化学反应热的计算
- 格式:ppt
- 大小:3.92 MB
- 文档页数:59
反应热的计算公式反应物减生成物自古以来,反应热就是许多化学过程的重要参数。
它既可以描述化学反应的活力,也可以预测反应的最终产物。
反应热可以用一个简单的计算公式来表示,其中反应物明确表示出来,而生成物则经过计算获得。
今天,我们着重来讨论这个计算公式如何用来计算反应物中应减少哪些物质以得到反应最终产物。
反应热计算公式说明,可以用反应物减去生成物来计算反应热。
首先,我们必须确定反应物和生成物的分子量,并确定反应的终点温度。
然后,将反应物的分子量乘以反应的最终温度,并减去生成物的分子量乘以反应的最终温度,就可以得到反应的热量。
可以将这个热量乘以反应的物质的总量即可得到反应的热量。
例如,当碱性氰化物反应时,反应物氰化物和氢氧化钠的分子量分别为62.03和40.02,反应的终点温度为25℃。
此时可以计算出反应的热量:62.03×25 - 40.02×25 = 1562.75J/mol。
这就是反应的热量。
这个计算公式也可以用来计算加热的量,如果有足够的反应物,反应的热量将会改变反应的最终产物,反应物中需要减少的物质也就清楚了。
可以将反应物中需要减少的物质乘以反应物的热量来计算需要减去的物质量。
例如,一个反应物中氯氧化钠的分子量为58.44,碱性氰化物的分子量为62.03,反应的最终温度为52℃,根据上述计算公式,可以计算出反应热量为-4381.12J/mol。
那么,如果将此反应中的氯氧化钠减少1 mol,则反应热量将减少58.44×(-4381.12)=-255.99kJ。
这样一来,就可以知道反应物中应减少多少物质以得到反应最终产物。
反应热的计算公式是一个强有力的工具,它能够帮助我们更加准确地预测化学反应的结果,还可以确定反应物中应减少哪些物质以得到反应最终产物。
它对预测反应产物的积极作用,也有助于调节反应的活性。
因此,反应热的计算公式受到化学工程师的高度重视,在许多反应中都得到了广泛的应用,从而让反应过程更加安全、精确、有效。
化学反应热的常用计算方法是什么?
反应热,通常是指:当一个化学反应在恒压以及不作非膨胀功的情
况下发生后,若使生成物的温度回到反应物的起始温度,这时体系所放出或
吸收的热量称为反应热。
下面是小编整理的化学反应热的常用计算方法,供
参考。
化学反应热的常用计算方法归纳:1、根据实验测得热量的数据求算反应热
的定义表明:反应热是指化学反应过程中放出或吸收的热量,可以通过实验
直接测定。
例如:燃烧6g炭全部生成气体时放出的热量,如果全部被水吸收,可使1kg水由20℃升高到67℃,水的比热为4.2kJ/(kg·℃),求炭的燃烧热。
分析:燃烧热是反应热的一种,它是指在101Kpa时,1mol纯净可燃物完全
燃烧生成稳定氧化物时所放出的热量。
据题意,先求得1kg水吸收的热量:
Q=cm△t=197.4kJ,由此得出该反应燃烧热为394.8KJ/mol。
(△H=-394.8KJ/mol) 2、根据物质能量的变化求算根据能量守恒,反应热等于生成物具有的总能量
与反应物具有的总能量的差值。
当E1(反应物)>E2(生成物)时,△H。
反应热的计算方法反应热是指化学反应在一定条件下放出或吸收的热量。
它是化学反应热力学研究的重要内容之一,对于化学反应的研究和应用具有重要的意义。
在实际应用中,我们需要通过实验来测定反应热,然后根据测定结果来计算反应热。
本文将介绍反应热的计算方法。
一、反应热的测定方法反应热的测定方法有多种,其中最常用的方法是燃烧法和溶解法。
1. 燃烧法燃烧法是指将反应物燃烧,使其与氧气反应,从而放出热量,然后通过测量燃烧前后的温度差来计算反应热。
燃烧法适用于燃烧烃类化合物、烷基醇、烷基酸等有机物,以及金属和非金属元素等。
2. 溶解法溶解法是指将反应物溶解在水或其他溶剂中,使其与溶剂发生反应,从而放出或吸收热量,然后通过测量溶解前后的温度差来计算反应热。
溶解法适用于溶解盐类、酸碱等化合物。
反应热的计算方法有两种,即摩尔反应热计算法和质量反应热计算法。
1. 摩尔反应热计算法摩尔反应热是指单位摩尔反应物在一定条件下放出或吸收的热量。
摩尔反应热的计算公式为:ΔH = Q / n其中,ΔH为摩尔反应热,单位为kJ/mol;Q为反应放出或吸收的热量,单位为kJ;n为反应物的摩尔数。
例如,对于以下反应:2H2(g) + O2(g) → 2H2O(l) + 572kJ反应放出的热量为572kJ,反应物的摩尔数为2mol,因此该反应的摩尔反应热为:ΔH = 572kJ / 2mol = 286kJ/mol2. 质量反应热计算法质量反应热是指单位质量反应物在一定条件下放出或吸收的热量。
质量反应热的计算公式为:q = Q / m其中,q为质量反应热,单位为kJ/g;Q为反应放出或吸收的热量,单位为kJ;m为反应物的质量,单位为g。
例如,对于以下反应:2H2(g) + O2(g) → 2H2O(l) + 572kJ反应放出的热量为572kJ,反应物的质量为4g,因此该反应的质量反应热为:q = 572kJ / 4g = 143kJ/g三、反应热的应用反应热的应用非常广泛,例如:1. 工业生产反应热可以用于工业生产中的热力学计算,例如计算化学反应的热效率、热平衡等。
《反应热的计算》化学教学反思《反应热的计算》化学教学反思身为一名刚到岗的人民教师,教学是我们的任务之一,对学到的教学新方法,我们可以记录在教学反思中,那么你有了解过教学反思吗?下面是精心整理的《反应热的计算》化学教学反思,欢迎使用,希望大家能够喜欢。
本节课为必修2和选修4的整合教学,教学中,教材的处理比较好,教学内容的深度、广度和难度把握的很好。
开头以实验来引出吸热反应和放热反应,实验现象比较明显,学生也比较容易直观地感受到热量的变化,在分析化学反应吸热,放热的原因时,结合图片来讲解,使抽象的问题形象化,学生容易接受。
课的`执教过程中,很好的调动了学生的学习兴趣使学生很快投入到课堂中来。
但课下通过学生问的问题,可以看出学生对知识运用能力有待提高,特别是对从键角方面来计算反应热这块,原因是学生对物质的结构式把握不好导致的,以后教学中需加强学生对物质结构式的把握以及从键角方面来计算反应热这两方面的练习。
本节课主要讲反应热计算的典型专题,课的设计中,先讲课本上的三道例题,虽然课本中讲解的比较详细,可我觉得课本中的解题思路不是最好的,因此在讲解时,我寻求学生最易理解以及常用到的方法进行解说,如:例2,我不用课本上的这种解题思路,而是采用燃烧热的计算公式,套用公式,题很快就算出来,学生也易于理解,符合新课程要求的制定符合学生的认识的教学规律。
在讲解例3时,我先给出解题思路,接着运用叠加方法来进行运算,并强调①当反应式乘以或除以某数时,ΔH也应相应的乘以或除以这个数。
②反应式进行加减运算时,ΔH也同样要进行相应的加减运算。
③注意删除过渡物质。
课后还专门设计了一道类似的题型给学生练,目的是为了巩固这种解题方法,从课堂上学生练的情况来看,学生的数学运算不过关,需进一步加强巩固。
1。
《化学反应热的计算》高中化学教案一、教学目标1. 让学生理解化学反应热的概念,掌握反应热的计算方法。
2. 培养学生运用所学知识解决实际问题的能力。
3. 提高学生对能量守恒定律的认识,强化能量转化与利用的意识。
二、教学内容1. 化学反应热的基本概念2. 反应热的计算方法3. 能量守恒定律的应用三、教学重点与难点1. 教学重点:反应热的计算方法,能量守恒定律的应用。
2. 教学难点:反应热的正负判断,能量守恒定律在实际问题中的运用。
四、教学方法1. 采用讲授法,讲解反应热的基本概念、计算方法和能量守恒定律。
2. 利用案例分析法,分析实际问题中的能量转化与利用。
3. 开展小组讨论,让学生互动交流,提高解决问题的能力。
五、教学过程1. 导入新课:通过一个简单的化学反应实例,引导学生关注反应热现象。
2. 讲解反应热的基本概念,阐述反应热的计算方法。
3. 分析实际问题,运用能量守恒定律解决问题。
4. 布置练习题,让学生巩固所学知识。
5. 课堂小结,总结本节课的主要内容和知识点。
六、教学策略1. 采用问题驱动的教学策略,引导学生通过问题探究反应热计算的原理和应用。
2. 利用多媒体教学手段,如动画和实验视频,形象地展示化学反应过程中的能量变化。
3. 设计具有梯度的练习题,从简单到复杂,让学生逐步掌握反应热的计算方法。
七、教学准备1. 准备相关的化学实验视频或动画,用于直观展示反应热现象。
2. 准备练习题和案例分析题,涵盖不同类型的反应热计算问题。
3. 准备教学PPT,内容包括反应热的基本概念、计算方法和应用实例。
八、教学评价1. 课堂评价:通过提问和练习题,评估学生对反应热概念和计算方法的掌握程度。
2. 作业评价:通过课后作业,检查学生对反应热计算的熟练程度和应用能力。
3. 小组讨论评价:评估学生在小组讨论中的参与度和问题解决能力。
九、教学拓展1. 介绍反应热的应用领域,如石油化工、能源开发等。
2. 探讨反应热在现代科技中的重要性,如新材料合成、药物设计等。
化学反应热方程式的计算笔记
一、反应热的计算方法
1. 根据热化学方程式计算:已知某反应的热化学方程式,可以直接计算出反应中的反应热。
2. 根据物质燃烧放热多少计算:物质燃烧放出的热量=物质的物质的量×燃烧热
3. 根据反应物和生成物的焓值计算:反应热=反应物的总焓值-生成物的总焓值
4. 根据键能计算:反应热=反应物的键能总和-生成物的键能总和
二、反应热的比较
1. 同一化学反应,由于反应条件不同,其反应的焓变值也不同。
因此,必须注明反应条件,才能比较反应的焓变值。
2. 对于同一反应,物质的状态不同时,其焓变值也不同。
因此,比较反应的焓变值时,必须注明物质的状态。
3. 对于同一反应,当物质的量不同时,其焓变值也不同。
因此,比较反应的焓变值时,必须注明物质的量。
三、盖斯定律的应用
1. 盖斯定律的内容:一个化学反应不管是一步完成的,还是多步完成的,其热效应总是相同的。
换句话说,化学反应的热效应只与起始状态(反应物)、最终状态(产物)有关,而与变化途径无关。
即只要起始状态(反应物)和最终状态(产物)一定时,任何一条化学反应不管是一步完成的,还是多步完成的,其热效应总是相同的。
2. 盖斯定律的应用:可以根据一个化学反应已知的反应热来推算其他化学反应的反应热;也可以根据一个化学反应的反应热来推算其他相关化学反应的反应热。
以上就是关于化学反应热方程式的计算笔记,希望对你有所帮助。
化学反应热计算一、化学反应热的原理化学反应热是由化学反应过程中的键能变化引起的。
在化学反应中,化学键的形成或断裂都会伴随着能量的变化。
当反应物中的键断裂时,吸收能量,反应物吸热;当产物中的键形成时,释放能量,产物放热。
化学反应热可正可负,取决于反应的特性。
二、化学反应热的计算方法1. 基于焓变的计算方法化学反应热可通过焓变计算得到,即反应物与产物之间的焓差。
焓变是物质在恒压下发生化学反应时吸热或放热的能力。
根据热力学第一定律,焓变等于系统对外界做的功加上吸收或释放的热量。
2. 基于反应热量计的计算方法反应热量计是一种专门用于测量化学反应热的仪器。
它包括一个反应容器和一个热量计,通过测量反应容器内的温度变化来计算反应热。
这种方法适用于无法直接测量焓变的情况。
三、化学反应热的应用1. 燃烧热燃烧热是指物质完全燃烧所释放的热量。
燃烧热的计算可以帮助我们了解燃料的热效应,对于选择和优化燃料具有重要意义。
2. 反应热的热力学性质化学反应热是研究反应的热力学性质的重要参数。
通过测量反应热,可以确定反应的放热或吸热性质,进而分析反应的热力学特征。
3. 工业过程优化在工业生产中,热量的释放和吸收对工艺过程的控制至关重要。
通过计算和控制化学反应热,可以优化工业过程,提高生产效率和经济效益。
4. 新材料研究化学反应热的计算对于新材料的研究也具有重要意义。
通过计算反应热,可以评估新材料的热稳定性和热分解特性,为新材料的设计和应用提供理论依据。
化学反应热计算是研究化学反应热力学性质的重要手段。
通过计算和测量反应热,可以了解反应的能量变化和热力学特性,为工业生产和新材料研究提供理论依据和技术支持。
化学反应热计算的应用前景广阔,有助于推动化学工程和材料科学的发展。
化学反应热的计算一、盖斯定律1. 什么是盖斯定律?例1.实验中不能直接测出由石墨和氢气生成甲烷反应的ΔH ,但可测出CH 4燃烧反应的ΔH 1,根据盖斯定律求ΔH 4CH 4(g)+2O 2(g)=CO 2(g)+2H 2O(l);ΔH 1=-890.3kJ ·mol -1 (1)C(石墨)+O 2(g)=CO 2(g);ΔH 2=-393·5kJ ·mol -1 (2)H 2(g )+1/2 O 2(g )=H 2O (l );ΔH 3=-285.8kJ ·mol -1 (3) C(石墨)+2H 2(g)=CH 4(g);ΔH 4 (4)二、反应热计算的常考题型题型一:根据比例关系计算ΔH例2.已知O 2H (g)CO (g)2O (g)CH 2224++(1);ΔH =-890.3 kJ ·1mol -,现有4CH 和CO 的混合气体共0.75 mol ,完全燃烧后,生成2CO 气体和18 g 液态水,并放出515.9 kJ 热量,则CO 燃烧的热化学方程式是:_______________________________题型二:利用该死定律求反应热例3、科学家盖斯曾提出:“不管化学过程是一步完成或分几步完成,这个总过程的热效应是相同的。
”利用盖斯定律可测某些特别反应的热效应。
(1)P 4(s ,白磷)+52410O g P O s ()()= ∆H kJ mol 129832=-./ (2)P s O g P O s ()()(),红磷+=54142410 ∆H kJ mol 27385=-./ 则白磷转化为红磷的热化学方程式_____________。
相同的状况下,能量较低的是_________;白磷的稳定性比红磷___________(填“高”或“低”)。
练习:由金红石(TiO 2)制取单质Ti ,涉及到的步骤为::TiO 2TiCl 4−−−−→−Ar C /800/0镁Ti已知:① C (s )+O 2(g )=CO 2(g ); ∆H =-393.5 kJ·mol -1② 2CO (g )+O 2(g )=2CO 2(g ); ∆H =-566 kJ ·mol -1③ TiO 2(s )+2Cl 2(g )=TiCl 4(s )+O 2(g ); ∆H =+141 kJ ·mol -1 则TiO 2(s )+2Cl 2(g )+2C (s )=TiCl 4(s )+2CO (g )的∆H = 。
化学化学反应热的计算化学反应热的计算化学反应热是指化学反应在一定条件下的热变化量,即反应前后吸收或放出的能量差。
根据热力学第一定律,化学反应热可以表示为反应物和生成物的内能差与外界做功的和。
本文将介绍化学反应热的计算方法。
一、化学反应热的定义化学反应热可以用热量单位热焓(enthalpy)表示,也可以用能量单位焓(enthalpy)表示。
在实际应用中,通常使用热量单位热焓来表示化学反应热。
热焓是物质在常压下的热量变化,表示为ΔH。
化学反应热的计算需要注意以下几点:1、化学反应的状态方程必须已知,并且反应方程的物质量比要确定。
2、在实际条件下,反应物和生成物之间存在着热量交换,包括气体扩散、液体膨胀、固体变形等。
这些不可逆过程会使得实验结果产生误差,因此计算化学反应热时应该考虑到这些过程的影响。
3、反应时需要考虑反应物和生成物的相对热力学稳定性,因为它们的稳定性不同,热变化量也会不同。
二、计算化学反应热的方法计算化学反应热的最常用方法是利用反应热热量变化定律:ΔH = ∑ΔHf(生成物) - ∑ΔHf(反应物)其中,ΔHf表示标准生成焓,是在标准状态下单位物质生成的热焓变化量。
标准状态是指温度为298K,压力为1 atm (标准大气压),物质浓度为1 mol/L。
化学反应的热焓变化量ΔH可以通过测量反应中放热或吸热的热量来确定。
这种方法被称为热计法。
热计法的基本原理是利用热量转换原理,将反应放出的或吸收的热量转化为热量变化量。
热计法的具体实施流程如下:1、反应器的温度、压力、物质浓度等各项指标应调节好。
2、将反应物加入反应器中,测量反应物的温度。
3、根据反应物的初始温度和反应前后温度变化,测量反应放出或吸收的热量。
4、利用反应热热量变化定律,计算反应热。
三、化学反应热的计算举例以2H2(g) + O2(g) → 2H2O(g)为例,计算其反应热。
1、查表得到反应物和生成物的标准生成焓:∑ΔHf(2H2(g)) = 0 kJ/mol∑ΔHf(O2(g)) = 0 kJ/mol∑ΔHf(2H2O(g)) = -483.6 kJ/mol2、代入反应热热量变化定律,计算反应热:ΔH = ∑ΔHf(2H2O(g)) - ∑ΔHf(2H2(g) + O2(g))ΔH = (-483.6) - (0 + 0) = -483.6 kJ/mol因此,2H2(g) + O2(g) → 2H2O(g)反应放出的热量为483.6 kJ/mol。
第三节化学反应热的计算知识点一盖斯定律及应用1.运用盖斯定律解答问题求P4(白磷)===4P(红磷)的热化学方程式。
已知:P4(s,白磷)+5O2(g)===P4O10(s) ΔH1①4P(s,红磷)+5O2(g)===P4O10(s) ΔH2②即可用①-②得出白磷转化为红磷的热化学方程式。
答案P4(白磷)===4P(红磷) ΔH=ΔH1-ΔH22.已知:H2O(g)===H2O(l) ΔH=Q1kJ·mol-1C 2H5OH(g)===C2H5OH(l) ΔH=Q2kJ·mol-1C 2H5OH(g)+3O2(g)===2CO2(g)+3H2O(g)ΔH=Q3kJ·mol-1若使46 g酒精液体完全燃烧,最后恢复到室温,则放出的热量为( ) A.(Q1+Q2+Q3) Kj B.0.5(Q1+Q2+Q3) kJ C.(0.5Q1-1.5Q2+0.5Q3) kJ D.(3Q1-Q2+Q3) kJ答案 D解析46 g酒精即1 mol C2H5OH(l)根据题意写出目标反应C 2H5OH(l)+3O2(g)===2CO2(g)+3H2O(l) ΔH然后确定题中各反应与目标反应的关系则ΔH=(Q3-Q2+3Q1) kJ·mol-1知识点二反应热的计算3.已知葡萄糖的燃烧热是ΔH=-2 840 kJ·mol-1,当它氧化生成1 g液态水时放出的热量是( )A.26.0 kJ B.51.9 kJ C.155.8 kJ D.467.3 kJ 答案 A解析葡萄糖燃烧的热化学方程式是C 6H12O6(s)+6O2(g)=6CO2(g)+6H2O(l)ΔH=-2 840 kJ·mol-1据此建立关系式6H2O ~ΔH 6×18 g 2 840 kJ1 g x kJ解得x=2 840 kJ×1 g6×18 g=26.3 kJ,A选项符合题意。
化学反应热的测定与计算方法在化学反应中,反应热是指反应过程中吸收或释放的能量。
测定反应热的准确与否对于研究化学反应的热力学性质、确定化学反应的特性以及工业生产等领域都具有重要意义。
本文将介绍几种常用的化学反应热的测定与计算方法。
一、常压条件下的反应热测定法常压条件下的反应热测定法主要通过观察反应过程中产生或吸收的热量来确定反应热。
其中常见的方法有:1. 定容量热量计法该方法使用热量计测量反应过程中所产生或吸收的热量。
首先,将反应溶液装入热量计中,记录初始温度并观察温度的变化。
然后,观察反应的物质消耗或生成情况,测量反应后的最终温度。
通过计算反应过程中温度的变化,结合物质的量来确定反应的热量。
2. 连续流动热量计法该方法通过将反应物连续引入热量计中,观察反应物混合过程中所释放或吸收的热量。
首先,在热量计中设置反应槽和热电偶温度探头。
然后,将反应物以恒定的流速引入反应槽中,并通过对输出温度信号的记录,计算反应过程中产生的热量。
二、恒压条件下的反应热测定法恒压条件下的反应热测定法主要通过测量化学反应过程中的温度变化和压力变化,来确定反应热。
其中常见的方法有:1. 恒焓法该方法使用燃烧热计测量恒压下的反应热。
首先,在恒压条件下将反应物燃烧,通过测定燃烧过程中产生的热量来计算反应热。
该方法适用于可以燃烧的物质反应的热量测定。
2. 蒸气量法该方法通过测量恒压条件下溶液中溶质的蒸气量的变化来确定反应热。
首先,将溶液注入恒温恒压器中,观察温度和压力的变化。
然后,通过以下公式计算反应热:ΔH = q/Δn其中,ΔH为反应热,q为吸附热,Δn为溶质的摩尔数差值。
三、反应热的计算方法反应热的计算方法主要通过热化学方程式和标准生成焓来计算。
具体步骤如下:1. 根据反应物和生成物,编写平衡化学方程式。
2. 根据平衡化学方程式,确定物质的量比。
3. 根据给定的反应物和生成物的标准生成焓,计算反应物和生成物的生成焓差。
4. 根据生成焓差,计算反应热。
反应热标准生成焓
反应热是指化学反应在均压条件下所放出或吸收的热量,通常用ΔH表示。
标准生成焓是指在标准状况下,1摩尔物质生成过程中所放出或吸收的热量,通常用ΔH°f表示。
标准生成焓可以用来计算化学反应的反应热,其计算公式为:
ΔH = ∑nΔH°f(生成物) - ∑nΔH°f(反应物)
其中,n表示反应物和生成物的摩尔数。
标准生成焓的值可以通过实验测定得到,也可以通过估算方法推算得到。
常用的估算方法包括Hess定律和Kirchhoff定律。
Hess定律指出,化学反应的反应热与其反应路径无关,只与反应物和生成物的状态有关。
因此,可以利用已知反应的标准生成焓来计算其他反应的标准生成焓。
Kirchhoff定律则是利用热力学定律来推算标准生成焓的值,其基本思想是通过测量物质在不同温度下的热容变化来计算标准生成焓的变化量。
这种方法适用于无法通过实验测定的物质。
- 1 -。