溶解热测定
- 格式:doc
- 大小:662.00 KB
- 文档页数:9
溶解热的测定溶解热的测定[适用对象] 药学、药物制剂、中药学、制药工程、中药学(国际交流方向)、生物工程专业[实验学时] 3学时一、实验目的1、用量热法测定KNO3在水中的溶解热。
2、掌握测温量热的基本原理和测量方法。
3、了解量热法测定积分溶解热的基本原理。
二、实验原理物质溶解时常伴有热效应,此热效应称为该物质的溶解热。
物质的溶解热通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。
其中,晶格的破坏常为吸热过程,溶剂化作用常为放热过程,溶解热即为这两个过程的热量的总和。
而最终是吸热或放热则由这两个热量的相对大小所决定。
温度、压力以及溶质和溶剂的性质、用量、是影响溶解热的显著因素,根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热,变浓溶解热又称积分溶解热,为定温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸入或放出的热量,定浓溶解热又称微分溶解热,为定温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。
积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得,方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质摩尔数为横坐标绘成曲线,曲线上的任何一点的斜率即为该浓度时的微分溶解热。
量热法测定积分溶解热,通常在被认为是绝热的量热计中进行,首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系的温度变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
1.量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔTS ,则量热系统的热容C可以根据下式计算:式中mS和MS分别为标准物质的质量和摩尔质量,ΔHS为标准物质在某溶液温度及浓度下的积分溶解热,此值可由手册上查得,C 为量热系统的热容。
2.积分溶解热的测定将上式用于待测物质即得:式中m和M分别为待测物质的质量和摩尔质量,ΔT为待测物质溶解前后量热系统的温度变化值;C为已标定的量热系统的热容。
实验溶解热的测定一、实验目的1.掌握采用电热补偿法测定热效应的基本原理。
2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热、积分稀释热和微分稀释热。
3.掌握溶解热测定仪器的使用。
二、实验原理物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。
积分溶解热是指定温定压下把ImOl物质溶解在n0mol溶剂中时所产生的热效应。
由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以As。
IH 表示。
微分溶解热是指在定温定压下把Imol物质溶解在无限量某一定浓度溶液中所产生的热效应,以表示.在溶解过程中浓度可视为不变,因此又称为定浓度( )τ, P,八。
溶解热,以加表示,即定温、定压、定溶剂状态下,由微小的溶质增量所引起的热量变化。
稀释热是指溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。
它也有积分(变浓)稀释热和微分(定浓)稀释热两种。
积分稀释热是指在定温定压下把原为含Imol溶质和n0ιmol溶剂的溶液冲淡到含n02mol溶剂时的热效应,它为两浓度的积分溶解热之差。
微分冲淡热是指将ImOl溶剂加到某一浓度的无限量溶液中所产生的热效应,以∂ AsolH(-)7, p,n加。
表示,即定温、定压、定溶质状态下,由微小的溶剂增量所引起的热量变化。
积分溶解热的大小与浓度有关,但不具有线性关系。
通过实验测定,可绘制出一条积分溶解热AsolH与相对于Imol溶质的溶剂量nθ之间的关系曲线,如图所示,其他三种热效应由4solH~nO曲线求得。
设纯溶剂、纯溶质的摩尔焰分别为HmI和Hni2,溶液中溶剂和溶质的偏摩尔熔分别为HI和H2,对于由nιmol溶剂和n2m0l溶质组成的体系,在溶质和溶剂未混合前,体系总熔为:H=∏ι Hmι+∏2 Hm2(1) 将溶剂和溶质混合后,体系的总熔为:H'= m Hι+n2 H2(2) 因此,溶解过程的热效应为:∆H=∏ι (H1 -Hm1)+n2(H2-Hm2)=n1 ∆H1+n2∆H2(3)在无限量溶液中加入ImOI溶质,(3)式中第一项可以认为不变,在此条件下所产生的热效应为(3)式中第二项中的AH2,即微分溶解热。
实验3 溶解热的测定一、实验目的1.用量热计简单测定硝酸钾在水中的溶解热。
2.掌握贝克曼温度计的调节和使用。
二、实验原理盐类的溶解往往同时进行着两个过程:一是晶格破坏,为吸热过程;二是离子的溶剂化,为放热过程。
溶解热是这两种热效应的总和。
最终是吸热还是放热,则由这两种热效应的相对大小来决定。
本实验在定压、不做非体积功的绝热体系中进行时,体系的总焓保持不变,根据热平衡,即可计算过程所涉及的热效应。
T C C W C W W M H m sol ∆⋅++-=∆][322111)( (3.1)式中: m Sol H ∆为盐在溶液温度和浓度下的积分溶解热,单位:kJ·mo1–1;1W 为溶质的质量,单位:kg ;T ∆为溶解过程的真实温差,单位:K ;2W 为水的质量,单位:kg ;M 为溶质的摩尔质量,单位:kg·mo1–1; 21C C 、分别为溶质和水的比热,单位:11--⋅K kg kJ ;3C 为量热计的热容(指除溶液外,使体系温度升高1℃所需要的热量) ,单位:kJ 。
实验测得W 1、W 2、ΔT 及量热计的热容后,即可按(3.1)式算出熔解热m Sol H ∆。
三、仪器与药品溶解热测量装置一套(如图3.1所示);500ml 量筒一个;KCl(A.R.) ;KNO 3(A.R.)四、实验步骤1.量热计热容的测定:本实验采用氯化钾在水中的溶解热来标定量热计热容3C 。
为此,先在干净的量热计中装入500m1蒸馏水,将与贝克曼温度计接好的传感器插入量热计中,放在磁力搅拌器上,启动搅拌器, 保持60-90转/分钟的搅拌速度,此时,数字显示应在室温附近,至图3.1溶解热测定装配图1.磁力搅拌器;2.搅拌磁子;3.杜瓦瓶;4.漏斗;5.传感器;6.SWC —IIC 数字贝克曼温度仪.温度变化基本稳定后,每分钟准确记录读数一次,连续8次后,打开量热计盖,立即将称量好的10克氯化钾(准确至0.01克)迅速加入量热计中,盖上盖,继续搅拌,每分钟记录一次读数,读取12次即可停止。
溶解热的测定一、 实验目的1、掌握溶解热的测定方法。
2、学习量热计的使用方法。
二、实验原理一定量的溶质溶解时产生的热效应与温度、压力和溶剂量有关,它随溶剂量的增加而增加,逐渐趋近一常数。
在25℃一大气压下一摩尔物质形成无限稀溶液时所产生的热效应叫摩尔溶解热。
溶解终了时正好形成饱和溶液则应注明“饱和溶液”溶解热。
通常盐类在水中溶解的摩尔比达1:300时、溶解热即趋于极值。
盐在水中溶解的过程可分为两步,即晶格的破环和离子的溶剂化。
前者为吸热过程;后者为放热过程。
总的能量得失决定溶解过程是吸热,还是放热。
即决定ΔH 是正值还是负值。
在计算溶液中进行的反应的热效应时各作用物和产物的溶解热同燃烧热、生成热一样,也是必要的热化学根据。
当实验在定压下,只作膨胀功的绝热体系中进行时,体系的总焓保持不变,根据热平衡原理,即可计算过程所涉及的热效应。
我们把保温瓶做成的量热计看成绝热体系,当把某种盐溶于瓶内一定量的水中时,可列出如下的热平衡式:gtM ]k gC GC [(H 21∆++-=∆溶解式中:ΔH 溶解—盐在溶液温度和浓度下的积分溶解热; G —水重量(克) C 1—水的比热(卡/克度) g —溶质重量(克) C 2—溶质的比热(卡/克度) M —溶质的分子量Δt —溶解过程的真实温差 K —量热计的热容实验测得G 、g 、Δt 、K 后即可按上式算出溶解热ΔH 。
三、仪器和药品1000毫升广口保温瓶 1个 精密温度计 1支 玻璃搅拌器 1支 100毫升移液管 1支 电吹风 1个氯化钾、硝酸钾、酒精 四、实验步骤量热计热容的测定:1、本实验采用已知氯化钾在水中的溶解热来标定量热计热容(不同温度下一摩尔氯化钾溶于200摩尔水中的积分溶解热)。
将干洁的保温瓶、温度计及搅拌器按图2-1装好,用移液管量取100毫升蒸馏水,经塞子上小孔注入瓶内,塞好小孔,准确测定水的温度(每隔30秒读一次,共读8次)打开塞子迅速将已称好的KC1(6.000克)倒入量热计内盖好塞子,立即搅拌,继续每隔30秒读一次温度,至温度不再下降,再读8次即可停止。
物化实验报告-溶解热的测定一、实验目的本实验旨在通过科学的测定方法,准确地得到溶解热数据,进一步理解溶解热现象和物质溶解过程中的热力学性质。
二、实验原理溶解热是指一定温度下,一定量的溶剂中溶质溶解时所需的热量。
通过测量溶解热,可以了解溶质和溶剂之间的相互作用、溶解过程的动力学性质等。
溶解热的测定有助于我们深入理解溶解现象和溶液的热力学性质。
本实验采用综合量热法测定溶解热。
综合量热法是一种通过测量热量和温度变化来确定溶解热的实验方法。
在实验过程中,需要精确控制温度变化和溶液浓度等因素,以减小误差。
三、实验步骤1.准备实验器材:恒温水浴、量热计、搅拌器、称量纸、电子天平、保温杯、热水浴、计时器等。
2.配制一定浓度的溶质溶液:用称量纸称取一定质量的溶质,加入热水浴中搅拌均匀,冷却至室温。
3.将量热计和保温杯放入恒温水浴中,确保其处于稳定状态。
4.将配制好的溶质溶液倒入保温杯中,记录初始温度T1。
5.开启搅拌器,将保温杯置于恒温水浴中,记录最终温度T2。
6.测量此过程中溶液的体积变化ΔV,计算溶液的密度ρ=m/ΔV(m为溶质的质量)。
7.根据综合量热法公式计算溶解热ΔH:ΔH = cm(T2-T1) +mΔTc·ΔV/ΔV·m·c·ΔT (c为水的比热容,m为溶质的质量,ΔTc为溶液的密度变化)。
四、实验数据分析通过本次实验,我们得到了一系列溶质的溶解热数据。
从数据中可以看出,不同溶质具有不同的溶解热。
这些数据有助于我们深入理解溶解现象和物质溶解过程中的热力学性质。
溶解热在化学、物理、生物等许多领域都有重要应用,例如化学反应过程的动力学分析、生物大分子的溶液性质研究等。
本实验方法具有较高的精度和可靠性,为后续相关领域的研究提供了有价值的参考数据。
溶解热的测定同组实验者:实验日期:5.7提交报告日期:5.14带班助教姓名:一、引言(实验目的/原理)具体操作变动点:①由实验开始前并没有调节水的温度使之尽可能接近室温,而是通过水温不变说明溶剂和外界环境不存在热交换。
②实验过程中并没有严格保证体系稳定后继续记录4分钟或八分钟,而是在观察到数据平衡后即可进行下一步实验。
二、实验操作2.1 实验药品、仪器型号及测试装置示意图仪器:保温瓶(750ml)*1、磁力搅拌器、热敏电阻测温装置*1、加热器、直流稳压稳流电源、万用电表、秒表、容量瓶(500ml)、温度计、研体、称量瓶、分析天平。
药品:KNO3(AR)。
2.2 实验条件室内温度:18.9℃湿度:30% 压力:100.95kPa2.3 实验操作步骤及方法要点1.搭装置,要求装置绝热性能良好。
2.连电路,将加热电源、保温瓶内加热电阻、万用表串联起来。
加热电源先不要开。
3.用去离子水冲洗保温瓶,然后量取500 mL去离子水注入保温瓶中。
开动搅拌器。
用惠斯通电桥将M400软件第一路值调到0(让当前温度对应0)左右,待温度基本稳定后,记录约4 min。
4.打开电源开关,设定电源输出的电压值(20 V以上)和电流值(0.95 A)。
5.按下电源的“输出”按键,开始加热,电流以万用表上的值为准,温度上升至2时(以无纸记录仪上显示的数值为准)停止加热。
待温度稳定后再记录一段时间。
注意加热会有余温。
6.在保温瓶中加入5 g研细的KNO3。
由于KNO3溶解吸热,温度降低,待温度稳定后再记录8 min 左右。
本实验采用称量瓶装样品,直接倒入。
由减量法求出样品质量,归零。
7.按下电源的“输出”按键,开始加热,同时打开秒表计时。
输出电压升至多少时停止加热,应根据下次加入KNO3的量估算(以尽量减小和外界的热交换带来误差)。
停止加热,同时停止计时,记下加热时间。
待温度稳定后再记录一段时间。
8.按上述步骤依次加入约6 g、7 g、8 g、8 g、7 g和6 gKNO3。
物理化学实验报告实验名称溶解热的测定一.实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热;用作图法求硝酸钾在水中的微分冲淡热、积分冲淡热和微分溶解热。
3.掌握电热补偿法的仪器使用要点。
二.实验原理1.物质溶解于溶剂过程的热效应称为溶解热。
它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。
前者是1mol溶质溶解在nomol溶剂中时所产生的热效应,以Qs表示。
后者是1mol溶质溶解在无限量某一定浓度溶液中时所产生的热效应。
即溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
前者是把原含1mol溶质和nomol溶剂的溶液稀释到含溶剂nogmol时所产生的热效应,以Q。
表示,显然。
后者是1mol溶剂加到无限量某一定浓度溶液中时所产生的热效应2.积分溶解热由实验直接测定,其它三种热效应则需要通过作图来求:设纯溶剂,纯溶质的摩尔焓分别为H*m,A和H*m,B,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为Hm,A和Hm,B,若由nA摩尔溶剂和nB摩尔溶质混合形成溶液,则混合前总焓为混合后总焓为此混合(即溶解)过程的焓变为根据定义,△Hm,A即为该浓度溶液的微分稀释热,△Hm,B 即为该浓度溶液的微分溶解热,积分溶解热则为:故在Qs~n0图上,某点切线的斜率即为该浓度溶液的微分溶解热,截距即为该浓度溶液的微分溶解热,如图所示:3.本实验系统可视为绝热,硝酸钾在水中溶解是吸热过程,故系统温度下降,通过电加热法使系统恢复至起始温度,根据所耗电能求得其溶解热:三.实验仪器及药品1.仪器:NDRH-2S型溶解热测定数据采集接口装置(含磁力搅拌器、加热器、温度传感器)1套;计算机1台;杜瓦瓶1个;漏斗1个;毛笔1支;称量瓶8只;电子天平1台;研钵1个。
2.药品:硝酸钾(分析纯)。
四.实验注意事项1.杜瓦瓶必须洗净擦干,硝酸钾必须在研钵中研细。
实验一 溶解热的测定一、目的1、了解电热补偿法测定热效应的基本原理及仪器使用。
2、测定硝酸钾在水中的积分溶解热,并用作图法求得其微分稀释热、积分稀释热和微分溶解热。
3、初步了解计算机采集处理实验数据、控制化学实验的方法和途径。
二、基本原理1、物质溶解于溶剂过程的热效应称为溶解热。
它有积分(或变浓)溶解热和微分(或定浓)溶解热两种。
前者是1 mol 溶质溶解在n 0 mol 溶剂中时所产生的热效应,以Q s 表示。
后者是1 mol 溶质溶解在无限量某一定浓度溶液中时所产生的热效应,即0,,s T p n Q n ∂⎛⎫⎪∂⎝⎭。
溶剂加到溶液中使之稀释时所产生的热效应称为稀释热。
它也有积分(或变浓)稀释热和微分(或定浓)稀释热两种。
前者是把原含1 mol 溶质和n 01 mol 溶剂的溶液稀释到含溶剂n 02 mol 时所产生的热效应,以Q d 表示,显然,Q d = Q s ,n02 – Q s ,n01。
后者是1 mol 溶剂加到无限量某一定浓度溶液中时所产生的热效应,即0,,s T p nQ n ⎛⎫∂⎪∂⎝⎭。
2、积分溶解热由实验直接测定,其它三种热效应则需通过作图来求:设纯溶剂、纯溶质的摩尔焓分别为H *m ,A 和H *m ,B ,一定浓度溶液中溶剂和溶质的偏摩尔焓分别为H m ,A 和H m ,B ,若由n A mol 溶剂和n B mol 溶质混合形成溶液,则混合前的总焓为 H = n A H *m ,A + n B H *m ,B 混合后的总焓为 H ΄ = n A H m ,A + n B H m ,B此混合(即溶解)过程的焓变为 ΔH = H ΄ – H = n A (H m ,A – H *m ,A )+ n B (H m ,B – H *m ,B ) = n A ΔH m ,A + n B ΔH m ,B根据定义,ΔH m ,A 即为该浓度溶液的微分稀释热,ΔH m ,B 即为该浓度溶液的微分溶解热,积分溶解热则为:,,0,,As m A m Bm AmBB Bn H Q H H n HHn n ∆==∆+∆=∆+∆ 故在Q s ~ n 0图上,某点切线的斜率即为该浓度溶液的微分稀释热,截距即为该浓度溶液的微分溶解热。
实验三溶解热的测定1引言物质溶于溶剂中,一般伴随有热效应的发生。
盐类的溶解通常包含着几个同时进行的过程:晶格的破坏、离子或分子的溶剂化、分子电离(对电解质而言)等。
热效应的大小和符号决定于溶剂及溶质的性质和它们的相对量。
在热化学中,关于溶解过程的热效应,需要了解以下几个基本概念。
溶解热在恒温恒压下,溶质B 溶于溶剂A(或溶于某浓度溶液)中产生的热效应,用 表示。
摩尔积分溶解热在恒温恒压下,1mol 溶质溶解于一定量的溶剂中形成一定浓度的溶液,整个过程产生的热效应。
用 表示。
sol sol m B HH n ∆∆=(1)式中, 为溶解于溶剂A 中的溶质B 的物质的量。
摩尔微分溶解热在恒温恒压下,1mol 溶质溶于某一确定浓度的无限量的溶液中产生的热效应,以表示,简写为。
稀释热在恒温恒压下,一定量的溶剂A 加到某浓度的溶液中使之稀释,所产生的热效应。
摩尔积分稀释热在恒温恒压下,在含有1mol 溶质的溶液中加入一定量的溶剂,使之稀释成另一浓度的溶液,这个过程产生的热效应,以 表示。
21dil m sol m sol m H H H ∆=∆-∆(2)式中, 、 为两种浓度的摩尔积分溶解热。
摩尔微分稀释热在恒温恒压下,1mol 溶剂加入到某一浓度无限量的溶液中所发生的热效应,以表示,简写为。
在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的大小取决于A 和B 的物质的量即 (3)由(3)式可推导得:,,,,()()B Asol sol sol A T P n B T P n A BH HH n n n n ∂∆∂∆∆=+∂∂(4)或,,,,()()B A sol sol A sol m T P n T P n B A BHH n H n n n ∂∆∂∆∆=+∂∂(5)令 ,(5)改写为:0,,,,()()B Asol sol sol m T P n T P n A BH HH n n n ∂∆∂∆∆=+∂∂(6)(6)式中的可由实验测定,由实验中所用的溶质和溶剂的物质的量计算得到。
溶解热的测定一、实验目的1.用简单量热剂测定硝酸钾的溶解热。
2. 学习量热计热容的标定方法。
3.非绝热因素对实验的校正。
4.学习使用《计算机全过程管理系统》。
二、实验原理将杜瓦瓶看作绝热体系,当盐溶于水,有热平衡:△H溶解W/M=K△T1(1)进行电标定时,用电热器加热,又平衡:IVt=K△T2(2)由上两式得:△H溶解=M/W*IVt*△T1 /△T2(3)由于在此两个过程中,体系温度变化小,一般在1度左右。
必须使用贝克曼温度计或者精密温度仪,才能读到千分位,达到实验的要求。
三、仪器与试剂1.仪器:500ml杜瓦瓶,装配有加热电炉丝和固体试样加料漏斗电磁搅拌器直流稳定电源(0~30V,0~2A)500ml量筒记录仪2.试剂:硝酸钾(AR)四、主要实验步骤1.在杜瓦瓶中用量筒加入450ml蒸馏水,装好量热计,开启搅拌。
调节输出为0,开启记录仪记录体系稳定过程。
2. 分析天平称取碾成细粉的硝酸钾(约3.3g),在量热计温度稳定3~5分钟后,从加料漏斗加入,记录仪记录过程温度变化。
注意,漏斗加料前后应加盖,以减少体系与环境的热交换。
待温度没有明显变化后约3分钟停止记录。
3.电标定过程与上述溶解过程类似操作,即分为标定前,标定期和标定后期。
电标定时电压约6-8V,电流约为0.6-0.8A。
记录好通断电的加热时间,当体系升温幅度将近溶解降温幅度时,断开电源,继续记录,直到温度上升趋势与标定前期相似为止。
4.杜瓦瓶重新装水,再做一次实验。
五、数据处理与结果讨论1、有关数据溶质的质量(m):3.3113g 溶质摩尔质量(ML):101.102g/mol 接电时间:2:01 min 断电时间:6:13通电时间(t): 252s 电压(V): 5.75V电流(DI):1.10A2、温差溶解过程(DT1): 0.534 标定过程(DT2): 0.564 3、相关图形3.1、溶解过程图1溶解过程t-T图3.2、电标定过程图2电标定过程t-T图4、计算积分溶解热△H溶解=M/W*IVt*△T1 /△T2/1000=101.102/3.3113×1.10×5.75×252×0.534/0.564/1000=46.08KJ/mol理论溶解热计算:ΔH溶解=34.99-0.157(t-25)KJ/mol=34.99-0.157*(21.40-25)得ΔH溶解=35.55KJ/mol相对误差=(46.08-35.55)/35.5*100%=29.6%误差分析:可能是因为记录通电时间不准确和杜瓦瓶外壳因温度过高烧化而造成误差较大。
实验三溶解热的测定1 实验目的及要求1.了解电热补偿法测定热效应的基本原理。
2.通过用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分冲淡热,积分冲淡热和微分溶解热。
2实验原理1)物质溶解于溶剂过程的热效应称为溶解热。
它有积分溶解热和微分溶解热两种。
前者指在定温定压下把1摩尔溶质溶解在n摩尔的溶剂中时所产生的热效应,由于过程中溶液的浓度逐渐改变,因此也称为变浓溶解热以Q表示。
后者指在定温定压下把1摩尔溶质溶解在无限量的某一定浓度的溶液中所产生的热效应。
由于在溶解过程中溶液浓度可实际上视为不变,因此也称为定浓溶解热,以表示。
把溶剂加到溶液中使之稀释,其热效应称为冲淡热。
它有积分(或变浓)冲淡热和微分(或定浓)冲淡热两种。
通常都以对含有1摩尔溶质的溶液的冲淡情况而言。
前者系指在定温定压下把原为含1摩尔溶质和n01摩尔溶剂的溶液冲淡到含溶剂为n02时的热效应,亦即为某两浓度的积分溶解热之差,以Q d表示。
后者系1摩尔溶剂加到某一浓度的无限量溶液中所产生的热效应,以2)积分溶解热由实验直接测定,其它三种热效应则可通过Q s~n0曲线求得:设纯溶剂、纯溶质的摩尔焓分别为和,溶液中溶剂和溶质的偏摩尔焓分别为和,对于n1摩尔溶剂和n2摩尔溶质所组成的体系而言,在溶剂和溶质未混合前(4.1)当混合成溶液后(4.2)因此溶解过程的热效应为(4.3)式中△H1为溶剂在指定浓度溶液中溶质与纯溶质摩尔焓的差。
即为微分溶解热。
根据积分溶解热的定义:(4.4)所以在Q s~n01图上,不同Q s点的切线斜率为对应于该浓度溶液的微分冲淡热,即该切线在纵坐标的截距OC,即为相应于该浓度溶液的微分溶解热.而在含有1摩尔溶质的溶液中加入溶剂使溶剂量由n02摩尔增至n01摩尔过程的积分冲淡热Q d=(Q s)n01一(Q s)n02= BG—EG。
3)本实验测硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应。
实验3_溶解热的测定溶解热的测定1 引⾔1.1 实验⽬的1. 测量硝酸钾在不同浓度⽔溶液的溶解热,求硝酸钾在⽔中溶解过程的各种热效应。
2. 掌握量热装置的基本组合及电热补偿法测定热效应的基本原理。
3. 复习和掌握常⽤的测温技术1.2 实验原理在热化学中,关于溶解过程的热效应,有以下⼏个基本概念溶解热在恒温恒压下,溶质B 溶于溶剂A (或溶于某浓度溶液)中产⽣的热效应,⽤Δsol H 表⽰摩尔积分溶解热在恒温恒压下,1 mol 溶质溶解于⼀定量的溶剂中形成⼀定浓度的溶液,整个过程的热效应,⽤Δsol H m 表⽰:Δsol H m =Δsol HB式中:n B 是溶解于溶剂A 中的溶质B 的物质的量摩尔微分溶解热在恒温恒压下,1 mol 溶质溶于某⼀确定浓度的⽆限量的溶液中产⽣的热效应,以 (Δsol H n B)T,p,n A表⽰,简写为(?Δsol H ?n B)n A稀释热在恒温恒压下,⼀定量的溶剂A 加到某浓度的溶液中使之稀释,所产⽣的热效应摩尔积分稀释热在恒温恒压下,在含有1 mol 溶质的溶液中加⼊⼀定量的溶剂,使之稀释成另⼀浓度的溶液,这个过程产⽣的热效应,以Δdil H m 表⽰:Δdil H m =Δsol H m2?Δsol H m1摩尔微分稀释热在恒温恒压下,1 mol 溶剂加⼊到某⼀浓度⽆限量的溶液中所发⽣的热效应在恒温恒压下,对于指定的溶剂A 和溶质B ,溶解热的⼤⼩取决于A 和B 的物质的量,即Δsol H =f(n A ,n B )取全微分Δsol H =n A (eΔsol H A )n B+n B (eΔsol HB )nA令n 0=n A /n B ,则有Δsol H m =n 0(eΔsol H en A )n B+(eΔsol Hen B )nA所以,⼀旦确定了⼀定浓度区间内摩尔积分溶解热与n 0的关系,溶质B 在该区间的溶解热、摩尔微分溶解热、摩尔积分稀释热等溶解热效应都可以通过计算得到(如图2.1)。
溶解热的测定一、实验目的1、用量热法测定KNO 3在水中的溶解热。
2、掌握测温量热的基本原理和测量方法。
3、了解量热法测定积分溶解热的基本原理。
二、实验原理物质溶解时常伴有热效应,此热效应称为该物质的溶解热。
物质的溶解热通常包括溶质晶格的破坏和溶质分子或离子的溶剂化。
其中,晶格的破坏常为吸热过程,溶剂化作用常为放热过程,溶解热即为这两个过程的热量的总和。
而最终是吸热或放热则由这两个热量的相对大小所决定。
温度、压力以及溶质和溶剂的性质、用量、是影响溶解热的显著因素,根据物质在溶解过程中溶液浓度的变化,溶解热分为变浓溶解热和定浓溶解热,变浓溶解热又称积分溶解热,为定温定压条件下一摩尔物质溶于一定量的溶剂形成某浓度的溶液时,吸入或放出的热量,定浓溶解热又称微分溶解热,为定温定压条件下一摩尔物质溶于大量某浓度的溶液时,产生的热量。
积分溶解热可用量热法直接测得,微分溶解热可从积分溶解热间接求得。
方法是,先求出在定量溶剂中加入不同溶质时的积分溶解热,然后以热效应为纵坐标,以溶质摩尔数为横坐标绘成曲线,曲线上的任何一点的斜率即为该浓度时的微分溶解热。
量热法测定积分溶解热,通常在被认为是绝热的量热计中进行,首先标定该量热系统的热容量,然后通过精确测量物质溶解前后因吸热或放热引起量热体系的温度变化,来计算溶解过程的热效应,并据此计算物质在该溶液温度、浓度下的积分溶解热。
1.量热系统热容量的标定用一已知积分溶解热的标准物质,在量热计中进行溶解,测出溶解前后量热系统的温度变化值ΔT S ,则量热系统的热容C 可以根据下式计算:式中m S 和M S 分别为标准物质的质量和摩尔质量,ΔH S 为标准物质在某溶液温度及浓度下的积分溶解热,此值可由手册上查得,C 为量热系统的热容。
2.积分溶解热的测定 将上式用于待测物质即得:SS S S T M H m C ∆⋅∆⋅=mTM C H ∆⋅⋅=∆式中m和M分别为待测物质的质量和摩尔质量,ΔT为待测物质溶解前后量热系统的温度变化值;C为已标定的量热系统的热容。
. ..... 实验七 溶解热的测定 一、实验目的
1.掌握采用电热补偿法测定热效应的基本原理。 2.用电热补偿法测定硝酸钾在水中的积分溶解热,并用作图法求出硝酸钾在水中的微分溶解热、积分稀释热和微分稀释热。 3.掌握溶解热测定仪器的使用。
二、实验原理 物质溶解过程所产生的热效应称为溶解热,可分为积分溶解热和微分溶解热两种。积分溶解热是指定温定压下把1mol物质溶解在n0mol溶剂中时所产生的热效应。由于在溶解过程中溶液浓度不断改变,因此又称为变浓溶解热,以△solH表示。微分溶解热是指在定温定压下把1mol物质溶解在无限量某一定浓度溶液中所产生的热效应,以表示.在溶解过程中浓度可视为不变,因此又称为定浓度
溶解热,以0,,)(npTsolnH表示,即定温、定压、定溶剂状态下,由微小的溶质增量所引起的热量变化。 稀释热是指溶剂添加到溶液中,使溶液稀释过程中的热效应,又称为冲淡热。它也有积分(变浓)稀释热和微分(定浓)稀释热两种。积分稀释热是指在定温定压下把原为含1mol溶质和n01mol溶剂的溶液冲淡到含n02mol溶剂时的热效应,它为两浓度的积分溶解热之差。微分稀释热是指将1mol溶剂加到某一浓度的无
限量溶液中所产生的热效应,以npTsolnH,,0)(表示,即定温、定压、定溶质状态下,由微小的溶剂增量所引起的热量变化。 积分溶解热的大小与浓度有关,但不具有线性关系。通过实验测定,可绘制出一条积分溶解热△solH与相对于1mol溶质的溶剂量n0之间的关系曲线,如图1所示,其他三种热效应由△solH~n0曲线求得。 设纯溶剂、纯溶质的摩尔焓分别为Hm1和Hm2,溶液中溶剂和溶质的偏摩尔焓分别为H1和H2,对于由n1mol溶剂和n2mol溶质组成的体系,在溶质和溶剂未混合前,体系总焓为:
图1 . ..... H=n1 Hm1+n2 Hm2 (1) 将溶剂和溶质混合后,体系的总焓为: H’= n1 H1+n2 H2 (2) 因此,溶解过程的热效应为: △H=n1(H1-Hm1)+n2(H2-Hm2)=n1△H1+n2△H2 (3)
在无限量溶液中加入1mol溶质,(3)式中第一项可以认为不变,在此条件下
所产生的热效应为(3)式中第二项中的△H2,即微分溶解热。同理,在无限量溶液中加入1mol溶剂,(3)式中第二项可以认为不变,在此条件下所产生的热效应为(3)式中第一项中的△H1,即微分稀释热。 根据积分溶解热的定义,有:
△solH=2Hn (4)
将(3)式代入,可得: △solH=21nn△H1+△H2=n01△H1+△H2 (5) 此式表明,在△solH~n0曲线上,对一个指定的n01,其微分稀释热为曲线在该点的切线斜率,即图1中的AD/CD。n01处的微分溶解热为该切线在纵坐标上的截距,即图1中的OC。 在含有1mol溶质的溶液中加入溶剂,使溶液量由n01mol增加到n02mol,所产生的积分溶解热即为曲线上n01和n02两点处△solH的差值。
本实验测硝酸钾溶解在水中的溶解热,是一个溶解过程中温度随反应的进行而降低的吸热反应,故采用电热补偿法测定。实验时先测定体系的起始温度,溶解进行后温度不断降低,由电加热法使体系复原至起始温度,根据所耗电能求出溶解过程中的热效应Q。 (6) 式中,I为通过加热器电阻丝(电阻为R)的电流强度(A),V为电阻丝两端所加的电压(V),t为通电时间(s)。
三、仪器和试剂
1.仪器
SWC-RJ一体式溶解热测量装置(如右图,具体参数为:加热功率:0~12.5W可调;温度/温差分辨率:0.01℃/0.001℃;计时时间范围:0~9999 S;输出:RS232C串行口) 称量瓶8只,毛刷1个,电子分析天平,台秤 . ..... 2.试剂 硝酸钾固体(A.R.已经磨细并烘干)
四、实验步骤 1.称样 取8个称量瓶,先称空瓶,再依次加入约为2.5、1.5、2.5、3.0、3.5、4.0、4.0、4.5 g的硝酸钾(亦可先去皮后直接称取样品),粗称后至分析天平上准确称量,称完后置于保干器中, 在台天平上称取216.2 g蒸馏水于杜瓦瓶内。 具体数据记录见五中,称量瓶洗净吹干后,一定要称量空瓶的质量,由于没有保干器,所以称量以后要马上盖上盖子。蒸馏水称量了218.2g。
2.连接装置 如右图所示,连接电源线,打开温差仪,记下当前室温。 将杜瓦瓶置于测量装置中,插入探头测温,打开搅拌器,注意防止搅拌子与测温探头相碰,以免影响搅拌。 将加热器与恒流电源相连,打开恒流电源,调节电流使加热功率为2.5瓦,记下电压、电流值。同时观察温差仪测温值,当超过室温约0.5℃时按下“采零”按钮和“锁定”按钮,并同时按下“计时”按钮开始计时。 当前室温是15.6℃,注意要放入搅拌子。当显示温度超过室温0.5℃后,按下“状态转换”按钮,系统自定采零并开始计时,加热功率为2.30W左右。
3.测量 将第一份样品从杜瓦瓶盖口上的加料口倒入杜瓦瓶中,倒在外面的用毛刷刷进杜瓦瓶中。此时,温差仪显示的温差为负值。监视温差仪,当数据过零时记下时间读数。接着将第二份试样倒入杜瓦瓶中,同样再到温差过零时读取时间值。如此反复,直到所有的样品全部测定完。 采零后要迅速开始加入样品,否则升温过快可能温度回不到负值。加热速度不能太快也不能太慢,要保证温差仪的示数在-0.5℃以上。具体数据记录见五中。
4.称空瓶质量 在分析天平上称取8个空称量瓶的质量,根据两次质量之差计算加入的硝酸. ..... 钾的质量。 实验结束后,打开杜瓦瓶盖,检查硝酸钾是否完全溶解。如未完全溶解,要重做实验。 倒去杜瓦瓶中的溶液(注意别丢了搅拌子),洗净烘干,用蒸馏水洗涤加热器和测温探头。关闭仪器电源,整理实验桌面,罩上仪器罩。 具体数据记录见五中,打开杜瓦瓶盖发现KNO3已完全溶解,证明实验成功。
五、数据记录和处理
室温15.6℃ 大气压力(kPa):102.80
1.数据记录 本实验记录的数据包括水的质量、8份样品的质量、加热功率以及加入每份样品后温差归零时的累积时间。
称量瓶号 空瓶质量/g KNO3+瓶/g 剩余瓶重/g 加热功率/W 归零时间/s 1 6.0255 8.5033 6.0274 2.31 392 2 6.3495 7.8484 6.3515 2.31 615 3 6.6109 9.2372 6.6118 2.31 1016 4 6.7392 9.8224 6.7401 2.31 1462 5 6.3522 10.1798 6.3529 2.31 1997 6 6.5809 10.8726 6.5817 2.31 2583 7 6.1969 10.4015 6.1982 2.31 3122 8 6.6755 11.3035 6.6770 2.31 3671
2.将数据输入计算机,计算n水和各次加入的KNO3质量、各次累积加入的KNO3
的物质的量。根据功率和时间值计算向杜瓦瓶中累积加入的电能Q。
n水=218.2/18.016=12.1mol MKNO3=101.10g/mol 称量瓶号 加入KNO3/g 累积KNO3/g 累积nKNO3/mol 累积电能/kJ 1 2.4759 2.4759 0.02449 0.9050 2 1.4969 3.9728 0.03930 1.4210 3 2.6254 6.5982 0.06526 2.3481 4 3.0823 9.6805 0.09575 3.3778 5 3.8269 13.5074 0.13360 4.6326 6 4.2909 17.7983 0.17605 5.9928 7 4.2033 22.0016 0.21762 7.2431 8 4.6265 26.6281 0.26338 8.5168 3.绘制ΔsolH~n0曲线 . ..... 用以下计算式计算各点的ΔsolH和n0: ΔsolH=3KNOnQ (7)
n0=3KNO0nn (8) 瓶号 1 2 3 4 5 6 7 8 ΔsolH/
KJ/mol 36.953 36.161 35.978 35.277 34.674 34.041 33.283 32.336
n0/mol 494.55 308.21 185.58 126.49 90.652 68.797 55.654 45.984
在origin中绘制ΔsolH~n0关系曲线,并对曲线拟合得曲线方程。 使用多项式拟合进行二次拟合,得到如下图:
可见拟合度并不好,故采用 三次拟合 使用多项式拟合进行二次拟合,得
R-Square(COD) SD N P ----------------------------------------------------0.88271 0.63253 8 0.00471