超声波的定义及特性
- 格式:ppt
- 大小:2.76 MB
- 文档页数:63
超声波的特性及在医学诊断中的应用价值【摘要】超声波是一种高频声波,具有穿透力强、无辐射危害等特性,在医学诊断中起着重要作用。
本文首先介绍了超声波的基本概念和在医学诊断中的重要性,接着探讨了超声波的特性、在医学诊断中的应用、超声波成像技术以及在心脏病学和妇科学中的具体应用。
结论部分展望了超声波在医学诊断中的前景,并对超声波技术未来的发展进行了展望。
通过本文的阐述,读者可以更加深入了解超声波在医学诊断中的重要性和多样化的应用场景,进一步认识到超声波技术在提高诊断准确性、降低医疗风险等方面的巨大价值。
【关键词】关键词:超声波,医学诊断,特性,应用,成像技术,心脏病学,妇科学,前景,展望。
1. 引言1.1 超声波的基本概念超声波是一种机械振动波,其频率高于人类能听到的声音频率,通常超过20千赫兹。
超声波在空气中传播速度约为343米/秒,而在人体组织中传播速度约为1540米/秒。
超声波具有穿透力强、不易被吸收和散射、对人体无辐射危害等特点。
在医学领域,超声波通过超声探头产生,通过人体组织的传播和反射,最后被接收和解释,用于诊断和治疗。
超声波的基本工作原理是利用高频声波在人体组织中的传播和反射特性。
当超声波遇到不同密度的组织时,会产生不同程度的反射或穿透,这些信息会被接收器捕捉并转化成图像,医生可以根据这些图像来判断患者的病情。
超声波可以用于检查器官的结构、形状、大小、位置以及功能情况,对于很多疾病的筛查和诊断具有重要意义。
超声波技术的发展为医学诊断提供了更多的手段和可能性,它已经成为现代医学中不可或缺的重要工具之一。
通过超声波检查,医生可以更早地发现疾病,提高治疗效果,减少病人的痛苦和医疗成本。
超声波的应用不断拓展,为医学诊断带来了新的曙光。
1.2 超声波在医学诊断中的重要性超声波技术在医学诊断中起着至关重要的作用,其非侵入性、无放射性和高分辨率的特点使其成为医学领域不可或缺的工具。
通过超声波技术,医生能够实时观察人体内部组织和器官的结构、形态以及功能情况,帮助医生做出准确的诊断和治疗方案。
2.1 超声波的定义波是由某一点开始的扰动所引起的,并按预定的方式传播或传输到其他点上。
声波是一种弹性机械波。
人们所感觉到的声音是机械波传到人耳引起耳膜振动的反应,能引起人们听觉的机械波频率在20Hz~20KHz ,超声波是频率大于20KHz 的机械波。
在超声波测距系统中,用脉冲激励超声波探头的压电晶片,使其产生机械振动,这种振动在与其接触的介质中传播,便形成了超声波。
2.2超声波的物理特性当声波从一种介质传播到另一种介质时,在两介质的分界面上,一部分能量反射回原介质,称为反射波;另一部分能量透射过分界面,在另一个介质内部继续传播,称为折射波,如图2.1所示,图中L 为入射波,S ₁为反射横波,L ₁为反射纵波,L ₂为折射纵波,S ₂为折射横波。
L图2.1超声波的反射、折射及其波形转换这些物理现象均遵守反射定律、折射定律。
除了有纵波的反射波折射波以外,还有横波的反射和折射。
因为声波是借助于传播介质中的质点运动而传播的,其传播方向与其振动方向一致,所以空气中的声波属于纵向振动的弹性机械波。
在理想介质中,超声波的波动方程描述方法与电磁波是类似的。
描述简谐声波向X 正方向传播的质点位移运动可表示为:()cos()A A x t kx ω=+ (2.1)0()ax A x A e -= (2.2)式中,()A x 为振幅即质点的位移,0A 为常数,ω为角频率,t 为时间,x 为传播距离,2/k πλ=为波数,λ为波长,α为衰减系数。
衰减系数与声波所在介质和频率关系:2af α= (2.3)式(2.3)中,a 为介质常数,f 为振动频率。
2.2.1超声波的衰减从理论上讲,超声波衰减主要有三个方面:(1) 由声速扩展引起的衰减在声波的传播过程中,随着传播距离的增大,非平面声波的声速不断扩展增大,因此单位面积上的声压随距离的增大而减弱,这种衰减称为扩散衰减。
(2) 由散射引起的衰减由于实际材料不可能是绝对均匀的,例如材料中外来杂质金属中的第二相析出、晶粒的任意取向等均会导致整个材料声特性阻抗不均,从而引起声的散射。
超声波知识点超声波是一种纵波,其波长比可见光短得多,因此不能用肉眼观察。
它的频率很高,超过了人类可听到的上限。
超声波具有射线性、直线传播、不弥散等特点,因此得到了广泛应用。
本文将从超声波的定义、性质、应用等方面进行介绍。
一、超声波的定义所谓超声波,是指波长小于20微米的音波,频率大于20KHz 的纵波。
通俗地说,超声波就是一种声波,但它的频率比人类可听到的声音高得多。
它可以在空气中传播,但其强度会随着距离的增加而迅速衰减。
二、超声波的性质1.射线性超声波能够像光线一样在介质之间直线传播。
这是因为超声波在介质中传播时,会遵循折射定律。
2.干涉和衍射超声波也有干涉和衍射的现象。
当超声波在两个不同的方向上传播时,它们会互相干涉,使得波峰和波谷互相抵消。
当超声波经过一个孔隙时,仍然能够衍射,形成衍射条纹。
3.频散和色散超声波在介质中的传播速度会随着频率的变化而变化,这被称为频散。
当超声波经过不同介质时,其传播速度也会发生变化,这被称为色散。
4.特定驻波的形成当两个相同频率的超声波在介质中相遇时,它们会形成特定的驻波模式。
这种模式的分布受到介质特性、波源频率及其辐射模式的影响。
5.多次反射类似于光学中的镜面反射,超声波在遇到不同介质的界面时也会发生反射。
如果界面是光滑平整的,超声波就能够产生良好的回波信号。
三、超声波的应用1.医学领域医学上最常见的应用是超声波诊断。
超声波在人体组织中的传播速度和吸收率与组织的密度和结构有关。
通过向人体内部发射超声波,医生可以获得计算机轴扫超声等设备提供的有关人体内部器官的图像信息,以此来诊断疾病。
2.材料测试超声波可以被用来测试材料的结构和性能。
以声速为基础,能够获得测量参数,如材料的密度、弹性、硬度等。
3.环境表面检测超声波可以被用来探测水下物体,如船体、港口建筑等。
它也可以被用来测试地下结构,如油藏、煤层、水文构造等。
4.声像技术声像技术是通过声波的反射或散射来绘制材料或物体的内部结构。
超声波的特性及在医学诊断中的应用价值1. 引言1.1 介绍超声波的基本概念超声波是一种机械波,其频率高于人类听觉范围内的声波,一般定义为超过20kHz。
超声波在空气中传播速度约为343米/秒,传播速度比空气中的声速更快,这使得超声波在医学诊断中具有独特的应用优势。
超声波是通过超声波探头发出的脉冲波,当波束遇到组织界面时,一部分波将被反射回探头,探头接收反射波并将其转化为电信号,再通过计算机处理形成影像。
超声波的基本特性包括频率、波长、速度、反射、穿透等。
在医学诊断中,超声波可以用于检查人体各种器官和组织的结构、形态及功能。
其应用场景包括但不限于产前检查、心脏病、脑部疾病、乳腺病、泌尿系统疾病等。
超声波在医学诊断中具有无辐射、实时性、价格低廉等优势,但也存在穿透深度有限、分辨率较低等局限性。
超声波在医学诊断中扮演着不可替代的重要角色,随着技术的不断发展,超声波技术将会在未来医学领域中发挥更大的作用。
1.2 阐述超声波在医学诊断中的重要性超声波在医学诊断中扮演着非常重要的角色,由于其高频振动和穿透力强的特性,能够在人体组织中产生明显的反射或散射,从而形成图像,让医生能够清晰地观察到人体内部的结构和病变情况。
与传统的X光检查相比,超声波检查不需要使用放射线,避免了对人体的辐射损伤,尤其适用于孕妇和婴幼儿等对辐射敏感的人群。
超声波检查具有无创伤性、无痛苦、无辐射、操作简便、成本低廉等优势,被广泛应用于医学诊断中。
在心脏病、腹部疾病、妇科疾病、乳腺疾病等方面,超声波检查均具有很高的诊断准确性和临床应用价值。
随着技术的不断创新和发展,超声波在医学诊断中的应用范围也在不断扩大,被越来越多的医院和临床医生所重视和采用。
超声波在医学诊断中的重要性不可忽视,对于提高医疗诊断的准确性和有效性起着关键作用。
2. 正文2.1 超声波的特性超声波是一种高频声波,它的频率超过人类能够听到的范围,通常在20kHz以上。
超声波具有以下特性:1. 能够传播在各种介质中:超声波可以在空气、水、固体等不同介质中传播,因此在医学诊断中可以通过不同组织的反射来获取影像信息。
超声波1.超声波简介声波是一种机械波。
声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。
人耳所能听闻的声波其频率在20~20000Hz之间,频率在20~20000Hz以外的声波不能引起声音的感觉。
频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。
超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz。
2.超声波传感器一般超声波传感器运用压电效应原理。
(1)发生器:压电式超声波发生器是利用压电晶体的电致伸缩现象制成的。
常用的压电材料为石英晶体、压电陶瓷锆钛酸铅等。
在压电材料切片上施加交变电压,使它产生电致伸缩振动,而产生超声波。
(1)接收器:当超声波作用到压电晶体片上时,使晶片伸缩,则在晶片的两个界面上产生交变电荷。
这种电荷先被转换成电压,经过放大后送到测量电路,最后记录或显示出结果。
它的结构和超声波发生器基本相同,有时就用同一个超声波发生器兼做超声波接收器。
3.应用于弹性模量测量在各向同性的固体材料中,根据应力和应变满足的虎克定律,可以求得超声波传播的特征方程。
(当介质中质点振动方向与超声波的传播方向一致时,称为纵波;当介质中质点振动方向与超声波的传播方向垂直时,称为横波。
在气体介质中,声波只是纵波。
在固体介质内部,超声波可以按纵波或横波两种波型传播。
)对于同一种材料,其纵波波速和横波波速的大小一般不同,但它们都由弹性介质的密度、杨氏模量和泊松比等弹性参数决定。
相反,利用超声波速度可以测量材料有关的弹性常数。
(固体在外力作用下,其长度沿力的方向产生变形,变形时的应力与应变之比就定义为杨氏模量,一般用E表示。
固体在应力作用下,沿纵向有一正应变(伸长),沿横向就将有一个负应变(缩短),横向应变与纵向应变之比被定义为泊松比。
)4.超声波探伤对高频超声波,由于它的波长短,不易产生绕射,碰到杂质或分界面就会有明显的反射,而且方向性好,能成为射线而定向传播;在液体、固体中衰减小,穿透本领大。