金相组织(PPT55页)
- 格式:pptx
- 大小:8.21 MB
- 文档页数:56
组织纯铁熔点1538℃,温度变化时会发生同素异构转变。
在912℃以下为体心立方,称α-Fe;912℃~1394℃之间为面心立方,称为γ—Fe;在1394℃~1538℃(熔点)之间为体心立方,称为δ-Fe。
纯铁的强度和硬度都很低,不能用作结构材料。
碳溶解于α—Fe或δ—Fe中形成的固溶体为铁素体,用α或δ表示。
δ铁素体也叫高温铁素体。
碳在α铁素体中最大溶解度为0.0218%,δ铁素体中最大溶解度为0。
09%。
碳溶解于γ铁中形成的固溶体称为奥氏体,用γ表示.碳在奥氏体中的最大溶解度为2.11%。
强度硬度低,塑性韧性好。
Fe3C具有斜方结构,无同素异构转变.硬度很高,塑性几乎为零,是脆硬相.石墨是稳定相,Fe3C是亚稳定相。
但是石墨的表面能很大,形核需要克服很高的能量,所以在一般的条件下,铁碳相图中的碳是以渗碳体Fe3C形式存在的.铁碳相图整个相图包含三个恒温转变:包晶,共晶、共析。
(1)在HJB水平线(1495℃)发生包晶转变:LB+δH→γJ,转变产物为奥氏体.含碳量在0. 09%(H点)~0。
53%(B点)的铁碳合金发生这一转变。
(2)在ECF水平线(1148℃)发生共晶转变:LC→γE + Fe3C。
转变产物为奥氏体与渗碳体的机械混合物,称为莱氏体(Ld).含碳量在2。
11%(E点)~6.69%(Fe3C)的铁碳合金都发生这一转变.(3)在PSK水平线(727℃)发生共析转变:γs→P+Fe3C。
转变产物为铁素体与渗碳体的机械混合物,称为珠光体(P)。
所有含碳量大于0.0218%的铁碳合金都发生这一转变。
Fe-Fe3C相图中还有四条重要的固态转变线:(1) GS线—奥氏体中开始析出铁素体或铁素体全部转变为奥氏体的转变线,常称此温度为A3温度。
(2)ES线—碳在奥氏体中的固溶度线,此温度常称为Acm温度。
低于此温度,奥氏体中将析出渗碳体,称为二次渗碳体记作Fe3CⅡ,以区别液相中经CD线析出的一次渗碳体Fe3CⅠ。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
钢铁材料常见金相组织简介在Fe-Fe3C系中,可配制多种成分不同的铁碳合金,他们在不同温度下的平衡组织各不相同,但由几个基本相(铁素体F、奥氏体A和渗碳体Fe3C)组成。
这些基本相以机械混合物的形式结合,形成了钢铁中丰富多彩的金相组织结构。
常见的金相组织有下列八种:一、铁素体铁素体(ferrite,缩写FN,用F表示),纯铁在912℃以下为具有体心立方晶格。
碳溶于α-Fe中的间隙固溶体称为铁素体,以符号F表示。
这部分铁素体称为先共析铁素体或组织上自由的铁素体。
随形成条件不同,先共析铁素体具有不同形态,如等轴形、沿晶形、纺锤形、锯齿形和针状等。
铁素体还是珠光体组织的基体。
在碳钢和低合金钢的热轧(正火)和退火组织中,铁素体是主要组成相;铁素体的成分和组织对钢的工艺性能有重要影响,在某些场合下对钢的使用性能也有影响。
碳溶入δ-Fe中形成间隙固溶体,呈体心立方晶格结构,因存在的温度较高,故称高温铁素体或δ固溶体,用δ表示,在1394℃以上存在,在1495℃时溶碳量最大。
碳的质量分数为0.09%。
图1:铁素体二、奥氏体碳溶于γ-Fe晶格间隙中形成的间隙固溶体称为奥氏体,具有面心立方结构,为高温相,用符号A表示。
奥氏体在1148℃有最大溶解度2.11%C,727℃时可固溶0.77%C;强度和硬度比铁素体高,塑性和韧性良好,并且无磁性,具体力学性能与含碳量和晶粒大小有关,一般为170~220 HBS、=40~50%。
TRIP钢(变塑钢)即是基于奥氏体塑性、柔韧性良好的基础开发的钢材,利用残余奥氏体的应变诱发相变及相变诱发塑性提高了钢板的塑性,并改善了钢板的成形性能。
碳素或合金结构钢中的奥氏体在冷却过程中转变为其他相,只有在高碳钢和渗碳钢渗碳高温淬火后,奥氏体才能残留在马氏体的间隙中存在,其金相组织由于不易受侵蚀而呈白色。
三、渗碳体渗碳体(cementite),指铁碳合金按亚稳定平衡系统凝固和冷却转变时析出的Fe3C型碳化物。
20G钢(600℃保温)低碳碳素钢金相组织材料:20G(锅炉用钢,相当20钢)工艺情况:埋弧自动焊接后600℃保温2h,去应力处理浸蚀方法:4%硝酸酒精溶液浸蚀组织说明:图右上部为焊缝组织,为铁素体和珠光体,呈柱状晶分布。
图为热影响区,为珠光体和铁素体,呈魏氏组织,晶粒度4级左右。
该高压锅炉中使用的工件采用埋弧自动焊的方法进行焊接,焊丝材料H08MnA+431焊剂。
焊后经600~650℃保温2h的去应力处理。
焊接接头的金相检查,表明焊缝质量达到有关标准要求,焊缝区无夹渣、气孔等疵病,热影响区晶粒有所增大,但尚属正常范围。
Mn18(固溶处理)金相图材料:Mn18(30万kW发电机护环材料)工艺情况:固溶处理浸蚀方法:电解抛光、化学浸蚀组织说明:基体为等轴孪晶奥氏体及极少量碳化物(在光学显微镜下不易观察到)。
铸态高锰钢中有碳化物沿晶界分布,从而降低了力学性能和耐磨性,它只有通过高温固溶处理,促使碳化物溶入基体,得到均匀的奥氏体,才能在承受较大冲击负荷时发挥它的高耐磨性能特点。
W6Mo5Cr4V2(淬火后680℃回火)金相图材料:W6Mo5Cr4V2工艺情况:淬火后680℃回火浸蚀方法:4%硝酸酒精溶液浸蚀(25~30℃,1.5min)组织说明:黑色回火马氏体基体上分布白色断续网状碳化物,在网角处有堆积现象。
按图中所述标准,对网状分布碳化物不均匀度的评定是按网孔大小和节点处碳化物堆积程度分级,同样分为8级,从3级开始,本样品可评为6级。
高速钢钢锭经开坯、锻轧而成为钢材时,鱼骨状分布的共晶莱氏体已基本消除。
但对尺寸较大的钢材,受到变形量较小的影响,组织中会存在着比较严重的碳化物不均匀度。
20钢(正火处理)低碳碳素钢金相组织材料:20钢工艺情况:正火处理(加热至900℃后空冷)浸蚀方法:4%硝酸酒精溶液浸蚀组织说明:20钢经正火处理后获得的正常组织,白色块状为铁素体,黑色块状为片状珠光体,晶粒比较细小。
20钢经正火处理以后,其抗拉强度R m(σb)可达420N/mm2。