固体物理学:第四章 金属自由电子论_1
- 格式:pdf
- 大小:1.43 MB
- 文档页数:61
第四章金属自由电子理论1.金属自由电子论作了哪些假设?得到了哪些结果?解:金属自由论假设金属中的价电子在一个平均势场中彼此独立,如同理想气体中的粒子一样是“自由”的,每个电子的运动由薛定谔方程来描述;电子满足泡利不相容原理,因此,电子不服从经典统计而服从量子的费米-狄拉克统计。
根据这个理论,不仅导出了魏德曼-佛兰兹定律,而且而得出电子气对晶体比热容的贡献是很小的。
2.金属自由电子论在k空间的等能面和费米面是何形状?费米能量与哪些因素有关?解:金属自由电子论在k空间的等能面和费米面都是球形。
费米能量与电子密度和温度有关。
3.在低温度下电子比热容比经典理论给出的结果小得多,为什么?解:因为在低温时,大多数电子的能量远低于费米能,由于受泡利原理的限制基本上不能参与热激发,而只有在费米面附近的电子才能被激发从而对比热容有贡献。
4.驰豫时间的物理意义是什么?它与哪些因素有关?解:驰豫时间的物理意义是指电子在两次碰撞之间的平均自由时间,它的引入是用来描写晶格对电子漂移运动的阻碍能力的。
驰豫时间的大小与温度、电子质量、电子浓度、电子所带电量及金属的电导率有关。
5.当2块金属接触时,为什么会产生接触电势差?解:由于2块金属中的电子气系统的费米能级高低不同而使热电子发射的逸出功不同,所以这2块金属接触时,会产生接触电势差。
6.已知一维金属晶体共含有N 个电子,晶体的长度为L ,设0=T K 。
试求:(1)电子的状态密度;(2)电子的费米能级;(3)晶体电子的平均能量。
解:(1)该一维金属晶体的电子状态密度为:dEdkdk dZ dE dZ E ⋅==)(ρ …………………………(1) 考虑在k 空间中,在半径为k 和dk k +的两线段之间所含的状态数为:dk Ldk dZ π=∆=k 2 …………………………(2) 又由于 mk E 222 =所以 mkdk dE 2 = …………………………(3) 将(2)和(3)式代入(1)式,并考虑到每个状态可容纳2个自旋相反的电子,得该一维金属晶体中自由电子的状态密度为:EmLE 22)( πρ=…………………………(4) (2)由于电子是费米子,服从费米—狄拉克统计,即在平衡时,能量为E 的能级被电子占据的几率为:11)(+=-TK E E B F eE f (5)于是,系统中的电子总数可表示为:⎰∞=0)()(dE E E f N ρ (6)由于0=T K ,所以当0F E E >,有0)(=E f ,而当0F E E ≤,有1)(=E f ,故(6)式可简化为:⎰=)(FE dE E N ρ=⎰0022FE dE E m L π=240FmE L π由此可得: 222208mLN E Fπ= …………………………(7) (3)在0=T K 时,晶体电子的平均能量为:⎰∞=0)()(1dE E E Ef N E ρ=dE EmL E N FE 22100⎰⋅π=230)(232F E m N L π=022223124F E mL N = π 7.限制在边长为L 的正方形中的N 个自由电子,电子的能量为)(2),(222y x y x k k mk k E += 。
第四章 固体电子论 参考答案1. 导出二维自由电子气的能态密度。
解:二维情形,自由电子的能量是:2πL x x k n =,2πL y y k n =在/k =h 到d k k +区间: 那么:2d ()d Z Sg E E =其中:22()πm g E =h2. 若二维电子气的面密度为n s ,证明它的化学势为:解:由前一题已经求得能态密度:电子气体的化学势μ由下式决定: ()()222E-/E-/001d ()d πe 1e 1B B k T k T L m E N g E L E μμ∞∞==++⎰⎰h 令()/B E k T x μ-≡,并注意到:2s N n L=那么可以求出μ:证毕。
3. He 3是费米子,液体He 3在绝对零度附近的密度为0.081 g /cm 3。
计算它的费米能E F 和费米温度T F 。
解:He 3的数密度:其中m 是单个He 3粒子的质量。
可得:代入数据,可以算得: E F =6.8x 10-16 erg = 4.3x 10-4eV.则:F F E T k ==4.97 K.4.已知银的密度为310.5/g cm ,当温度从绝对零度升到室温(300K )时,银金属中电子的费米能变化多少?解:银的原子量为108,密度为310.5/g cm ,如果1个银原子贡献一个自由电子,1摩尔物质包含有6.022x 1023个原子,则单位体积内银的自由电子数为在T=0K 时,费米能量为代如相关数据得2/3272227302812(6.6310)()3 5.910()29.110()8 3.148.8710() 5.54()F erg s cm E g erg eV -----⎛⎫⨯⋅⨯⨯= ⎪⨯⨯⨯⎝⎭≈⨯≈ 在≠T 0K 时,费米能量所以,当温度从绝对零度升到室温(300K )时, 费米能变化为代如相关数据得可见,温度改变时,费米能量的改变是微不足道的。
5. 已知锂的密度为30.534/g cm ,德拜温度为370K ,试求(1)室温(300K )下电子的摩尔比热;(2)在什么温度下,锂的电子比热等于其晶格比热?解:(1)金属中每个电子在常温下贡献的比热 2'0()2B V B F k T C k E π= (1) 式中0FE 为绝对零度下的费米能: 202/33()28F h n E m π= (2)锂的密度30.534/g cm ,原子量6.94,每立方厘米锂包含的摩尔数为0.534/6.94,1摩尔物质中包含 6.022x 1023个原子,每个锂贡献一个电子,则每立方厘米中的电子数已知将数据代入(2)得在室温(300K )下,0.026B k T eV =,由(1)式可以求得电子的摩尔比热代入相关数据得(2)电子比热只在低温下才是重要的。
第四章金属自由电子论材料科学与程学院材料科学与工程学院凌涛内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差内容提纲内容提1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.1经典自由电子论-特鲁德模型特鲁特(Drude)模型当金属原子凝聚在一起时,原子封闭壳层内的电子和原子核一起在金属中构成不可移动的离子实;原子封闭壳核起在金中构成移动的离实闭壳层外的电子会脱离原子而在金属中自由地运动。
这些电子构成自由电子气系统,可以用理想气体的运动学理论进行处理。
该模型有如下假设:(1)电子在没有发生碰撞时,电子与电子、电子与离子之()间的相互作用完全被忽略。
电子的能量只是动能。
4.1经典自由电子论-特鲁德模型(2)电子只与离子实发生弹性碰撞,电子与离子的碰撞过离实碰撞离碰撞程用平均自由时间τ和平均自由程l来描述。
τ表示一个电子与离子实相继作两次碰撞所间隔的平均时间;l是电子在平均两次相继碰撞之间的平均飞行距离。
(3)电子气是通过和离子实的碰撞达到热平衡的,碰撞前后电子速度毫无关联,运动方向是随机的,速度是和碰撞发生处的温度相适应的,其热平衡分布遵从波尔兹曼统计。
内容提纲1.经典自由电子论2.量子自由电子论33.金属的比热4.功函数与接触电势差4.2量子自由电子论索末菲模型金属中自由电子的运动应服从量子力学规律和相应的能量分布规律。
价电子在金属内恒定势场中彼此独立地自由运动,只是在金属表面处被势垒反射。
求解电地自由运动只是在金属表面处被势垒反射子运动的薛定谔方程,得到电子所允许的波函数和能量分布状态。
量分布状态4.2量子自由电子论-电子的波函数周期性边界条件:假设在三维空间有无限多个三维限度都是L 的势井相连接在各个势井的相应位置上电子波函数相等的势井相连接,在各个势井的相应位置上,电子波函数相等。
总的边界条件为:(0,,)(,,)0y z L y z ψψ=⎫⎪(,0,)(,,)(,,0)(,,)x z x L z x y x y L ψψψψ=⎬⎪=⎭空间电子态空间电子态:由波矢K 所代表的自由电子可能的空间运动状态。
金属导电的微观解释涉及到金属的电子结构和电子运动。
金属的导电性质主要归因于其特殊的电子排布和电子运动方式。
1. 自由电子模型:金属的电子结构可以通过自由电子模型来描述。
在金属晶格中,金属原子的外层电子几乎是自由移动的,形成了被称为“电子海”的电子云。
这些自由电子不受特定原子核束缚,可以在整个金属结构中自由移动。
2. 电子的漂移:当外部电场施加在金属上时,自由电子将受到电场的作用力。
根据牛顿的第二定律,受力的电子将产生加速度。
然而,由于金属中电子的质量非常小,所以在实际情况下,电子受到的阻尼较小,加速度较大。
3. 电子的碰撞:自由电子在金属晶格中会与金属离子和其他自由电子发生碰撞。
这些碰撞会导致电子的散射,但由于电子海中有大量自由电子,导致整体上电流的流动方向保持不变。
4. 导电性的来源:由于自由电子的高度流动性,它们可以在电场作用下形成电流。
这就是金属的导电性质的基本来源。
而金属晶格中的离子网络对电子的碰撞提供了一些阻力,但这种阻力相对较小,不会阻止电流的形成。
综合来看,金属导电的微观解释可以概括为:在金属中,存在大量自由移动的电子,它们受到外部电场的作用,形成电流,而金属晶格中的离子提供了一些散射阻力,但整体上电子仍能在金属中自由传导,从而表现出良好的导电性。