树与森林的遍历
- 格式:ppt
- 大小:356.00 KB
- 文档页数:36
二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
代码号:计算机801西北工业大学《计算机专业基础》配蔡版本考试大纲注:以下五部分内容只选择两部分进行答题(一)、计算机组成原理(75分)一、考查目标1.深入理解单处理器计算机系统的组织结构、工作原理、互连结构,具有完整的计算机系统整机的概念;2.掌握各部件的组成结构、工作原理、软硬件设计的舍取、以及硬件实现;3.综合运用计算机组成的基本原理和基本方法,对有关计算机硬件系统中的理论和实际问题进行计算、分析,并能对一些基本部件进行逻辑设计。
二、考试内容1.总线:总线的组成、分类、特性和性能指标,总线的层次结构,总线定时、传送、仲裁。
2.内存储器:存储器的基本概念、,数的表示方法,定点数四则运算方法,浮点数四则运算方法,定点加减法器设计。
分类、层次结构,半导体主存储器,高速缓冲存储器(Cache),差错检测。
3.输入/输出:I/O编制的方法,编程I/O、程序中断、DMA的原理及控制机制。
4.运算方法与运算器:计算机中的数制系统5.指令系统:指令格式、数据类型、寻址方式、指令类型、指令系统设计与优化。
6.处理器技术:CPU的结构、CPU中的寄存器组织、控制器的结构和工作原理、微程序设计技术。
三、参考书目1.唐朔飞编著.计算机组成原理(第二版).高等教育出版社,20082.白中英主编.计算机组成原理(第四版).科学出版社,20093.蒋本珊编著.计算机组成原理(第二版).清华大学出版社,20085、逻辑代数(1)掌握逻辑代数的基本运算、基本定理、基本法则(2)利用逻辑代数和卡诺图对逻辑函数进行转换与化简(3)掌握各种形式的逻辑函数的相互转换方法(4)掌握卡诺图化简方法(5)掌握不完全确定的逻辑函数的化简方法(6)掌握多输出逻辑函数的化简方法6、门电路组合逻辑电路(1)掌握门电路的基本输入输出特性(2)掌握组合逻辑电路的分析方法(3)熟悉常用组合逻辑电路模块的结构和逻辑功能(4)掌握组合逻辑电路的设计过程(二)、数据结构(75分)考查目标1.理解数据结构的基本概念;掌握数据的逻辑结构、存储结构及其差异,以及各种基本操作的实现。
数据结构复习题汇总黄⽼师:题型结构如下:单项选择题,15⼩题,30分;填空题,5⼩题,10分;综合应⽤题,50分(树、图、查找)算法设计与分析,2选1,10分(线性结构)试卷中⼀些算法只给英⽂名称;考查范围(⿊体字为建议的重点考查内容;红字为备注;蓝字为拟纳⼊的考研⼤纲内容)⼀、绪论(⼀)算法、数据结构基本概念(⼆)算法分析中O(f(n))符号的含义(三)时间复杂度简单分析表⽰⼆、线性表(⼀)线性表的定义和基本操作(⼆)线性表的实现1.顺序存储2.链式存储3.线性表的应⽤三、栈、队列(⼀)栈和队列的基本概念(⼆)栈和队列的顺序存储结构(三)栈和队列的链式存储结构(四)栈和队列的应⽤四、树与⼆叉树(⼀)树的概念(⼆)⼆叉树1.⼆叉树的定义及其主要特征2.⼆叉树的顺序存储结构和链式存储结构3.⼆叉树的遍历及应⽤(三)树、森林1. 森林与⼆叉树的转换2. 树的存储结构;3.树和森林的遍历4.线索⼆叉树的基本概念和构造(四)⼆叉树的应⽤1.哈夫曼(Huffman)树和哈夫曼编码2.⼆叉排序树五、图(⼀)图的基本概念(⼆)图的存储及基本操作1.邻接矩阵法2.邻接表法(三)图的遍历1.深度优先搜索2.⼴度优先搜索(四)图的基本应⽤1.最⼩(代价)⽣成树2.最短路径3.拓扑排序4.关键路径六、查找(⼀)查找的基本概念(⼆)顺序查找法(三)折半查找法(四)⼆叉查找树及其基本操作(只考察基本概念)(五)平衡⼆叉树(只考察基本概念)(六)散列(Hash)表(七)查找算法的分析及应⽤七、排序(⼀)排序的基本概念(⼆)直接插⼊排序(三)⽓泡排序(bubble sort)(四)简单选择排序(五)希尔排序(shell sort)(六)快速排序(七)堆排序(⼋)⼆路归并排序(merge sort)(九)各种排序算法的⽐较(⼗)排序算法的应⽤选择题1、顺序队列的出队操作,正确修改队⾸指针的是( B )(A)sq.front = (sq.front+1)%maxsize; (B)sq.front = sq.front+1;(C)sq.rear = (sq. rear +1)%maxsize; (D)sq.rear = sq. rear +1;2、⾮空的循环单链表head的尾结点(由指针p指)满⾜( C )(A)p->next = NULL (B)p = NULL (C)p->next = head (D)p = head3、在单键表中,删除p所指结点的直接后继,其中指针修改为( A )(A)p->next = p->next ->next; (B)p = p->next; p->next = p->next->next;(C)p->next = p->next; (D)p = p->next ->next;4、通常要求同⼀逻辑结构中的所有数据元素具有相同的特性,这意味着( B )(A)数据元素具有同⼀特点(B)不仅数据元素所包含的数据项的个数要相同,⽽且对应数据项的类型也要⼀致(C)每个数据元素都⼀样(D)数据元素所包含的数据项的个数要相等5、关于线性表,下列说法正确的是( D )(A)每个元素都有⼀个直接前驱和直接后继(B)线性表中⾄少要有⼀个元素(C)表中诸元素的排列顺序必须是由⼩到⼤或由⼤到⼩的(D)除第⼀元素和最后⼀个元素外,其余每个元素都有⼀个且仅有⼀个直接前驱和直接后继6、带头结点的单链表,其表头指针为head,则该单链表为空的判断条件是( B )(A)head == NULL (B)head->next == NULL(C)head->next == head (D)head !== NULL7、含n个顶点的连通图中的任意⼀条简单路径,其长度不可能超过(C )(A)1 (B)n/2 (C)n-1 (D)n8、设有⼀个顺序栈S,元素S1, S2, S3, S4, S5, S6依次进栈,如果6个元素出栈的顺序是S2, S3, S4, S6, S5, S1,则栈的容量⾄少应该是( B )(A)2 (B)3 (C)5 (D)69、设深度为k的⼆叉树上只有度为0和度为2的结点,则这类⼆叉树上所含结点的总数最少为( C )个(A)k+1 (B)2k (C)2k -1 (D)2k +110、从具有n个结点的单链表中查找指定结点时,若查找每个结点的概率相等,在查找成功的情况下,平均需要⽐较( D )个结点。
考查内容数据结构【考查目标】1 .掌握数据结构的基本概念、基本原理和基本方法。
2 .掌握数据的逻辑结构、存储结构及基本操作的实现 ,能够对算法进行基本的时间复杂度与空间复杂度的分析 .3 .能够运用数据结构基本原理和方法进行问题的分析与求解,具备采用 C 或 C++语言设计与实现算法的能力。
(一)线性表的定义和基本操作(二)线性表的实现1.顺序存储2。
链式存储3。
线性表的应用(一)栈和队列的基本概念(二)栈和队列的顺序存储结构(三)栈和队列的链式存储结构(四)栈和队列的应用(五)特殊矩阵的压缩存储(一)树的基本概念(二)二叉树1。
二叉树的定义及其主要特征2。
二叉树的顺序存储结构和链式存储结构3.二叉树的遍历4.线索二叉树的基本概念和构造(三)树、森林1。
树的存储结构2。
森林与二叉树的转换3。
树和森林的遍历(四)树与二叉树的应用1.二叉排序树2.平衡二叉树3。
哈夫曼( Huffman)树和哈夫曼编码(一)图的基本概念(二)图的存储及基本操作1。
邻接矩阵法2.邻接表法3.邻接多重表、十字链表(三)图的遍历1.深度优先搜索2。
广度优先搜索(四)图的基本应用1.最小(代价)生成树2.最短路径3。
拓扑排序4。
关键路径(一)查找的基本概念(二)顺序查找法(三)分块查找法(四)折半查找法(五)B 树及其基本操作、 B+树的基本概念(六)散列( Hash ) 表(七)字符串模式匹配(八)查找算法的分析及应用(一)排序的基本概念(二)插入排序1.直接插入排序2.折半插入排序(三)气泡排序(bubble sort)(四)简单选择排序(五)希尔排序( shell sort )(六)快速排序(七)堆排序(八)二路归并排序(merge sort )(九)基数排序(十)外部排序(十一)各种内部排序算法的比较(十二)排序算法的应用计算机组成原理【考查目标】1。
理解单处理器计算机系统中各部件的内部工作原理、组成结构以及相互连接方式 , 具有完整的计算机系统的整机概念。
第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
数据结构与算法分析java课后答案【篇一:java程序设计各章习题及其答案】>1、 java程序是由什么组成的?一个程序中必须有public类吗?java源文件的命名规则是怎样的?答:一个java源程序是由若干个类组成。
一个java程序不一定需要有public类:如果源文件中有多个类时,则只能有一个类是public类;如果源文件中只有一个类,则不将该类写成public也将默认它为主类。
源文件命名时要求源文件主名应与主类(即用public修饰的类)的类名相同,扩展名为.java。
如果没有定义public类,则可以任何一个类名为主文件名,当然这是不主张的,因为它将无法进行被继承使用。
另外,对applet小应用程序来说,其主类必须为public,否则虽然在一些编译编译平台下可以通过(在bluej下无法通过)但运行时无法显示结果。
2、怎样区分应用程序和小应用程序?应用程序的主类和小应用程序的主类必须用public修饰吗?答:java application是完整的程序,需要独立的解释器来解释运行;而java applet则是嵌在html编写的web页面中的非独立运行程序,由web浏览器内部包含的java解释器来解释运行。
在源程序代码中两者的主要区别是:任何一个java application应用程序必须有且只有一个main方法,它是整个程序的入口方法;任何一个applet小应用程序要求程序中有且必须有一个类是系统类applet的子类,即该类头部分以extends applet结尾。
应用程序的主类当源文件中只有一个类时不必用public修饰,但当有多于一个类时则主类必须用public修饰。
小应用程序的主类在任何时候都需要用public来修饰。
3、开发与运行java程序需要经过哪些主要步骤和过程?答:主要有三个步骤(1)、用文字编辑器notepad(或在jcreator,gel, bulej,eclipse, jbuilder等)编写源文件;(2)、使用java编译器(如javac.exe)将.java源文件编译成字节码文件.class;(3)、运行java程序:对应用程序应通过java解释器(如java.exe)来运行,而对小应用程序应通过支持java标准的浏览器(如microsoft explorer)来解释运行。
数据结构复习重点归纳笔记[清华严蔚敏版]数据结构复习重点归纳笔记[清华严蔚敏版]数据结构复习重点归纳[适于清华严版教材]一、数据结构的章节结构及重点构成数据结构学科的章节划分基本上为:概论,线性表,栈和队列,串,多维数组和广义表,树和二叉树,图,查找,内排,外排,文件,动态存储分配。
对于绝大多数的学校而言,“外排,文件,动态存储分配”三章基本上是不考的,在大多数高校的计算机本科教学过程中,这三章也是基本上不作讲授的。
所以,大家在这三章上可以不必花费过多的精力,只要知道基本的概念即可。
但是,对于报考名校特别是该校又有在试卷中对这三章进行过考核的历史,那么这部分朋友就要留意这三章了。
按照以上我们给出的章节以及对后三章的介绍,数据结构的章节比重大致为:概论:内容很少,概念简单,分数大多只有几分,有的学校甚至不考。
线性表:基础章节,必考内容之一。
考题多数为基本概念题,名校考题中,鲜有大型算法设计题。
如果有,也是与其它章节内容相结合。
栈和队列:基础章节,容易出基本概念题,必考内容之一。
而栈常与其它章节配合考查,也常与递归等概念相联系进行考查。
串:基础章节,概念较为简单。
专门针对于此章的大型算法设计题很少,较常见的是根据KMP 进行算法分析。
多维数组及广义表:基础章节,基于数组的算法题也是常见的,分数比例波动较大,是出题的“可选单元”或“侯补单元”。
一般如果要出题,多数不会作为大题出。
数组常与“查找,排序”等章节结合来作为大题考查。
树和二叉树:重点难点章节,各校必考章节。
各校在此章出题的不同之处在于,是否在本章中出一到两道大的算法设计题。
通过对多所学校的试卷分析,绝大多数学校在本章都曾有过出大型算法设计题的历史。
图:重点难点章节,名校尤爱考。
如果作为重点来考,则多出现于分析与设计题型当中,可与树一章共同构成算法设计大题的题型设计。
查找:重点难点章节,概念较多,联系较为紧密,容易混淆。
出题时可以作为分析型题目给出,在基本概念型题目中也较为常见。