气相色谱仪检测限检定结果的不确定度分析评定
- 格式:doc
- 大小:123.00 KB
- 文档页数:3
考核者签名:
单人成人心肺复苏术及评分标准
1
年月日医院:姓名;得分:
7
1.22%
5
15
5分
因此,ECD检测限的标准不确定度的有效自由度为:
5 结论
在电子捕获检测器ECD检测限测量结果的不确定度评定过程中《气相色谱仪检定规程》中的技术指标。
经检定合格的仪器,检查呼吸(至少花5法。
10秒)
(
规程[S].
(1955- )
[参考文献5到10秒内扣3分气相色谱仪检定
项目
内
容
分
值
1
扣
分
原
因扣分
0.74
检查反应(5
分)
1
确定患者是
否有反应
(无次动作
者扣5分)
查t分布表得,
扩展不确定度。
[2] 中国实验室国家认可委员会.化学分析中不确定度[3] JJF 1059
- 1999 ,测
量不确定度评
定与表示[S].
浙江杭州市人,大
学本科,高级
分)
工作单位:浙江省
杭州市临安质量计
量检测中心
的评估指南.北京:中国计量出版社,2002. 通讯地址:AED)(如有可能)(未启动紧急反应系统扣号分,未说取得
AED311300
2:@
联系电话:分)。
气相色谱仪的测量结果不确定度评定1、 概述1.1测量依据:JJG700-2016《气相色谱仪检定规程》 1.2测量方法:按JJJG700-2016 《气相色谱仪检定规程》,气相色谱仪用标准物质检定检测器的灵敏度或检测限。
2、数学模型2.1气相色谱仪检测器分两类,(一)是浓度型检测器,包括热导检测器(TCD )和电子俘获检测器(ECD ),(二)是质量型检测器,包括火焰离子化检测器(FID )、火焰光度检测器(FPD )和氮磷检测器(NPD )。
2.2浓度度型检测器,其响应值与载气流速有关,灵敏度的计算公式为:WAFc S = (1)式中: S ----灵敏度,mV ·mL/mg ; A ----标准物质中溶质的峰面积,mV ·s ;Fc ----载气流速,mL/min ; W ----标准物质的进样量,g 。
2.3质量型检测器,其响应值与载气流速无关。
通常,检测限以(2)式计算:ANW D 2= (2)式中: D -----检测限,g/s ; N -----基线躁声,A ; W ----标准物质的进样量,g ; A ----标准物质中溶质的峰面积,A ·s 。
由于FPD 对测定硫的响应机理不同,其响应值与标准物质浓度的平方成正比,则FPD 对测定硫的检测限以(3)式计算:()24/12)(2W h Wn N D s =………………………(3) 式中:D -----检测限,g/s ; N -----基线躁声,mm ; h ----标准物质中硫的峰高,mm ; W 1/4---硫色谱峰高1/4处的峰宽,s ;Wn s ----标准物质中硫的进样量,g 。
3、不确定度的分析和评定3.1根据传递由(1)式得出:2222⎪⎭⎫ ⎝⎛+⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛W S Fc S A S S S W Fc A S ……………(4) 由(2)式得出:2222⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛A S W S N S D S A W N D …………………(5) 由(3)式得出:24/14/122222222⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛W S h S n Sn W S N S S S W h s sW N D (6)3.2不确定度的来源分析AS A 为峰面积测量的不确定度u rA ,FcS Fc 为流速测量的不确定度u rF ,其中包括皂膜流量计的不确定度u 1和载气流速测量的不确定度u 2,W SW 为标准物质进样量的不确定度u rW ,其中包括标准物质的不确定度u 3和微量注射器校准的不确定度u 4,其中还有取样时的目视误差以及微量注射器校准时和使用时的温度不同引起的误差,经检定员培训时的检定结果表明,这些误差可忽略不计,N S N 基线躁声测量的不确定度u rN ,ssn Sn 为零。
八、气相色谱仪检测限测量结果的不确定度评定 (一)、测量过程简述1、测量依据:JJG700-1999计量检定规程2、测量环境条件:温度 ( 5-35)℃ 相对湿度 :(20-85)%3、测量标准:标准物质 ⑴苯——甲苯 ⑵正十六烷——异辛烷 ⑶甲基对硫磷——无水乙醇 ⑷丙体六六六——异辛烷⑸马拉硫磷——异辛烷与偶氮苯混合液 ⑹氮(氦、氢)中甲烷标准气体 4、被测对象:气相色谱仪5、测量方法:气相色谱仪(以下简称仪器)是在规定了仪器载气流速稳定性,柱箱温度稳定性,程序升温稳定性的情况下,用微量注射器,注入一定体积的标准物质,利用试样中各组分在色谱柱中的气相和固定相间的分配及吸附系数不同,由载气把气体试样或汽化后的试样带入色谱柱中进行分离,并通过检测器进行检测的仪器。
根据各组分的保留时间和响应值进行定性、定量分析。
6、评定结果的使用:在符合上述条件下的测量结果,一般可直接使用本不确定度的评定结果。
(二)、数学模型:1δχχ+=y式中:y ——仪器检测限理论值,χ——实测仪器检测限,1δχ ——标准物质对测量结果的影响 (三)各输入量的标准不确定度分量的评定 1、输入量1δχ标准不确定度()1x u δ的评定的评定:由标准物质证书给出相对不确定度为3%,按正态分布——k =3()1x u δ =3%/3=1.0% 且认为充分可靠,故自由度:()1x v δ→∞2、输入量χ标准不确定度()x u 的评定的评定2.1 利用标准物质检定仪器定量重复性的实验数据进行估计。
仪器定量重复性用6次进样色谱峰面积算术平均值的相对标准偏差表示。
0122.06103.01)(1=⨯=⨯=n x s x u 其中,0.03为规程中定量重复性的最大允许值。
自由度为:511=-=n v2.2 微量进样器引入的不确定度)(2x u :由微量进样器引起的不确定度为1%,经验数据,按均匀分布,覆盖因子k =3 )(2x u = 301.0 = 0.0058 = 0.58% 估计)()(22x u x u ∆为0.20,,其自由度ν2=122.3 长度测量仪器的相对标准不确定度)(3x u长度测量仪器分度值的相对标准不确定度,按均匀分布,则)(3x u =321⋅×1501=0.0019 估计)()(33x u x u ∆为0.20,则其自由度:ν3=12以上三项互不相关,则输入量χ标准不确定度()x u 为:()x u =232221)()()(x u x u x u ++=2220019.00058.00122.0++=0.014 x v =()()∑ii i i x u x u ν/44=120019.0120058.050122.0014.04444++≈8(四)、合成标准不确定度及扩展不确定度的评定 1、灵敏度系数 :数学模型: 1δχχ+=y 式中: y ——仪器检测限理论值,χ——实测仪器检测限,1δχ——标准物质对测量结果的影响 1)()(1=∂∂=x y c 1)()(12=∂∂=δχy c 2、各不确定度分量汇总及计算表 表8-1 各不确定度分量汇总及计算表3、合成标准不确定度的计算21122)}()()({)}()()({)(x u x y x u x y y u δδ⋅∂∂+⋅∂∂= )(y u =)()(122x u x u δ+=2201.0014.0+=0.0182、 有效自由度effv =()()∑ii ii c x u x u ν/44=∞+44401.08014.0018.0≈20 取置信概率p =95%,自由度 v eff = 20 查t 分布表得()eff v t k 9595== 2.09扩展不确定度:95U ())(95y u v t eff ⋅==3.8 % (五)、测量不确定度的报告气相色谱仪检测限测量结果的扩展不确定度:95U =3.8 % v eff = 20。
气相色谱仪测量结果不确定度的评定作者:张钰彬贾欣茹来源:《中国化工贸易·下旬刊》2017年第06期摘要:气相色谱仪作为测试混合气体的组成和开发工具不仅可以进行定量和定性检测,还对样品的各种物理化学常数的优异性能,因此被广泛应用在食品加工领域的有机化学、环境科学、生物制药等。
根据“检定规程”的气相色谱仪、气相色谱仪的相对测量精度的仪器,为了正确的测量结果和实验数据,测试报告样本的物理量的测量结果,必须为数值计算的精度和不确定性的浮动范围了。
因此,不确定性的大小决定了测量结果的可信性。
本文对气象色谱仪测量结果的不确定度进行了分析。
关键词:气相色谱法;测量结果;相对标准不确定度1 影响气相色谱测定结果不确定度的因素1.1 色谱仪的精确度和稳定性利用热导检测器、氢火焰离子化检测器、电子捕获检测器、火焰光度检测器、质谱检测器等多种分类方法对色谱仪的准确度和稳定性进行了表征。
不同色谱仪使用的具体条件和条件、仪器的准确性和稳定性也受仪器本身质量的影响。
1.2 溶剂效应气相色谱(GC)作为一种相对测量仪器,采用外标法。
样品中的填料相和样品之间的亲和性的差异决定了样品中各组分的分离。
如选择不当,会导致样品分离程度低和样品的浪费。
作为流动相的载体,须保证一定的浓度和纯度。
流动相不能与样品和固定相反应。
标准气体的不确定度将直接反映在测量结果中,也是测量操作中的一个难点。
1.3 环境条件虽环境条件对气相色谱仪的影响不大,但在某些低温或高温环境中,分子间的运动速率发生了急剧变化,固相和流动相的性质和样品特征都发生了变化。
在这种情况下,可能会使气体样品包移动时过快或过慢,从而影响色谱柱在样品中的分离,不确定度增加,增强科学测定难度,降低测量结果。
因此,如果不是在某些环境(如南北极)测定气体,建议选择更适宜的环境条件,以避免影响测定结果。
1.4 手动操作施工过程中技术人员应注意检漏。
长期使用气相色谱仪后,导流管内径较小,需及时检查和清洗。
气相色谱仪检定结果的不确定度评定赵雯甘肃省计量研究院,甘肃兰州 730000摘要:本文主要围绕着气相色谱仪检定结果展开分析,论述了气相色谱仪检定结果的不确定度评定,希望能够为今后气相色谱仪检定结果的研究提供参考。
关键词:气相色谱仪;检定结果;不确定度;评定中图分类号:O657.71 文献标识码:A 文章编号:1671-5586(2015)46-0088-021 前言气相色谱仪检定结果不确定度的评定至关重要,只有明确了不确定度的评定工作,才能够提升气相色谱仪检定的效果,从而提升工作的水平,避免出现质量问题。
2 气相色谱仪的基本组成及工作原理气相色谱仪是以气体为流动相,采用冲洗法来实现柱色谱技术的装置。
载气是从高压钢瓶经过减压阀流出的,然后由净化器去除杂质,之后再通过针形调节阀来调节流量,通过进样装置把注入的样品带入色谱柱,最后把被分离的组份带入检测器中进行鉴定、记录。
混合物中各组份的分离主要决定月色谱柱,色谱柱通常可分为填充柱和开口管柱(又称为毛细管柱)两种。
为确保各组份在色谱柱中能够处于最佳的分离状态,一般需要处于恒温或程序升温的环境中。
检测器鉴定经过分离的不同组份并测定其具体含量,流入检测器进行检测的是载气中混有的样品气,根据二元气体混合物的物理或化学性质,我们可以制成相应的不同检测器,如热导检测器、氢焰离子化检测器、火焰光度检测器等。
载气系统包括载气和某些检测器所需的气体与控制。
要保证气相色谱仪的正常操作,需要正确选择载气,严格调控载气流速并满足不同检测器所需的辅助气路。
进样就是把不同形态的样品快速定量地加到色谱柱上进行色谱分离。
而样品汽化速度、样品浓度、进样量、进样时间等,都会影响色谱分离效率和定量结果的准确性与重现性。
气相色谱仪的结构简单、性能稳定,对大多数物质都有响应,适合于常规分析和气体分析等。
气相色谱仪的工作原理是汽化的式样在固定相和移动相的运动过程中,内部的物质发生分离并在仪器中显示出不同的颜色,帮助研究人员对汽化的试样进行物质分析,以发现式样的特性,根据其特性开展食品、医药、化工等领域的生产工作,制造人们需要的物质。
气相色谱仪检测限检定结果的不确定度分析评定
Gas Chromatograph detection limits of test results of analysis
and evaluation of uncertainty
内江市计量测试研究所 韩刃 杨玉强 蒋东 641000
Institute of Metrological Verification and Research of Neijiang
Hanren Yangyuqiang Jiangdong
641000
摘要:检测限和灵敏度是气相色谱仪的重要的计量指标。
以FID 为例,不确定主要来源于基线噪声、定量重复性和标准物质进样量的不确定度。
气相色谱仪检测限为=FID D 4.0×10-12g/s,扩展不确定度=U 2.4×10-12g/s 。
Abstract: The detection limit and sensitivity are important of Gas Chromatograph ’s metrology indicators. With FID, for example, uncertainty comes mainly from the baseline noise, reproducibility and Reference Material ’s into the injection volume uncertainty.
Gas C hromatograph detection limit of 4.0×10-12
g / s, the expanded uncertainty of 2.4×10-12g / s.
关键词:气相色谱仪 检测限 不确定度
Key words: Gas Chromatography Detection limits Uncertainty 一、概述:
1、检定依据:JJG700--1999《气相色谱仪检定规程》。
2、测量环境条件:温度(5~35)℃,相对湿度(20~85)%。
3、测量标准:
正十六烷-异辛烷溶液,1mL/瓶,100ng/μL ,不确定度为U rel =3%,k =2。
微量进样器,1μL,容量允许误差为±12.0%。
4、被测对象:
气相色谱仪型号:GC6890N ;生产厂家:Agilent ;检测器名称:FID 。
5、测量过程:
检定时,选择适宜的色谱条件,待基线稳定后,采集30min 基线,测得噪声值N ;再用微量进样器准确量取1.0μL 标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A ,按公式计算出检测限。
并设定毛细柱分流比为1:10,故实际进样量为0.1μL 。
二、 建立数字模型
式中:D FID ―FID 检测限,g/s ; N ―基线噪声, A ;
W ―正十六烷进样量, g ;A ―正十六烷峰面积的平均值, A•.s 。
三、方差与灵敏系数
2)(2)(2)(2)(2)(2)(2)(...W W N N A A D c u c u c u u ++=
为评定方便,采用相对标准不确定度评定,则有:。
,c
,c
c W N A 111)
()
()(===
四、各分量的相对标准不确定度的分析
1.正十六烷峰面积A的相对标准不确定度评定
)
(
rel A
u
峰面积A的不确定度主要由人员操作的重复性、进样的重复性、色谱数据处理系统积分面积的重复性等因素引入,可以通过连续测量得到测量列,采用A类方法进行评定。
选择适当的色谱仪条件,待基线稳定后,采集30min基线,测得噪声值N;再用微量进样器准确量取1.0μL的100ng/μL正十六烷-异辛烷标准溶液,并将其注入气相色谱仪,连续进样6次,记录峰面积A,结果如表1所示。
表1 连续进样6次的峰面积值
由于在重复性条件下连续测量6次,故:
由于分流比为1:10,故实际进样量:
W =0.1μL×100ng/μL=10×10-9 g
×10-12 g/s
2.基线噪声N的相对标准不确定度评定
)
(
rel N
u
基线噪声本身就是一个不确定量,为方便计算,按误差的均匀分布处理, 采用B类方法进行评定,其标准不确定度为:
=
)
(N
u N/3=1.7E-10A
3. 正十六烷-异辛烷标准物质进样量的相对标准不确定度
)
(
rel W
u
(1)标准物质浓度的不确定度u(c)
100ng/μL正十六烷异辛烷的浓度不确定度为U rel=3%,k=2。
采用B类方法进行评定。
=
)
(C
u100×3%/2=1.50 ng/μL
灵敏系数c(c)=0.1μL.
(2)标准物质进样量的不确定度)(V u
进样体积0.1μL ,微量进样器容量允许误差为±12.0%,按均匀分布处理,采用B 类方法进行评定,则微量进样器容量引起的不确定度:
=)(V u 12.0%×0.1μL /3 =0.0693μL
灵敏系数c (v)= 100gn/μL.
(3)
4.相对标准不确定度一览表(见表2)
五、
则标准不确定度为:
=⨯=D u u D D )(rel )( 1.1818×10-12 g/s
六、扩展不确定度评定
取包含因子,2=k 可得检测限的扩展不确定度为:
=⨯=k u U D )( 2.4×10-12 g/s
七、测量不确定度的报告
气相色谱仪检测限为=FID D 4.0×10-12g/s,扩展不确定度=U 2.4×10-12g/s ,包含因子k =2。
作者简介:
韩刃:内江市计量测试研究所检定员 杨玉强:内江市计量测试研究所所长
蒋东:内江市计量测试研究所专业四室主任。