fe3++2Cr3++7H2O,滴定过程生成的Fe3+呈黄色,影响终点的判断,可加入H3PO4,使之与Fe3+生成无色[Fe (PO4)2]3-减小Fe3+浓度,同时,可降低Fe3+/Fe2+电对的电极电位,使滴定终点时指示剂变色电位范围与反应物的电极电位具有更接近的Φ值(Φ=0.85V),获得更好的滴定结果。
2.重铬酸钾法是测铁的国家标准方法。
在测定合金、矿石、金属盐及硅酸盐等的含铁量时具有很大实用价值3.重铬酸钾浓度的计算:4.铁的含量的计算:W (Fe )=CV (K 2Cr 2O 7)×6×m(Fe )/m(试样)*100主要仪器:电子天平,250m 烧杯,50mL 酸式滴定管,称量瓶, 移液管 ,干燥器,量筒,250mL 容量瓶。
主要试剂:铁粉,K 2Cr 2O 7,SnCl 2溶液, 10%NaWO 4 , 1.5%TiCl 3, H 2SO 4-H 3PO 4(1:1)混酸0.5%二苯胺磺酸钠溶液,3:2 盐酸四.操作步骤: .操作注意事项 0.016mol·L -1 K 2Cr 2O 7标准溶液的配制 准确称取1.2±0.1g K 2Cr 2O 7,加水溶解后转移至250mL 容量瓶中,用水稀释至标线,摇匀 K 2Cr 2O 7较重,称量时请细心,耐心。
铁矿石中全铁含量的测定(重铬酸钾容量法)铁矿石一般能被盐酸在低温电炉上加热分解,如残渣为白色,表明试样分解完全,若残渣有黑色或其它颜色,是因为铁的硅酸盐难溶于盐酸,可加入氢氟酸或氟化钠再加热使试样分解完全,SiO 2+4HF==SiF 4↑+2H 2OMSiO 3+4HF+2HCl==MCl 2+SiF 4↑+2H 2O还可以加入少量磷酸,以消除溶液中铁的黄色对终点的干扰同时降低Fe 3+/Fe 2+电位,增大终点突跃范围,使反应更完全。
磁铁矿的分解速度很慢,可用硫-磷混合酸(1+2)在高温电炉上加热分解,溶矿时需加热至水分完全蒸发,并出现三氧化硫白烟后,再加热数分钟。
但应注意加热时间不能太长,以防止生成焦磷酸盐。
部分铁矿石试样的酸分解较困难,宜采用碱熔法分解试样,常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和过氧化钠-碳酸钠(1+2)混合熔剂等,在银坩埚、镍坩埚、高铝坩埚或石墨坩埚中进行。
碱熔分解后,再用盐酸溶液浸取。
基本原理:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。
反应方程式:2Fe 3+ + Sn 2+ + 6Cl -→ 2Fe 2+ + SnCl 62―Sn 2+ + 4Cl - + 2HgCl 2→SnCl 62― + Hg 2Cl 2↓6Fe 2+ + Cr 2O 72- + 14H + → 6Fe 3+ + 2Cr 3+ + 2Cr 3+ + 7H 2O计算结果:()m V m V Fe 2.01000020.0%=⨯⨯=此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。
一、硫—磷混酸溶样1、药品及试剂①(2+3)硫磷混合酸②重铬酸钾标准溶液:1.00 mL此溶液相当于0.0020g铁。
称取1.7559g预先在150℃烘干1h的重铬酸钾(基准试剂)于250 mL烧杯中,以少量水溶解后移入1L容量瓶中,用水定容。
铁矿石中全铁含量测定方法分析在钢铁工业中,铁矿石是至关重要的原材料,而准确测定铁矿石中全铁的含量对于评估矿石质量、优化冶炼工艺以及控制生产成本都具有极其重要的意义。
本文将对常见的铁矿石中全铁含量测定方法进行详细分析。
一、重铬酸钾滴定法重铬酸钾滴定法是测定铁矿石中全铁含量的经典方法之一。
其基本原理是将铁矿石样品用酸溶解,使其中的铁全部转化为二价铁离子。
然后,在酸性条件下,用过量的重铬酸钾标准溶液将二价铁氧化为三价铁,最后以二苯胺磺酸钠为指示剂,用硫酸亚铁铵标准溶液滴定过量的重铬酸钾,从而计算出全铁的含量。
该方法的优点是准确度高、重现性好,适用于各种类型铁矿石中全铁含量的测定。
但也存在一些不足之处,比如操作过程较为繁琐,需要进行多次加热和滴定,耗时较长;同时,使用的重铬酸钾具有一定的毒性,对环境和操作人员的健康有一定影响。
二、氯化亚锡氯化汞重铬酸钾滴定法这种方法是在重铬酸钾滴定法的基础上进行改进的。
首先用盐酸和氟化钠溶解样品,然后加入氯化亚锡将大部分三价铁还原为二价铁。
接着,加入氯化汞氧化过量的氯化亚锡,最后用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
此方法相较于传统的重铬酸钾滴定法,简化了操作步骤,缩短了分析时间。
然而,氯化汞是一种剧毒物质,对环境和人体危害极大,需要在操作过程中特别小心,严格控制其使用和排放。
三、EDTA 配位滴定法EDTA 配位滴定法也是常用的测定铁矿石中全铁含量的方法之一。
在酸性条件下,将铁矿石样品溶解,用还原剂将铁全部还原为二价铁。
然后,加入过量的 EDTA 标准溶液与二价铁配位,再以二甲酚橙为指示剂,用锌标准溶液滴定剩余的 EDTA,从而计算出全铁的含量。
EDTA 配位滴定法的优点是操作相对简便,分析速度较快,且试剂毒性较小。
但该方法的选择性相对较差,容易受到其他金属离子的干扰,因此在测定前需要对样品进行预处理,以消除干扰。
四、原子吸收光谱法原子吸收光谱法是一种基于物质对特定波长光的吸收特性来测定元素含量的方法。
铁矿石中铁含量的测定实验报告铁矿石中铁含量的测定实验报告引言:铁矿石是一种重要的矿石资源,其中的铁含量对于冶金工业具有重要意义。
本实验旨在通过化学方法测定铁矿石中的铁含量,并探讨实验过程中的一些关键因素。
实验方法:1. 样品制备:将铁矿石样品研磨成细粉,并通过筛网筛选出粒径均匀的样品。
2. 硫酸浸取:取一定量的样品加入硫酸中,进行浸取反应。
反应过程中,产生的二氧化硫气体需要充分排除,以免干扰后续的实验结果。
3. 过滤与洗涤:将浸取后的溶液过滤得到含有铁离子的滤液,然后用去离子水进行洗涤,以去除杂质。
4. 氨水沉淀:将滤液中的铁离子与氨水反应生成氢氧化铁沉淀。
反应后,通过离心将沉淀分离出来。
5. 灼烧:将沉淀转移到燃烧器中进行灼烧,使其转化为氧化铁。
6. 灼烧后的称量:将灼烧后的氧化铁沉淀进行称量,得到其质量。
7. 计算铁含量:根据氧化铁的质量与样品的质量之比,计算出铁矿石中铁的含量。
实验结果与讨论:通过实验操作,我们得到了一批铁矿石样品的铁含量数据。
根据实验结果,我们可以发现不同样品之间的铁含量存在差异。
这可能是由于不同的矿石来源、矿石矿物组成以及矿石加工过程等因素所致。
在实验过程中,我们还发现了一些关键因素对于测定结果的影响。
首先,样品制备的粒径均匀性对于实验结果的准确性有重要影响。
如果样品颗粒过大或过小,会导致反应速率变慢或反应不完全,从而影响后续的实验步骤。
其次,硫酸浸取过程中二氧化硫气体的排除也是一个关键步骤。
二氧化硫气体的存在会干扰后续的滤液处理,从而影响测定结果的准确性。
因此,在实验过程中应该充分注意排气操作。
最后,灼烧过程中的温度和时间也会对实验结果产生影响。
过低的温度或时间会导致氧化铁的转化不完全,而过高的温度或时间则会引起样品的过烧,从而影响测定结果的准确性。
结论:本实验通过化学方法测定了铁矿石中的铁含量,并探讨了实验过程中的一些关键因素。
实验结果表明,不同样品之间的铁含量存在差异,这可能与矿石来源、矿石矿物组成以及矿石加工过程等因素有关。
铁矿石中全铁量的测定
一、原理
试样以盐酸氟化钠溶解,氯化亚锡还原大部分铁后,三氯化钛还原剩余铁为低价,过量三氯化钛用重铬酸钾回滴,以二苯胺磺酸钠作指示剂,用标准重铬酸钾溶液滴定铁,求得试样铁含量。
二、试剂
1、浓盐酸
2、氟化钠(固体)
3、6%氯化亚锡:6g氯化亚锡溶于20 mL盐酸中,用水稀释至100 mL
4、硫磷混酸:硫酸:磷酸:水 = 2:3:5
5、25%钨酸钠:1:20磷酸溶液
6、1:19三氯化钛:取15 ~ 20%三氯化钛用1:9盐酸稀释后加一层液体石蜡保护(或现用现配)
7、重铬酸钾标准溶液:(1/6) 0.05 mol/L
三、分析步骤
称取试样0.2 g两份于300 mL三角瓶中,加少许水使其散开,加氟化钠0.3 g,盐酸20 mL,低温加热溶解,滴加二氯化锡至溶液呈现浅黄色,继续加热10 ~ 20 min(体积约10 mL)取下,加水150 ~ 200 mL,加钨酸钠15 d,用三氯化钛还原兰色出现,用重铬酸钾标准溶液滴至兰色消失(不计读数),立即加硫磷混液10 mL,二苯胺磺酸钠5 d,用重铬酸钾标准溶液滴定至紫色为终点,记下消耗重铬酸钾溶液的毫升数V,则;
Fe% =
式中:M—重铬酸钾溶液浓度
V-滴定消耗重铬酸钾溶液毫升数。
铁矿石中铁含量的测定实验报告实验报告:铁矿石中铁含量的测定一、实验目的本实验旨在通过化学反应的方法,测定铁矿石中铁的含量。
二、实验原理铁矿石中的铁是以Fe2O3的形式存在的,而铁离子可以与邻菲罗啉发生络合反应生成深红色络合物。
根据络合反应生成的络合物的光吸收特性,可以测定样品中铁的含量。
三、实验步骤1.称取0.1g的铁矿石样品,加入100mL的蒸馏水中,混合均匀。
2.将样品转移到250mL锥形瓶中。
3.加入1.5mL的盐酸,加热至沸腾,使样品中的铁离子转化为Fe2+离子。
4.冷却后,加入10mL的邻菲罗啉溶液,在搅拌下混合均匀,生成深红色络合物。
5.将混合液转移至1cm比色皿中,用紫外-可见分光光度计测定混合液的吸收值(λ = 510nm)。
四、实验结果经过测定,样品的吸收值为0.644。
五、分析与讨论根据标准曲线的结果,可计算出样品中铁离子含量为0.0322g/L。
而样品的质量为0.1g,因此其中的铁含量可以计算为32.2%。
本实验的误差主要来源于邻菲罗啉的存储、操作的环境以及化学药品的纯度等方面,因此在实验的过程中,需要保证实验器材的洁净、药品纯度的准确性等因素。
六、结论通过化学反应的方法,本实验测定了铁矿石中的铁含量,结果表明该矿石中铁的含量为32.2%。
七、参考文献[1] 《基础实验指导》手册。
[2] W. L. Gardner, B. S. Weisman, and L. H. Lanzillotta, "Spectrophotometric determination of iron with o-phenanthroline", Anal. Chem., vol. 21, no. 8, pp. 990-992, 1949.。
T860测定铁矿粉中的全铁含量1、方法概要及原理氧化还原滴定法。
具体实验步骤参照GB/T6730.66-2009进行,采用SnCl2-TiCl3-K2Cr2O7方法。
2、实验仪器及试剂仪器:T860试剂:硫酸:盐酸:氢氟酸;过氧化氢溶液;氯化亚锡溶液;三氯化钛溶液;硫磷混酸溶液;铁标准溶液重铬酸钾标准溶液;硫酸亚铁铵标准溶液;3、检测步骤3.1样品消解过程。
铁矿石的消解条件:铁矿粉取样量为0.2g。
加入10ml 的硫磷混酸(硫酸:磷酸=2:8)与2mL100g/L的SnCl2.使用TANK微波消解仪进行消解,微波消解条件如下:阶段升温时间min温度℃压力psi保温时间min 111180350322200350203.2滴定管的清洗。
使用蒸馏水清洗,清洗完成后,使用滴定剂进行补液操作,补液至少在6次以上。
3.3电极的准备。
使用铂复合电极与单盐桥饱和甘汞电极,并将电极连接到相应的接口内。
3.4滴定。
将消解好的铁矿粉样品转移至滴定杯中,并使用少量蒸馏水清洗消解罐,清洗液也全部转移至滴定杯中,将电极插入到溶液中并调整好位置。
仪器面板上选择常量滴定,并设定好相应参数后进行滴定。
4、结果统计样品质量(g)样品消耗重铬酸钾体积(ml)重铬酸钾的浓度(mol/l)空白体积全铁含量(%)平均值(%)0.208223.9220.016670.00264.3664.130.202423.05563.80 0.198622.77664.24。
铁矿石中全铁含量的测定(重铬酸钾容量法)铁矿石一般能被盐酸在低温电炉上加热分解,如残渣为白色,表明试样分解完全,若残渣有黑色或其它颜色,是因为铁的硅酸盐难溶于盐酸,可加入氢氟酸或氟化钠再加热使试样分解完全,SiO 2+4HF==SiF 4↑+2H 2OMSiO 3+4HF+2HCl==MCl 2+SiF 4↑+2H 2O还可以加入少量磷酸,以消除溶液中铁的黄色对终点的干扰同时降低Fe 3+/Fe 2+电位,增大终点突跃范围,使反应更完全。
磁铁矿的分解速度很慢,可用硫-磷混合酸(1+2)在高温电炉上加热分解,但应注意加热时间不能太长,以防止生成焦磷酸盐。
部分铁矿石试样的酸分解较困难,宜采用碱熔法分解试样,常用的熔剂有碳酸钠、过氧化钠、氢氧化钠和过氧化钠-碳酸钠(1+2)混合熔剂等,在银坩埚、镍坩埚、高铝坩埚或石墨坩埚中进行。
碱熔分解后,再用盐酸溶液浸取。
基本原理:在酸性溶液中,用氯化亚锡将三价铁还原为二价铁,加入氯化汞以除去过量的氯化亚锡,以二苯胺磺酸钠为指示剂,用重铬酸钾标准溶液滴定至紫色。
反应方程式:2Fe 3+ + Sn 2+ + 6Cl -—→ 2Fe 2+ + SnCl 62―Sn 2+ + 4Cl - + 2HgCl 2 —→ SnCl 62― + Hg 2Cl 2↓6Fe 2+ + Cr 2O 72- + 14H + —→ 6Fe 3+ + 2Cr 3+ + 2Cr 3+ + 7H 2O计算结果:()m V m V Fe 2.01000020.0%=⨯⨯=此法的优点是:过量的氯化亚锡容易除去,重铬酸钾溶液比较稳定,滴定终点的变化明显,受温度的影响(30℃以下)较小,测定的结果比较准确。
一、硫—磷混酸溶样1、药品及试剂①(2+3)硫磷混合酸② 重铬酸钾标准溶液: mL 此溶液相当于铁。
称取预先在150℃烘干1h 的重铬酸钾(基准试剂)于250 mL 烧杯中,以少量水溶解后移入1L 容量瓶中,用水定容。
铁矿石中全铁含量的测定实验报告铁矿石中全铁含量的测定实验报告引言:铁矿石是重要的矿产资源之一,其含有的铁元素对于人类社会的发展至关重要。
因此,准确测定铁矿石中的全铁含量对于矿石的开采和利用具有重要意义。
本实验旨在通过一系列实验步骤,测定铁矿石中的全铁含量,并探讨实验方法的准确性和可靠性。
实验步骤:1. 样品的准备从矿石中取得一定重量的样品,并将其研磨成粉末状。
为了保证实验的准确性,我们选择了多个不同的矿石样品进行实验,以获得更加可靠的结果。
2. 酸溶解将样品粉末加入含有浓硫酸的试管中,并进行加热。
硫酸的作用是将铁矿石中的铁元素溶解出来,形成含有铁离子的溶液。
3. 过滤和洗涤将酸溶液过滤,以去除其中的固体残渣。
然后用去离子水洗涤过滤后的残渣,以去除其中的杂质。
4. 滴定测定将洗涤后的残渣溶解在稀硫酸中,并加入亚硫酸钠作为还原剂。
然后,用含有亚铁离子的标准溶液进行滴定。
当亚铁离子滴定至终点时,滴定液的颜色由无色变为浅绿色。
通过滴定过程中消耗的标准溶液体积,可以计算出矿石中全铁的含量。
5. 结果计算根据滴定过程中消耗的标准溶液体积,以及标准溶液的浓度,可以计算出样品中全铁的含量。
通过多次实验,并取平均值,可以获得更加准确的结果。
结果与讨论:通过本实验,我们得到了不同矿石样品中全铁含量的测定结果。
经过多次实验和数据处理,我们发现不同样品之间存在一定的差异,这可能是由于矿石的来源和成分不同所导致的。
因此,在实际应用中,我们需要根据具体的矿石样品来选择合适的实验方法和参数。
此外,本实验中采用的滴定方法可以较准确地测定铁矿石中的全铁含量。
然而,实验过程中仍然存在一定的误差来源,例如实验操作的不精确、仪器的误差等。
因此,在实验中应该尽量减小这些误差来源,并进行多次实验以提高结果的可靠性。
结论:通过本实验,我们成功地测定了铁矿石中的全铁含量,并探讨了实验方法的准确性和可靠性。
实验结果表明,不同样品之间存在一定的差异,需要根据具体情况选择合适的实验方法。
铁矿石全铁含量的测定三氯化钛还原重铬酸钾滴定法一、方法原理:式样以硫磷混酸和盐酸分解后,用氯化亚锡还原大部分的三价铁,再以钨酸钠为指示剂,三氯化钛将剩余的三价铁全部还原为二价铁至生成钨蓝,以稀重铬酸钾溶液氧化过剩的还原剂。
以二苯胺磺酸钠作指示剂,用重铬酸钾标准溶液滴定二价铁,计算全铁含量。
二、试剂:1、硫磷混酸:1:12、氟化钾:25%3、盐酸:1:14、高锰酸钾:4g/L5、氯化亚锡:60g/L6、钨酸钠:250g/L(称取25g钨酸钠溶于适量水中,加磷酸5ml,用水稀释至100ml)7、三氯化钛:1+9(取10ml三氯化钛溶液,用1:1盐酸稀释至100ml,当班用当班配制)8、稀重铬酸钾:0.5g/L9、二苯胺磺酸钠:2.5g/L三、分析方法称取预先干燥的式样0.2g精确到0.0001g,置于300ml锥形瓶中,用少量水吹洗杯壁,加入硫磷混酸(1:1)20ml、氢氟酸5ml,加热溶解试样,轻轻晃动瓶子1-2次,继续加热至冒硫酸烟到200刻度时取下锥形瓶。
冷却至不烫手时,用少量水吹洗杯壁,加入20ml盐酸(1:1),加热溶解至冒大泡,取下用氯化亚锡还原至微黄色,若还原时过量可滴加少量的高锰酸钾氧化至微黄色,冷却至室温,加水50ml,10滴钨酸钠,滴加三氯化钛溶液至试液呈蓝色。
滴加稀重铬酸钾至蓝色消失,加二苯胺磺酸钠5滴作指示剂,用重铬酸钾标准溶液滴定至由绿色至蓝色到最后一滴变紫红色时为终点。
四、注意事项1、分析时同时代两个以上标样。
2、三氯化钛溶液当班使用当班配制。
3、用氯化亚锡还原三价铁时,一定保证还原至微黄色,过量会导致结果偏高,黄色过深时用三氯化钛还原剩余的三价铁时难以还原至蓝色。
4、用稀重铬酸钾溶液氧化过剩的还原剂时,试液由蓝色变为无色过量至1-2滴即可。
不可滴加过多,会导致结果偏低。
5、滴定过程中,始终保持滴定速度一致。
5、终点颜色要掌握好,一定要到终点,但不能过量。
一、实验目的本实验旨在通过化学分析方法,测定铁矿石中的全铁含量。
通过了解铁矿石中全铁含量的测定方法,掌握相关实验技能,为后续的矿物分析实验打下基础。
二、实验原理铁矿石中的全铁含量是指样品中铁的全量,包括铁的复杂硅酸盐。
本实验采用酸溶法,将铁矿石样品溶解于酸中,使铁离子变为可溶性离子,然后通过滴定法测定铁的含量。
三、实验材料与仪器1. 实验材料:(1)铁矿石样品(2)浓盐酸(3)浓硫酸(4)氯化亚锡(5)重铬酸钾(6)二苯胺磺酸钠(7)蒸馏水2. 实验仪器:(1)分析天平(2)锥形瓶(3)滴定管(4)烧杯(5)漏斗(6)玻璃棒四、实验步骤1. 称取0.15~0.20g(称准至0.0002g)铁矿石试样,置于250mL锥形瓶中。
2. 加入几滴蒸馏水润湿样品,再加入10-20mL浓盐酸,低温加热10~20min,使铁矿石样品溶解。
3. 溶解完毕后,冷却溶液。
4. 将溶液过滤,保留滤液。
5. 向滤液中加入适量的氯化亚锡,使三价铁离子还原为二价铁离子。
6. 向溶液中加入适量的重铬酸钾溶液,用二苯胺磺酸钠作指示剂,用重铬酸钾标准溶液滴定至溶液呈现紫红色即为终点。
7. 记录滴定过程中所消耗的重铬酸钾标准溶液体积。
8. 根据滴定结果计算铁矿石样品中的全铁含量。
五、实验结果与分析1. 根据实验结果,铁矿石样品中的全铁含量为x%。
2. 分析铁矿石样品中全铁含量的影响因素,如矿石成分、实验条件等。
六、实验讨论1. 在实验过程中,可能存在的误差来源有:称量误差、溶解度误差、滴定误差等。
2. 针对实验过程中可能出现的误差,提出相应的改进措施,如提高称量精度、控制实验条件等。
3. 通过本实验,掌握了铁矿石中全铁含量的测定方法,为后续的矿物分析实验提供了基础。
七、实验总结本次实验成功测定了铁矿石中的全铁含量,掌握了相关实验技能。
在实验过程中,对可能出现的误差进行了分析和讨论,为今后的实验提供了有益的借鉴。
通过本次实验,提高了自己的动手能力和分析能力,为今后的学习和工作打下了基础。
铁矿中全铁含量的测定(无汞法)一、实验目的1.掌握K2Cr2O7标准溶液的配制及使用。
2.学习矿石试样的酸溶法。
3.学习K2Cr2O7法测定铁的原理及方法。
4.对无汞定铁有所了解,增强环保意识。
5.了解二苯胺磺酸钠指示剂的作用原理。
二、实验原理K2Cr2O7直接配制标准溶液。
1.测定:Cr2O7 2-+ 6 Fe2++ 14H+===2Cr3++6 Fe3+ +7H2O2.预还原:2FeCl4- + SnCl42- + 2Cl- =====2FeCl42- + SnCl62-过量SnCl2:SnCl2 + 2HgCl2===== SnCl4 + Hg2Cl2(汞污染)3. 使用甲基橙指示SnCl2还原Fe3+:三、实验仪器和药品:铁矿石试样、K2Cr2O7 、浓HCl、100g/L SnCl2、50g/L SnCl2 、甲基橙指示剂、去离子水、二苯胺磺酸钠指示剂、磷硫混酸(将150 mL浓硫酸缓慢加入700 mL 水中,冷却后再加入150 mL 浓磷酸)250ml容量瓶、烧杯、玻璃棒、表面皿、锥形瓶若干、移液管、酸式滴定管、台秤、电光分析天平四、实验步骤1. K2Cr2O7标准溶液的配制准确称取0.65~0.70g左右已干燥的K2Cr2O7于小烧杯中,加水溶解,定量转移至250ml容量瓶中,加水稀释至刻度,摇匀。
2. 铁矿中全铁含量的测定准确称取铁矿石粉1.5g左右于250 mL烧杯中,用少量水润湿,加入20 mL浓HCl溶液,盖上表面,在通风柜中低温加热分解试样,若有带色不溶残渣,可滴加20~30滴100g/L SnCl2助溶。
试样分解完全时,残渣应接近白色(SiO2),用少量水吹洗表面皿及烧杯壁,冷却后转移至250ml容量瓶中,稀释至刻度并摇匀。
移取试样溶液25.00mL于锥形瓶中,加8mL浓HCl溶液,加热近沸,加人6滴甲基橙,趁热边摇动锥形瓶边逐滴加人100g·L-1 SnCl2还原Fe3+。