1溶解热的测定
- 格式:ppt
- 大小:231.00 KB
- 文档页数:21
溶解热的测定实验报告实验目的,通过本实验,我们旨在通过测定物质的溶解热来探究其热力学性质,并通过实验数据的分析,掌握溶解热的测定方法和步骤。
实验仪器与试剂,实验仪器包括热量计、热量计杯、电磁搅拌器、温度计等;实验试剂为待测物质和溶剂。
实验原理,在本实验中,我们将待测物质与溶剂混合,并通过测定混合物的温度变化来计算溶解热。
根据热力学原理,当物质溶解时,会吸收或释放一定量的热量,而溶解热则是单位物质在溶解过程中吸收或释放的热量。
实验步骤:1. 将热量计杯置于热量计中,加入一定量的溶剂,并记录溶剂的初始温度。
2. 将待测物质加入热量计杯中,并迅速搅拌均匀,记录混合物的最终温度。
3. 根据温度变化和溶剂的热容量,计算出溶解热的值。
实验数据处理:根据实验数据和原理公式,我们可以计算出待测物质的溶解热。
在实验中,我们需要注意控制实验条件,确保实验数据的准确性和可靠性。
同时,还需要进行数据处理和分析,得出溶解热的准确数值。
实验结果与讨论:通过实验数据处理,我们得到了待测物质的溶解热值,并对实验结果进行了讨论和分析。
在讨论中,我们可以比较不同物质的溶解热值,探讨其在热力学上的差异和特点,从而加深对溶解热的理解。
结论:在本次实验中,我们成功测定了待测物质的溶解热,并通过数据分析得出了准确的结果。
通过本实验,我们对溶解热的测定方法和步骤有了更深入的了解,为进一步研究物质的热力学性质奠定了基础。
总结,通过本次实验,我们不仅学习了溶解热的测定方法和步骤,还掌握了实验数据处理和分析的技巧。
实验中的经验和收获将对我们今后的实验和研究工作产生积极的影响。
同时,我们也意识到在实验中需要严格控制实验条件,确保实验数据的准确性和可靠性。
致谢,在此,特别感谢实验指导老师对我们实验过程中的指导和帮助,以及实验室工作人员对实验设备和试剂的准备工作。
同时也感谢实验小组成员的合作和努力,共同完成了本次实验。
参考文献:1. 《物理化学实验指导》,XXX,XXX出版社,201X年。
实验三溶解热的测定一、实验目的1. 了解电热补偿法测定热效应的基本原理,掌握电热补偿法的仪器使用。
2. 通过用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分冲淡热,积分冲淡热和微分溶解热。
二、基本原理一定量的物质溶于一定量的溶剂中所产生的热效应称为该物质的溶解热。
溶解热除了与溶剂量及溶质量有关外,还与体系所处的温度和压力有关。
溶解热分为两种:积分溶解热和微分溶解热。
积分溶解热是在恒温恒压下,1mol溶质溶于n1 mol溶剂中产生的热效应。
它是溶质溶解时所产生的热量总和,可由实验直接测定。
微分溶解热是在恒温恒压下,在大量给定浓度的溶液中加入1mol溶质时所产生的热效应。
它很难直接测定,但可间接的方法求得,即先求出在定量的溶剂中加入不同量的溶质时的积分溶解热,然后以积分溶解热△H (kJ·mol-1)为纵坐标,以溶质的量n1/n2(n1为溶剂的摩尔量,n2为溶质的摩尔量)为横坐标绘制图,如图所示(KNO3在H2O的积分溶解热)。
曲线上任一点的正切即为该浓度时的微分溶解热。
本实验是测定KNO3的溶解热,采用累加的方法先在纯溶剂中加入溶质,测出溶解热,然后在这溶液中再加入溶质,测出热效应,根据加入溶质的总量可求溶液的浓度,而各次热效应的总和即为该浓度下的溶解热。
KNO3溶解过程是吸热过程,可采用热补偿方法进行测定。
热补偿方法是根据溶解前后的温差,通电加热,使体系由温度的最低值沿原途径升高至原值,由消耗的电功可求出溶解的热效应,即:溶解热Q = I·V ·t ;(3.1)△H = Q / n2(3.2)式中:Q溶解热(焦耳);I为电流强度(安培);V为电压(伏特),t 为加热的时间(S), △H 积分溶解热(kJ·mol-1) ,n2为溶质的摩尔量(mol)。
三、仪器和试剂WLS-2数字恒流源、SWC-II D数字温度温差仪、量热器(含加热器)、可调速磁力搅拌器、秒表、蒸馏水、KNO3(A.R.)四、实验连接图五、操作步骤1. 在台式天平上称取216.2克蒸馏水于量热器中。
溶解热的测定实验报告思考题实验目的,通过测定不同物质的溶解热,掌握测定溶解热的方法和技术。
实验原理,溶解热是指单位质量物质在溶液中溶解时吸收或释放的热量。
在实验中,通常采用恒温条件下测定固体在溶剂中溶解时的温度变化,从而计算出溶解热。
实验仪器和药品,恒温水浴器、热电偶温度计、电子天平、试管、烧杯、玻璃棒、蒸馏水、硝酸银、硫酸钠、氯化钠、氯化铵。
实验步骤:1. 将恒温水浴器调节至所需温度,放入烧杯中。
2. 在电子天平上称取一定质量的试验物质,记录质量。
3. 将试验物质放入烧杯中,用玻璃棒搅拌均匀。
4. 用热电偶温度计测定试验物质在恒温水浴器中的温度变化,记录数据。
5. 将试验物质完全溶解后,记录最终温度。
6. 重复以上步骤,测定不同物质的溶解热。
实验数据处理:1. 根据实验数据计算出每种物质的溶解热。
2. 分析实验数据,比较不同物质的溶解热大小。
实验结果:通过实验测定,得到不同物质的溶解热如下:硝酸银,ΔH1。
硫酸钠,ΔH2。
氯化钠,ΔH3。
氯化铵,ΔH4。
实验结论:根据实验结果,可以得出不同物质的溶解热存在差异,这与物质的性质有关。
溶解热的大小反映了物质溶解时的热力学特性,对于理解溶解过程和溶解热的意义具有重要意义。
实验中可能存在的误差:1. 实验过程中温度测定不够准确。
2. 实验中未考虑到周围环境的影响。
实验改进:1. 提高温度测定的精度。
2. 在实验中加入控制环境温度的措施。
实验应用:溶解热的测定在化学工业生产中有着重要的应用,可以帮助工程师掌握不同物质的溶解特性,指导工业生产过程中的溶解操作。
通过本次实验,我们深刻理解了溶解热的测定方法和意义,对化学实验有了更深入的认识。
同时,也让我们意识到实验中可能存在的误差和改进的方向,为今后的实验提供了宝贵的经验。
物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。
3.掌握电热补偿法的仪器使用要点。
二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。
它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。
前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。
后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。
即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。
表示,显然。
后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。
2.药品:硝酸钾(分析纯)。
四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。
溶解热实验报告引言溶解热是指单位物质在溶解过程中吸收或释放的热量。
它是描述物质溶解过程中吸热或放热程度的一个重要物理量。
本实验旨在通过测量溶解热的方法,探究溶解过程中的热量变化及其影响因素。
材料与方法材料•烧杯•热量计•恒温槽•砂浴•稳定器•试管•温度计•称量器方法1.在恒温槽内加入适量的水,并用温度计测量水的初始温度。
2.将烧杯放入热量计中,并通过计算器将稳定器放在烧杯内。
3.在试管中称量一定质量的试样物质,并记录其质量。
4.打开热量计的电源,将试管中的试样物质放入烧杯中。
5.稳定后,用温度计测量溶解液的最终温度。
6.记录溶解过程中热量计显示的数值。
结果与分析实验数据•水的初始温度:25℃•试样物质的质量:10g•溶解液的最终温度:30℃•热量计显示的数值:1000J分析根据实验数据和热量计的显示数值,可以计算溶解热的数值。
首先,计算溶解液的温度变化:ΔT = 最终温度 - 初始温度 = 30℃ - 25℃ = 5℃然后,计算溶解热的数值:溶解热 = 热量计显示的数值 / 试样物质的质量 = 1000J / 10g = 100J/g结论根据实验结果,我们可以得出以下结论: 1. 在此实验中使用的试样物质的溶解热为100J/g。
2. 溶解过程中,试样物质吸收了100J的热量。
3. 在实验过程中,水的温度变化了5℃,说明溶解热是一个吸热过程。
实验误差与改进实验中可能存在一些误差的因素,如温度测量的不准确、试样物质的量未完全溶解等。
为了减小误差,可以采取以下改进措施: 1. 使用更精确的温度计进行温度测量。
2. 搅拌试样物质和溶液,以促进试样物质的溶解。
3. 执行多次实验,取平均值,以提高结果的准确性。
结语通过本实验,我们了解了溶解热的概念并通过实验测量了溶解热的数值。
溶解热在化学和物理实验中有着重要的应用,深入理解和掌握溶解热的性质对于研究物质的溶解过程提供了重要的参考。
实验八 溶解热的测定一、实验目的及要求1.掌握采用电热补偿法测定热效应的基本原理;2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热,积分稀释热和微分稀释热;3.掌握溶解热测定仪器的使用。
二、实验原理物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。
积分溶解热是指定温定压下把1 mol 物质溶解在 n 0 mol 溶剂中时所产生的热效应。
由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以Q s 表示。
微分溶解热是指在定温定压下把 1 mol 物质溶解在无限量某一定浓度溶液中所产生的热效应。
在溶解过程中浓度可视为不变,因此又称为定浓溶解热,以0,,n p T s n Q ⎪⎭⎫ ⎝⎛∂∂表示,即定温,定压,定溶剂状态下,由微小的溶质增量所引起的热量变化。
稀释热是指将溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
积分稀释热是指在定温定压下把原为含 1 mol 溶质和 n 01 mol 溶剂的溶液冲淡到含有 n 02 mol 溶剂时的热效应,它为两浓度的积分溶解热之差,以Q d 表示。
微分冲淡热是指将 1 mol 溶剂加到某一浓度的无限量溶液中所产生的热效应,以n p T s n Q ,,0⎪⎪⎭⎫ ⎝⎛∂∂表示,即定温,定压,定溶质状态下,由微小溶剂增量所引起的热量变化。
积分溶解热的大小与浓度有关,但不具有线性关系。
通过实验测定,可绘制出一条积分溶解热Q s 与相对于 1 mol 溶质的溶剂量 n 0 之间的关系曲线(如图8-1所示),其它三种热效应由Q s ~n 0曲线求得。
设纯溶剂、纯溶质的摩尔焓分别为H 1和H 2,溶液中溶剂和溶质的偏摩尔焓分别为H 1,m 和H 2,m ,对于由 n 1 摩尔溶剂和 n 2 摩尔溶质所组成的体系,在溶剂和溶质未混合前,体系总焓为: 2211H n H n H += (1) 将溶剂和溶质混合后,体系的总焓为:m m H n H n H ,22,11'+= (2) 因此,溶解过程的热效应为:22112,221,11)()('H n H n H H n H H n H H H m m ∆+∆=-+-=-=∆ (3) 在无限量溶液中加入 1 mol 溶质,(3)式中的第一项可认为不变,在此条件下所产生的热效应为(3)式第二项中的ΔH 2,即微分溶解热。
溶解度和溶解热的测定方法
溶解度和溶解热的测定方法各有不同,它们是深入了解物质特性和
行为的重要参数。
而这两大测定方法的基本介绍和作用是必不可少的。
一、溶解度的测定方法
溶解度是指在一定温度下,特定的溶剂中能溶解特定溶质的最大量,计量单位常为g/100g溶剂。
主要的测试方法有以下几种:
1. 温度 - 饱和溶液法:对于溶解度较大的物质,采用这种方法。
先
将溶质加入溶剂中,随着溶质的添加,直到溶剂不能再溶解时,再加
热至特定温度,测得此时的溶液浓度即为溶解度。
2. 直接滴定法:用于酸碱之类的溶液。
将溶质悬浮在溶剂中,用滴
定液滴到反应终点,从碱液或酸液的消耗量计算溶解度。
3. 凝固点降低法:适用于溶质透析困难的某些生物组织。
通过测定
溶液的凝固点降低量,可逆推得溶质的溶解度。
二、溶解热的测定方法
溶解热指溶质在特定溶剂中溶解时吸收或释放的热量,通常用焓来
表示。
其测定方法在实验条件下有以下两种:
1. 恒温释热量计法: 利用溶解过程中吸收或释放的热量,改变恒温
释热量计内的水温,从而得出溶解热。
2. 恒压卡计法:测定溶质溶解过程产生或吸收的热量,通过改变恒
压卡计中的气体的压力,推算出溶解热。
以上就是溶解度和溶解热的测定方法,了解这些方法不仅有助于实
现精确地测定,还可以通过观察溶解过程提供对物质行为的深入理解。
而这两项测定,对于科学研究或者工业生产来说,都具有非常重要的
意义。
物理化学实验报告溶解热的测定
溶解热的测定
溶解热是专指溶质在一定压力下从固体形态转变为液体形态时,其能量所耗费的热量大小,也就是说溶解过程中溶液所吸收或释放的热量。
本次实验以NaCl为溶质,采用盐酸与碳酸钠溶液混合液体的方式,来测定它在溶解过程中的溶解热。
实验环境、设备及试剂
本实验室使用的温度测定设备为“风冷式热量卡尔托热量计”,溶质的试剂为氯化钠。
实验步骤
1、将极为准确的容器(用于测量热量变化的容器)放入温度计中;
2、调整温度计,将温度稳定在25℃;
3、将已称重好的氯化钠放入容器,记录初始温度StartT;
4、将试剂温度均匀上升到150-170℃后,搅拌均匀,等待20秒左右;
5、读取上升后的终止温度EndT;
6、计算溶解热: Q = 60 * EndT - 60 * StartT,单位为J / mol。
实验结果与分析
本次实验的初始温度StartT=25℃,上升后的终止温度EndT=90℃,溶解热Q=60* EndT - 60 *StartT=18000 J/mol,在实验室配置的误差范围内,结果合格。
结论
本次实验中使用盐酸与碳酸钠混合液体的溶液,测定了溶质NaCl的溶解热,结果为18000 J/mol,在实验室配置的误差范围内,结果合格。
溶解热的测定溶解热是指在一定压力和温度下,单位质量的物质从固态转变为溶解态所释放或吸收的热量。
溶解热是反映固体与溶液相互作用强度、稳定性的重要指标,对于理解化学反应、确定物质的结构等方面都具有重要的意义。
那么,如何测定溶解热呢?一、原理:通常我们使用定温法,即先将药品(固态)放在一定量的溶液中,使其达到热平衡,记录下溶解时药品和溶液的初温度和终温度,然后再测定空盛的控制试验,最后计算溶解热。
这个原理是根据热力学的一级定律,即能量守恒的原理。
药品溶解时所吸收的热量等于溶液放出的热量。
溶液放出的热量可以用溶液的比热容×质量×热效值(即水的热效值为4.18J/g℃)进行计算。
二、步骤:1.准备试样:将约1克左右的样品(需要精确称量)粉碎,过筛,放在干燥的试管中备用。
2.准备溶液:按照需求设置好溶液的浓度和体积,倒入烧杯中,通过恒温器加热到预设温度。
建议使用热水浴或恒温水槽来控制恒温器。
3.称量固态药品:将准备好的粉末样品逐个分配到干燥的试管中。
为确保精度,建议不要将样品直接放入溶液中。
4.测定初始温度:用铂电极在溶液中测定初始温度。
该步骤应与测定结束的温度差不大。
为提高测量精度,建议取平均值。
5.将药品加入溶液中:取准备好的样品试管,打开塞子,将药品逐渐加入溶液中,并立即关上塞子,摇晃试管,使药品完全溶解。
为确保精度,建议在药品完全溶解前不要移动试管或打开试管盖。
6.测量结束温度:用铂电极在溶液中测定药品和溶液的终温度。
该步骤应与测定初温度时间尽可能接近。
7.计算:计算公式为(热效值×溶液的质量×溶液的比热容)÷样品质量。
三、注意事项:1.样品需精确称量。
对于粉末样品,建议使用量筒来测量体积。
2.试管须干燥。
使用化学用品器皿干燥后,倒出任何剩余的物质。
试管晾干后再使用。
3.初始温度和结束温度的时间应该相同。
当测量结束温度时,需要多次测量,对测量数据进行求平均值。
溶解热的测定实验报告溶解热的测定实验报告引言:溶解热是指单位物质在溶剂中溶解时释放或吸收的热量。
它是研究溶解过程中能量变化的重要参数之一,对于了解溶解过程的热力学性质具有重要意义。
本实验旨在通过测定溶解热的方法,探究不同物质的溶解过程中的热力学特性。
实验部分:1. 实验原理:溶解热的测定可以通过定容热量计的方法进行。
在实验中,我们使用了恒温水浴槽来保持溶剂和溶质的温度稳定。
通过测量在溶解过程中溶液的温度变化,可以计算出溶解热的值。
2. 实验仪器和试剂:实验仪器:定容热量计、恒温水浴槽、温度计。
试剂:硫酸铜、氯化钠、氯化铵。
3. 实验步骤:(1)将定容热量计清洗干净,并用去离子水冲洗干净。
(2)将一定质量的溶质加入定容热量计中,记录下溶质的质量。
(3)将一定体积的溶剂加入定容热量计中,记录下溶剂的体积。
(4)将定容热量计放入恒温水浴槽中,使溶液温度达到恒定值。
(5)记录下溶液的初始温度。
(6)迅速将溶质加入到溶剂中,同时用玻璃棒搅拌均匀。
(7)记录下溶液的最高温度。
(8)根据实验数据计算出溶解热的值。
结果与讨论:通过实验测得的溶解热值如下:硫酸铜:-36.2 kJ/mol氯化钠:3.9 kJ/mol氯化铵:14.5 kJ/mol根据实验结果可以得出以下结论:1. 硫酸铜的溶解过程是吸热反应,即溶解热为负值。
这是因为在溶解过程中,硫酸铜与水发生了吸热反应,吸收了周围环境的热量。
2. 氯化钠的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化钠与水发生了放热反应,释放了热量。
3. 氯化铵的溶解过程是放热反应,即溶解热为正值。
这是因为在溶解过程中,氯化铵与水发生了放热反应,释放了热量。
实验中的误差主要来自于以下几个方面:1. 实验仪器的精确度:定容热量计和温度计的精确度会对实验结果产生影响。
在实验中,我们尽量选择精确度较高的仪器,以减小误差。
2. 实验操作的准确性:在实验过程中,对溶质和溶剂的质量和体积的测量需要准确无误,任何误差都会对最终结果产生影响。
溶解热的测定实验报告实验名称:溶解热的测定实验目的:1. 学习并掌握溶解热的测定方法;2. 进一步理解溶解热的概念;3. 测定一种化合物的溶解热,并比较其与理论值的偏差。
实验原理:溶解热是指在恒定压力下,将一摩尔物质溶解在溶剂中时吸收或放出的热量。
溶解热的测定方法有多种,其中较为常用的是恒定温度法。
该方法利用两个等温反应容器,一个装有溶质的溶液,在反应过程中吸收热量,另一个装有纯溶剂,在反应过程中略有温度下降。
通过测量两个容器的温度变化,即可计算出溶解热的大小。
实验器材和试剂:1. 等温反应容器(两个);2. 实验电热器;3. 电器控温仪;4. 温度计;5. 秤;6. 纯净水、硫酸钠等试剂。
实验步骤:1. 准备两个等温反应容器,称量一定质量的溶质(如硫酸钠)和纯溶剂(如纯净水)分别装入两个反应容器中,记录质量。
2. 将两个反应容器放在温度控制仪电热器上,用温度控制仪保持两个容器的温度恒定,并且两个容器的压力相同。
3. 开始实验,先加热纯溶剂容器至一定温度,并记录温度为T1。
4. 同时,将溶质溶液容器中的溶质加入纯溶剂容器中,并将溶液充分搅拌,观察溶质的溶解过程。
5. 实验结束后,记录溶剂容器温度为T2。
6. 计算溶解热的大小,使用以下公式:Q = m × C × ΔT其中,Q为溶解热,m为溶质的质量,C为溶液的比热容,ΔT为溶剂容器温度降低值(T1-T2)。
注意事项:1. 操作时要小心,避免烫伤。
2. 实验过程中要确保两个反应容器的温度和压力相同,以保证测量结果的准确性。
3. 确保使用的溶剂和溶质的纯度,以免影响实验结果。
实验结果:根据实验测得的数据,计算得到溶解热的大小,与理论值进行对比,计算偏差。
实验结论:根据实验结果可以得出溶解热的大小,并与理论值进行比较,判断实验结果的准确性,评估实验的可靠性。
根据实验结果分析可能存在的误差来源,并提出改进方案。
实验3_溶解热的测定溶解热的测定1 引⾔1.1 实验⽬的1. 测量硝酸钾在不同浓度⽔溶液的溶解热,求硝酸钾在⽔中溶解过程的各种热效应。
2. 掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3. 复习和掌握常⽤的测温技术1.2 实验原理在热化学中,关于溶解过程的热效应,有以下⼏个基本概念溶解热在恒温恒压下,溶质B 溶于溶剂A (或溶于某浓度溶液)中产⽣的热效应,⽤Δsol H 表⽰摩尔积分溶解热在恒温恒压下,1 mol 溶质溶解于⼀定量的溶剂中形成⼀定浓度的溶液,整个过程的热效应,⽤Δsol H m 表⽰:Δsol H m =Δsol HB式中:n B 是溶解于溶剂A 中的溶质B 的物质的量摩尔微分溶解热在恒温恒压下,1 mol 溶质溶于某⼀确定浓度的⽆限量的溶液中产⽣的热效应,以 (Δsol H n B)T,p,n A表⽰,简写为(?Δsol H ?n B)n A稀释热在恒温恒压下,⼀定量的溶剂A 加到某浓度的溶液中使之稀释,所产⽣的热效应摩尔积分稀释热在恒温恒压下,在含有1 mol 溶质的溶液中加⼊⼀定量的溶剂,使之稀释成另⼀浓度的溶液,这个过程产⽣的热效应,以Δdil H m 表⽰:Δdil H m =Δsol H m2?Δsol H m1摩尔微分稀释热在恒温恒压下,1 mol 溶剂加⼊到某⼀浓度⽆限量的溶液中所发⽣的热效应在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的⼤⼩取决于A 和B 的物质的量,即Δsol H =f(n A ,n B )取全微分Δsol H =n A (eΔsol H A )n B+n B (eΔsol HB )nA令n 0=n A /n B ,则有Δsol H m =n 0(eΔsol H en A )n B+(eΔsol Hen B )nA所以,⼀旦确定了⼀定浓度区间内摩尔积分溶解热与n 0的关系,溶质B 在该区间的溶解热、摩尔微分溶解热、摩尔积分稀释热等溶解热效应都可以通过计算得到(如图2.1)。
溶解热的测定2 实验操作2.1 仪器药品、仪器型号及测试装置示意图保温瓶,磁力搅拌器1台,热敏电阻测温装置1套,加热器,直流稳压稳流电源,精密毫安表,秒表,容量瓶(500ml),烧杯(1000ml),温度计,研钵1只,称量瓶,分析天平(公用),高精度万用表(公用)。
KNO3(AR)图1 热敏电阻测溶解热装置图2.2 实验条件室温:20.5 ℃湿度:58%大气压:992.8 hPa2.3 实验操作步骤及方法要点(1)搭装置,要求装置绝热性能良好。
(2)量取500 mL去离子水注入保温瓶中。
开动搅拌器。
用电加热方法调节水温,使之尽量接近室温,输出温度基本保持不变。
调节惠斯通电桥的调节旋钮,使输出温度为5 度。
待温度基本稳定后,记录约4 min。
(3)打开电源开关,设定电源输出的电压值(20 V以上)和电流值(0.95 A)。
(4)按下电源的“输出”按键,开始加热,温度上升至7度时(以无纸记录仪上显示的数值为准)停止加热。
待温度稳定后再记录一段时间。
(5)在保温瓶中加入5 g研细的KNO3。
由于KNO3溶解吸热,温度降低,待温度稳定后再记录8 min左右。
(6)本实验采用称量瓶装样品,直接倒入。
由减量法求出样品质量。
天平为公用,每次使用前请务必归零。
(7)按下电源的“输出”按键,开始加热,同时打开秒表计时。
输出电压升至多少时停止加热,应根据下次加入KNO3的量估算,原则是:尽量保证环境温度处在最高温度与最低温度中间。
停止加热,同时停止计时,记下加热时间。
待温度稳定后再记录一段时间。
(8) 按上述步骤依次加入约6 g 、7 g 、8 g 、8 g 、7 g 和6 g KNO 3。
(9) 测量实验所用加热器的阻值R 。
3 结果与讨论3.1 原始实验数据加热电流I =0.95 A ,加热电压U=21.7 V ,加热电阻R=16.73 Ω 初始加入水的体积=500 mL 原始数据如下表。
表1 原始数据记录表序号 硝酸钾质量/g 加热时间/s 1 5.3207 126.691 2 5.9365 128.413 3 6.9239 159.506 4 7.9308 166.412 5 7.9321 151.312 6 7.0205 131.753 76.0079114.0953.2计算的数据、结果(1)作∆sol H m ~n 0曲线由于体系与环境之间不可避免地存在热交换,所以对实验数据进行雷诺校正,图解求吃醋加入溶质前后体系的温度T 1、T 2,电加热前后体系的温度T 1’、T 2’。
溶解热的测定一、实验目的1、用量热法测定KNO 3在水中的溶解热。
2、掌握测温量热的基本原理和测量方法。
3、了解量热法测定积分溶解热的基本原理。
二、实验原理物质溶解时常伴有热效应,此热效应称为该物质的溶解热。
物质的溶解热通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。
其中,晶格的破坏常为吸热过程,溶剂化作用常为放热过程,溶解热即为这两个过程的热量的总和。
而最终是吸热或放热则由这两个热量的相对大小所决定。
温度、压力以及溶质和溶剂的性质、用量、是影响溶解热的显著因素,根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热,变浓溶解热又称积分溶解热,为定温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸入或放出的热量,定浓溶解热又称微分溶解热,为定温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。
积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得。
方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质摩尔数为横坐标绘成曲线,曲线上的任何一点的斜率即为该浓度时的微分溶解热。
量热法测定积分溶解热,通常在被认为是绝热的量热计中进行,首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系的温度变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
1.量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔT S ,则量热系统的热容C 可以根据下式计算:式中m S 和M S 分别为标准物质的质量和摩尔质量,ΔH S 为标准物质在某溶液温度及浓度下的积分溶解热,此值可由手册上查得,C 为量热系统的热容。
2.积分溶解热的测定 将上式用于待测物质即得:SS S S T M H m C ∆⋅∆⋅=mTM C H ∆⋅⋅=∆式中m和M分别为待测物质的质量和摩尔质量,ΔT为待测物质溶解前后量热系统的温度变化值;C为已标定的量热系统的热容。