On relations among Dirichlet series whose coefficients are class numbers of binary cubic fo
- 格式:pdf
- 大小:224.38 KB
- 文档页数:14
数学分析有理数无理数集合函数绝对值不等式三角形区域邻域确界原理确界上确界下确界开区间闭区间有界集自变量因变量符号函数定义域值域复合函数反函数初等函数常量函数幂函数指数函数对数函数三角函数反三角函数有界函数单调函数奇函数偶函数周期函数数列极限收敛数列发散数列唯一性有界性保号性保不等式性Mathematical analysisRational numberirrationalA collection offunctionThe absolute valueinequalitytriangleareaneighborhoodWorld indeed principleWorld indeedsupremuminfimumOpen intervalClosed intervalBounded setThe independent variablesThe dependent variableSymbolic functiondomaindomainComposite functionInverse functionElementary functionConstant functionPower functionExponential functionLogarithmic functionTrigonometric functionsInverse trigonometric functionBounded functionMonotonic functionOdd functionEven functionsPeriodic functionSequence limitConvergent sequenceDivergent seriesuniquenessboundednessProtecting,Protecting the inequality保不等式性迫敛性四则运算法则子列单调数列单调有界定理自然对数致密性定理柯西收敛准则函数极限单侧极限局部有界性海涅定理无穷小量有界量高阶无穷小量等价无穷小量无穷大量渐近线连续性可去间断点跳跃间断点分段函数介值性定理一致连续性导数和微分单侧导数导函数极大值极小值费马定理稳定点链式法则光滑曲线高阶导数莱布尼茨公式微分可微函数高阶微分微分中值定理罗尔定理拉格朗日中值定理Protecting the inequalityForced convergence propertyFour algorithmsThe child columnsMonotone sequenceMonotony is definedNatural logarithmCompactness theoremCauchy convergence criteriaFunction limitUnilateral limitLocal boundednessHeine theoremdimensionlessA bounded amountHigh order dimensionlessEquivalent infinite smallinfinityasymptotecontinuityTo go discontinuitiesJump discontinuity pointPiecewise functionIntermediate value theoremUniform continuityDerivative and differentialUnilateral derivativeDerived functionThe maximumminimumFermat's theoremThe stable pointThe chain ruleSmooth curveHigher derivativeLeibniz formuladifferentialDifferential functionHigh order differentialDifferential mean value theoremRoller's theoremLagrange mean value theorem导数极限定理达布定理柯西中值定理不定式极限泰勒公式佩亚诺型余项泰勒多项式麦克劳林公式极值凸性拐点凸函数凹函数詹森不等式实数的完备性区间套定理魏尔斯特拉斯聚点定理有限覆盖定理开覆盖无限开覆盖有限开覆盖上极限下极限最大聚点最小聚点不定积分原函数换元积分法分部积分法有理函数待定系数法三角函数有理式欧拉变换定积分分割模积分和黎曼和黎曼可积牛顿—莱布尼茨公式The derivative limit theoremDarboux theoremCauchy mid-value theorem are obtained Infinitive limitTaylor formulaMore than jarno typeTaylor polynomialMcLaughlin formulaThe extremeconvexityInflection pointConvex functionConcave functionJensen's inequalityCompleteness of real NumbersNested interval theoremChris whales, lars accumulation point theorem Limited covering theoremOpen coverThe infinite open coverLimited open coverOn the limitUnder the limitThe biggest accumulation pointThe week-long pointIndefinite integralThe functionIntegral method in yuanDivision of integral methodRational functionMethod of undetermined coefficients Trigonometric function rational expression Euler transformationDefinite integralsegmentationdieIntegral andRiemann andRiemann integralNewton-Leibniz formula可积条件充要条件可积函数类振幅狄利克雷函数黎曼函数积分第一中值定理积分第二中值定理积分型余项上积分下积分施瓦茨不等式闵可夫斯基不等式弧长曲率微元法反常积分无界函数瑕积分绝对收敛柯西判别法狄利克雷判别法阿贝尔判别法阿基米德性数项级数敛散性级数收敛比式判别法根式判别法积分判别法交错级数绝对收敛级数条件收敛级数函数列一致收敛性内闭一致收敛函数项级数收敛域魏尔斯特拉斯判别法Integrable conditionNecessary and sufficient condition Integrable function classThe amplitudeDirichlet functionRiemann functionThe first mean value theorem for integrals Second mean value theorem for integrals More than integral typeThe integralThe integralSchwartz inequalityMinkowski inequalityArc lengthThe curvatureThe micro element methodImproper integralUnbounded functionDefect integralAbsolute convergenceCauchy criterionDirichlet criterionAbel criterionArchimedeanitySeveral seriesDivergence sexThe series convergenceThan type criterionRadical criterionIntegral criterionAlternating seriesAbsolutely convergent series Conditions of convergent series Function columnUniform convergenceWithin the closed uniform convergence Series expressed by function terms Convergence domainChris whales, criterion收敛区间收敛半径傅里叶级数周期三角级数收敛定理按段光滑贝塞尔不等式多元函数余集边界开集闭集连通性闭域点集直径区域有界点集累次极限重极限有界闭域微分学偏导数连续可微法线内函数外函数全微分方向导数梯度凸区域中值公式中值定理黑赛矩阵隐函数显函数隐函数定理隐含数组一一映射逆映射切平面法线Convergence rangeRadius of convergenceFourier seriescycleTrigonometric seriesConvergence theoremAccording to the period of smoothBessel inequalityMultivariate functionI setThe borderOpen setClosed setconnectivityClose your domainPoint setThe diameter ofareaA bounded set of pointsThe iterated limitWeight limitBounded closed regionDifferential calculusPartial derivativeContinuously differentialnormalWithin the functionOutside the functionTotal differentialDirectional derivativeThe gradientConvex regionThe median formulaMean value theoremThe black race matrixImplicit functionExplicit functionThe implicit function theoremImplicit arrayOne-to-one mappingThe inverse mappingThe tangent planenormal含参量积分欧拉积分伽玛函数贝塔函数曲线积分重积分可求面积二重积分三重积分格林公式单连通区域复连通区域极坐标变换被积函数积分变量柱坐标变换球坐标变换反常二重积分无界区域曲面积分高斯公式斯托克斯公式向量场梯度场散度场旋度场向量函数微分学Integral containing parametersEuler integralThe gamma functionBeta functionCurvilinear integralDouble integralAsk for the areaDouble integralTriple integralGreen's theoremSimply connected regionAfter connected areaPolar coordinate transformationintegrandThe integral variableColumn coordinate transformationThe ball coordinate transformationAbnormal double integralUnbounded regionSurface integralGauss formulaStokes formula of vector fieldGradient fieldThe divergence fieldThe curl fieldVector function differential calculus专业名词集锦矩阵{数} matrix; array矩阵变换法matrix transform method;矩阵表示matrix notation; matrix representation;矩阵表示法matrix representation;矩阵代数matrix algebra; algebra of matrices;矩阵定理matrix theorem;矩阵法matrix method; matrix technique;矩阵范数matrix norm;矩阵方程matrix equation;矩阵方法matrix method;矩阵分块partitioning of matrix;矩阵分数matrix fraction;矩阵分析matrix analysis;矩阵符号matrix notation;矩阵函数matrix function; function of a matrix;矩阵环matrix ring;矩阵迹traces of matrix;矩阵计算matrix computation; matrix calculation; matrix calculus; 矩阵记号matrix notation;矩阵阶order of a matrix;矩阵解法matrix solution;矩阵列rectangular array;矩阵论matrix theory;矩阵群matrix group;矩阵特征根characteristic root of a matrix;矩阵特征值matrix eigenvalue;矩阵微分方程matrix differential equation;矩阵元素{数} matrix element;矩阵运算matrix operation;矩阵组set of matrices正则{数} {物} canonical; regular正则边界regular boundary;正则变换regular transformation;正则表示regular representation;正则参数regular parameter;正则点regular point;正则方程式regular equation;正则分布canonical distribution;正则函数regular function;正则化regularization;正则矩阵regular matrix;正则空间regular space;正则扩张regular extension;正则理想regular ideal;正则列regular column;正则奇点regular singular point; regular singularity;正则群regular group;正则-P群regular P-group;正则算子regular operator;正则微分方程regular differential equation;正则系统canonical system;正则形式canonical form;正则性regularity;正则映射regular mapping;正则值regular value;正则坐标canonical coordinates微分{数} differential:全微分total differential;偏微分partial differential;二项式微分binomial differential; differentiation微分包含differential inclusion;微分表示differential representation;微分参数differential parameter;微分-差分方程differential-difference equation;微分代数differential algebra;微分动力系统differentiable dynamical system;微分动态规划differential dynamic programming;微分多项式differential polynomial;微分方程(式){数} differential equation;微分方程解法solution of differential equation;微分方程组simultaneous differential equations;微分符号differential sign;微分积分方程式differential-integral equation;微分几何(学)differential geometry;微分矩阵differential matrix;微分曲线differential curve;微分算符differentiating operator; differential operator; 微分算子differentiating operator; differential operator; 微分系数differential coefficient; differential quotient; 微分线性differential linearity微分形式differential form;微分学differential calculus;微分映射differentiable mapping;积分{数} integral; integrate; integration:定积分definite; integral;不定积分indefinite integral积分变换integral transformation; integral transform;积分变换法integral-transform method;积分变量integration variable;积分变数integral variable; variable of integration;积分表table of integrals;积分表示integral representation;积分不等式integral inequality;积分差分方程integro-difference equation;积分常数integral constant; integration constant;积分对数integral logarithm;积分法integration;积分方程(式)integral equation;积分公式integral formula; formula of integration;积分号sign of integration;积分几何学integral geometry;积分区间integrating range;积分曲线integral curves;积分算子integral operator;积分微分方程integral differential equation;积分-微分算子integro-differential operator;积分微分运算integral differential operation;积分学integral calculus;积分因数(子) integrating factor;积分域domain of integration; field of integration;正交{数} {物} {电} orthogonal; perpendicular; normal; orthogonality; quadrature正交变换{数} orthogonal transformation;正交变换器quadrature transformer;正交表orthogonal array;正交表示orthogonal representation;正交补{数}orthogonal complement;正交单位向量组{数} orthogonal vectors;正交多项式{数} orthogonal polynomial;正交关系orthogonality relation;正交轨线{数} orthogonal trajectory;正交函数orthogonal function;正交函数系orthogonal function system;正交函数展开式orthogonal function expansion;正交函数族orthogonal family of function;正交矩阵{数} orthogonal matrix;正交曲面{光} normal surface; orthogonal surface;正交曲线系orthogonal system of curves;正交射影orthogonal projection; orthographic;正交投影{测} rectangular projection;正交系{数} orthogonal system;正交(晶)系rhombic system; orthorhombic system;正交线{数} cross line;正交向量{数} orthogonal vectors;正交性{数} orthogonality;正交元素{数} orthogonal elements; orthogonal quantities;正交阵列orthogonal array;正交直线组{数} orthogonal lines;正交坐标orthogonal coordinates;正交坐标系orthogonal coordinate system特征characteristic; feature; properties; aspect; trait:特征变量characteristic variable;特征参数characteristic parameter;特征常数characteristic constant;特征点characteristic point;特征多项式characteristic polynomial;特征二次型{数} characteristic quadratic form;特征泛函characteristic functional;特征法characteristic method;特征方程characteristic equation; proper equation;特征根characteristic root; latent root;特征函数characteristic function; eigenfunction; proper function; 特征集feature set;特征矩阵eigenmatrix; characteristic matrix;特征空间feature space;特征数characteristic;特征线characteristic curve; characteristic line; characteristics;特征线法method of characteristic curves; characteristics method; 特征向量characteristic vector; feature vector;特征因数characteristic factor;特征元characteristic element;特征子群characteristic subgroup有界{数} bounded有界变差 bounded variation; limited variation;有界变差函数 functions of bounded variation;有界变数 bounded variable;有界表示 bounded representation;有界泛函 bounded functional;有界函数 bounded function;有界集 bounded aggregate; bounded set; limited set;有界量 bounded quantity;有界区域 bounded domain;有界数集 bounded set of numbers;有界算子 bounded operator;有界投影 bounded projection;有界性 boundedness;有界序列 bounded sequence线性{数}linear;linearity线性表示:linear expression线性常微分方程:linear ordinary differential equation;线性代数:linear algebra;线性代数方程:linear algebraic equation;线性代数方程组:simultaneous linear algebraic equations;线性度量空间:linear metric spaces;线性泛函:linear functional;线性赋范空间:linear normed spaces;线性空间:linear space;线性偏微分方程:linear partial differential equation;线性算子:linear operator;线性微分方程:linear differential equation;线性无关组:linearly independent quantities;线性相关:linear correlation;线性子空间:linear subspaces;解solution通解:general solution特解:particular solution;particular integral;初值:初值定理:initial-value theorem;初值方法:initial-value method;初值问题:initial-value problem;初值参数:initial parameter;纯量纯量函数:scalar function;纯量积:scalar product;纯量矩阵:scalar matrix算子:operator空间:space(子空间:subspace)范数:norm矩阵:matrix度量:metric。
dirichlet 级数
Dirichlet级数是由德国数学家Peter Gustav Lejeune Dirichlet在1829年提出的,它是多变量的数学概念,主要用于解决连续函数的收敛性问题。
Dirichlet级数由一系列形式相同的np 项组成,其中n是正整数,而p是实数参数。
简言之,Dirichlet级数就是一种特殊的数列,用来描述给定函数的收敛行为。
例如,一个
特定的Dirichlet级数可以用来描述特定函数的图形及其收敛值。
具体而言,Dirichlet级数
可以用来描述连续函数的值,以及它们的收敛性质。
Dirichlet级数有许多应用,其中很多应用都与函数收敛性有关。
它们最常用于描述复杂的
函数形状,比如泊松分布、指数分布等,以及在给定范围内收敛的连续函数。
此外,Dirichlet级数还可以用于讨论一个函数在不同时间段内的收敛性质。
此外,Dirichlet级数在非线性计算中也有重要作用,如有限元法和有限体积法,它们在处
理非线性物理系统中经常用到。
Dirichlet级数在多元微积分中也有重要的意义,如极坐标、旋转体积以及贫水面积,它们均可用Dirichlet级数来解释。
总之,Dirichlet级数是一种重要的数学概念,它的应用被广泛用于数学,物理,微积分等
领域。
它的精确性和易用性使得其成为解决复杂运算问题的优秀工具,长期以来被广泛应用于许多领域。
狄里赫利条件的证明Dirichlet's conditions are a set of criteria that must be satisfied for a Fourier series to converge to a useful result. These conditions are essential for ensuring that the Fourier series of a function behaves in a predictable and consistent manner. In order to understand the proof of Dirichlet's conditions, we must first grasp the fundamental concepts of Fourier series and the key ideas behind convergence.狄里赫利条件是一组必须满足的标准,以便使傅里叶级数收敛到一个有用的结果。
这些条件对于确保函数的傅里叶级数表现出可预测和一致的行为至关重要。
为了理解狄里赫利条件的证明,我们必须首先掌握傅里叶级数的基本概念以及收敛背后的关键思想。
A Fourier series is a mathematical representation of a periodic function in terms of an infinite sum of sines and cosines. It allows us to decompose a complex function into simpler components, making it easier to analyze and manipulate. However, the convergence of a Fourier series is not always guaranteed, and Dirichlet's conditions provide a set of guidelines to ensure that the series converges under certain conditions.傅里叶级数是一个周期函数的数学表示,用正弦和余弦的无穷和来表示。
dirichlet定理(一)引言dirichlet定理:一个不等式的两边都乘以(或除以)同一个常数,则必有一边为零。
(二)法国科学家dirichlet,在1816年证明了以下不等式:x-12=0 x+20=1 x+20=0(三)一个不等式两边同时乘以或除以一个同一个数,这个不等式依然成立。
举例如下: 4-2=2-2=-1(四)德国物理学家dirichlet 于1800年首次给出了“能量的最大值原理”,即一种物质所含能量最多只能达到它的最大值。
我们已经知道,在任何情况下,能量总是守恒的,那么,物质在某一点处所含能量的最大值是否就是这种物质的最大能量呢?如果是,那么,这种物质就称为“最大能量物质”。
而这种“最大能量物质”,就是人类苦苦追求的能源。
(四)德国物理学家dirichlet于1800年首次给出了“能量的最大值原理”,即一种物质所含能量最多只能达到它的最大值。
我们已经知道,在任何情况下,能量总是守恒的,那么,物质在某一点处所含能量的最大值是否就是这种物质的最大能量呢?如果是,那么,这种物质就称为“最大能量物质”。
而这种“最大能量物质”,就是人类苦苦追求的能源。
我国工程技术人员从事太阳能开发研究已经有十几年历史,但至今未获突破。
一个重要原因就是不了解太阳能是一种最大能量物质,对之的利用就仅停留在计算阶段,没有切实可行的实际应用。
dirichlet定理及其意义,对科学、文化的传播起着不可低估的作用,因此,这一定理也被称为“科学家定理”。
更是人们学习物理基础课和选修课的重要教材。
第二章量和运动3.4.1知识回顾及概念讲解例1。
(五)德国物理学家dirichlet于1800年首次给出了“能量的最大值原理”,即一种物质所含能量最多只能达到它的最大值。
我们已经知道,在任何情况下,能量总是守恒的,那么,物质在某一点处所含能量的最大值是否就是这种物质的最大能量呢?如果是,那么,这种物质就称为“最大能量物质”。
狄利克雷收敛定理
根据是收敛定理,也称狄里克雷收敛定理;定理结论是:在f()的连续点处,级数收敛到f();在f()的间断点处,级数收敛到(f(+0)+f(-0))、2。
1827年在波兰布雷斯劳大学任讲师。
1829年任柏林大学讲师,1839年升为教授。
1855年,高斯逝世后,他作为高斯的继任者被哥廷根大学聘任为教授,直至逝世。
1831年,他被选为普鲁士科学院院士,1855年被选为英国皇家学会会员。
狄利克雷是德国数学家,1805年2月13日生于迪伦,1859年5月5日卒于哥廷根。
狄利克雷出生于一个具有法兰西血统的家庭。
自幼喜欢数学,在12岁前就将零用钱积攒起来买数学书阅读。
16岁中学毕业后,父母希望他学习法律,但狄利克雷却决心攻读数学。
他先在迪伦学习,后到哥廷根受业于高斯。
1822年到1827年间旅居巴黎当家庭教师。
在此期间,他参加了以傅里叶为首的青年数学家小组的活动,深受傅里叶学术思想的影响。
迪利克雷收敛定理
迪利克雷收敛定理(Dirichlet's Test for Convergence)是数学分析中一个用于判断级数是否收敛的定理。
定理表述如下:如果级数$$\sum_{n=1}^{\infty} a_n b_n$$满足以下两个条件:
1. $\{a_n\}$是单调趋于零的数列,即对所有的$n$都有
$a_{n+1}\leq a_n$和$\lim_{n\to\infty} a_n = 0$,且$|a_n|$有一个上界。
2. $\{b_n\}$是一个满足任意部分和有界的数列,即存在常数$M$使得对所有的正整数$n$都有$|\sum_{k=1}^{n} b_k|\leq
M$。
则级数$$\sum_{n=1}^{\infty} a_n b_n$$是收敛的。
该定理可以用于判断柯西收敛定理无法适用的情况,即当级数$\sum_{n=1}^{\infty} a_n$满足柯西收敛准则,但不满足
$a_n$单调趋于零时。
在这种情况下,可以通过构造一个满足迪利克雷符号定理条件的$b_n$数列,来判断级数的收敛性。
狄利克雷函数的用途标题:探索狄利克雷函数的多重应用导语:狄利克雷函数(Dirichlet function)是数学分析中的一个著名函数,它在许多领域中都有广泛的应用。
从初等数论到概率论,从无限级数到积分变换,狄利克雷函数都扮演着重要的角色。
本文将从不同角度介绍狄利克雷函数的应用,以帮助读者更全面、深入地理解这一重要的数学概念。
一、初等数论1. 质数分布狄利克雷函数在初等数论中被广泛用于研究质数的分布。
通过狄利克雷函数的性质,我们可以推导出著名的素数定理,即当自然数趋向无穷时,质数的个数与自然数的对数关系。
这个结果对于许多数论问题的解决起到重要作用。
2. 代数数的估计通过狄利克雷函数和复数解析的方法,我们可以对代数数的性质进行估计。
利用狄利克雷函数的定义和性质,我们可以证明代数数在实数轴上的分布不是均匀的,从而对代数数的性质有了更深入的认识。
二、复变函数论1. 调和函数狄利克雷函数在复变函数论中常常用于研究调和函数。
调和函数在物理学、工程学和金融数学等领域中具有重要的应用。
通过狄利克雷函数的积分表示以及它与调和函数的关系,我们可以得到关于调和函数性质的更多结论,并在实际问题中应用。
2. 积分变换狄利克雷函数可以与积分变换进行结合,给出一些有趣的结果。
狄利克雷函数的Laplace变换可以用于求解一些偏微分方程的初值问题。
这种应用将复变函数论和实际问题联系在一起,展示了狄利克雷函数的实用价值。
三、概率论与统计学1. 概率分布函数狄利克雷函数的应用还可以扩展到概率论与统计学中。
狄利克雷函数是贝叶斯统计中的关键概念,用于建立多项式分布、狄利克雷分布等概率模型。
这些模型在分类、聚类、文本挖掘等数据分析领域具有广泛应用。
2. 马尔可夫链马尔可夫链是概率论中一个重要的随机过程模型,而狄利克雷函数被用于研究马尔可夫链的平稳分布和收敛性质。
通过狄利克雷函数的性质和马尔可夫链的特性,可以更好地理解随机过程的行为,并应用于风险分析、模拟等实际问题中。
Dirichlet, Johann Peter Gustav Lejeune狄里克利Dirichlet(1805~1859)德国数学家,生于现德国Duren(当时属法国),卒于哥廷根。
他是解析数论的奠基者,也是现代函数观念的定义者。
Dirichlet 家族可能来自比利时,他的父亲是Duren 城的邮政局长。
Dirichlet 在12岁时对数学已充满热情,会用零用钱,购买喜欢的数学书。
16岁时由于当时德国大学水平太低,他到巴黎读大学,随身携带的是他视如珍宝的高斯著作《Disquisitiones Arithmeticae》(算术研究),而身边皆是法兰西学院的名师如Fourier、Laplace、Legendre 与Poisson。
Dirichlet 1825年挟证明费玛最后定理n=5 情况的盛名,他一生的贵人──德国博物学与矿物学家Alexander von Humboldt──举荐他回德国大学任教,当时由于他没有德国博士学位,又不会拉丁文,只好由科隆(Koln)大学破格授予荣誉学位,再向Breslau 大学提出求职的Habilitation 论文,取得教书的资格,此举曾引起德国数学界议论纷纷。
由于Breslau 大学水平太差,1828年在von Humbolodt 帮助下,Dirichlet 搬往柏林,先在军事学院教书,进而取得柏林大学的教授资格。
一直到1855年,Dirichlet 一直在这两所大学从事烦冗的教学工作,只有在1843~1845年,经由von Humboldt 穿针引线,陪同一生的好友Jacobi 前往意大利疗养,并造访意大利数学界。
1855年高斯去世,哥廷根大学聘任Dirichlet 接任高斯的位置,Dirichlet 以此向普鲁士文化部要求停止军事学院的教书负担,但由于一直没有回应,Dirichlet 乃前往哥廷根。
可惜短短地在三年后,因心脏病发于瑞士,最后逝于哥廷根。
Dirichlet 的数学贡献甚多,除了早年证明费玛最后定理n=5 的情况;三十岁时他证明高斯猜测的「在始项与公差互质的算术级数中,存在无穷多质数」,其中他引介L 函数的观念与进路,成为解析数论的奠基者;并在解释太阳系稳定性时,引入Laplace 方程的Dirichlet 条件;他也是现代函数观念的真正定义者,Dirichlet 函数还常见于今日微积分的教科书:关于Fourier 级数的严格性这一笔烂帐(Fourier、Poisson、Cauchy),也要到Dirichlet 才解决,黎曼尊称他为Fourier 级数理论的真正奠基者。
毕业论文(设计)文献综述毕业论文(设计)翻译文章函数与方程思想在中学数学中的应用目录中文摘要、关键词 (Ⅰ)1引言 (1)2 方程中的函数思想 (1)3 函数中的方程观点 (3)4函数与方程思想在中学数学中的应用 (5)4.1函数与方程思想在数列中的应用 (6)4.2函数与方程思想在三角中的应用 (7)4.3函数与方程思想在不等式中的应用 (8)4.4函数与方程思想在解析几何中的应用 (8)4.5函数与方程思想在二项式定理中的应用 (12)4.6函数与方程思想在概率中的应用 (12)4.7函数与方程思想在多元问题中的应用 (13)4.8讨论方程f(x)=0在某个区间上根的个数 (13)4.9函数与方程思想在复数问题中的应用 (14)参考文献 (15)英文摘要、关键词 (Ⅱ)函数与方程思想在中学数学中的应用摘要:函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决。
这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路。
和函数有必然联系的是方程,方程f (x)=0的解就是函数y=f (x)的图像与x 轴的交点的横坐标,函数y=f (x)也可以看作二元方程f (x)-y=0通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,希望通过方程(组)来求得这些量。
这就是方程的思想,方程思想是动中求静,研究运动中的等量关系。
在中学数学中,函数与方程是相互联系不可分割的,涉及这两个方面的问题可以相互转化。
许多方程问题常常可以运用函数思想去解决,而不少函数问题又往往须转化为方程来求解。
因此,在解决一些函数和方程问题时,既要善于运用函数思想解决方程问题,又要学会灵活运用方程的观点去观察、处理函数问题。
关键词函数思想,方程思想,应用1引言函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究,从而使问题获得解决。
狄利克雷(Dirichlet)函数性质及应用狄利克雷(Dirichlet)函数性质及应用作者指导教师马永传摘要:狄利克雷函数作为分析学中的一种构造性函数有着许多特殊的性质,它在数学分析、实变函数与泛函分析、复合函数等诸多领域均有十分广泛的应用,在数学发展过程中起过重要的作用。
本文将在性质与应用两个方面对狄利克雷函数进行讨论。
关键词:狄利克雷函数;性质;应用;反例函数概念最早出现在世纪英国数学家格雷戈里的文章《论圆和双曲线的求积》年中。
他定义函数是这样一个量:它是从一些其他量经过一系列代数运算或者任何其他可以想象到的运算而得到的。
世纪德国著名数学家莱布尼茨年在一篇手稿里使用了“函数”这一概念。
后来, 莱布尼茨又引进“常量”、“变量”和“参变量”的概念。
在数学史上, 这是一大进步, 它使得人们可以从数量上描述运动了。
当时的函数指的是可以用解析式表示的函数,但这种概念对数学和科学的进一步发展来说实在是太狭隘了。
历史上第一个给出函数一般定义的是世纪德国数学家狄利克雷()。
这也促成了微积分的严格性的开始。
事实上,如果严格性没有进入定义,那就无法在推理中体现严格性。
当时, 数学家们处理的大部分数学对象都没有完全的严格的定义,数学家们习惯借助于直觉和想象来描述数学对象。
狄利克雷在年给出了下面的著名函数(后人称为狄利克雷函数):这个函数具有三个特点:1没有解析式:使函数概念从解析式中解放了出来。
2没有图形:使函数概念从几何直观中解放了出来。
3没有实际背景:使函数概念从客观世界的束缚中解放了出来。
狄利克雷函数的出现,表示数学家们对数学的理解发生了深刻的变化,数学的一些“人造”特征开始展现出来。
这种思想也标志着数学从研究“算”转变到了研究“概念、性质、结构”。
1 狄利克雷函数及其性质狄利克雷 [德]函数在数学分析、实变函数、泛函分析等研究领域中起着十分重要的作用。
1.1 狄利克雷函数的相应定义(1)对任意令,则称为定义在实数上的狄利克雷函数.(2)对任意令,则称为定义在实数上的狄利克雷拓展函数.(3)一般地,广义的狄利克雷函数可定义为:其中为实数,.1.2 狄利克雷函数与狄利克雷拓展函数的性质1.周期性定理1.1 任意的非零有理数都是及的周期;但是任何的无理数都不是的周期.证由对任意有理数,有故任意的有理数都是及的周期.对任意的无理数,有故任何的无理数都不是和.2.有界性定理1.2 都是有界函数.证由故知且,所以都是有界函数.3.奇偶性定理1.3 都是偶函数.证由且知负号不改变数的有理性及无理性,所以可得所以且,故及都是偶函数.4.单调性定理1.4 及在实数集的任何区间上都不具有单调性.证对,在区间上由实数的稠密性知,在区间上存在无数个有理数及无数个无理数.不妨设,、为无理数,为有理数,.则,;,;故可知在实数集的任何区间上都不具有单调性.5.连续性定理1.5 对于及都不存在.证对任意小的由实数的稠密性知在内存在一组递增的有理数组存在一组递增的无理数组且 .又易得可知及不存在,故和不存在.定理1.6 及在上处处不连续.证:由定理1.5知对于及都不存在.故知,又由在上处处不连续.6.可积性定理1.7 及在任何区间上非可积.证由对于的一个分割,任取点,,并作和式: 由实数的稠密性知,当取为有理数时,,则;而取为无理数时,;故在任何区间上非可积.由对于的一个分割,任取点,,并作和式: 当分别取有理数和无理数时,的值互为相反数且都不为零.故在任何区间上非可积.综上可知, 及在任何区间上非可积.2 狄利克雷函数的应用数学中的反例,是用以否定错误命题而举的例子。
direchlet函数Dirichlet函数是一类特殊的函数,它在数学分析中有着重要的应用和意义。
本文将从以下几个方面对Dirichlet函数进行详细介绍。
一、定义和性质Dirichlet函数是一个定义在实数集上的函数,它的定义如下:$$D(x)=\begin{cases} 1, & x \in \mathbb{Q} \\ 0, & x \in \mathbb{R}\backslash\mathbb{Q} \end{cases}$$其中$\mathbb{Q}$表示有理数集,$\mathbb{R}\backslash\mathbb{Q}$表示无理数集。
Dirichlet函数的性质如下:1. Dirichlet函数在有理数集上等于1,在无理数集上等于0。
2. Dirichlet函数在任意一点处的左右极限均不存在。
3. Dirichlet函数不是黎曼可积函数。
二、Dirichlet函数的应用尽管Dirichlet函数看起来相当复杂和奇特,但它在数学分析中却具有重要的应用。
以下是几个例子:1. Dirichlet函数被用来说明基本极限定理:对于任意实数序列$\{a_n\}$和$\{b_n\}$,如果$\lim\limits_{n\to\infty}(a_n-b_n)=0$,那么$\lim\limits_{n\to\infty}a_n=\lim\limits_{n\to\infty}b_n$。
2. Dirichlet函数被用来说明上极限和下极限的差异:对于任意实数序列$\{a_n\}$,如果上极限$\overline{\lim\limits_{n\to\infty}}a_n$存在,则下极限$\underline{\lim\limits_{n\to\infty}}a_n$也存在,且它们之间的差不超过1。
3. Dirichlet函数与傅里叶级数有密切的关系。
经过傅里叶级数展开后,Dirichlet函数可以表示成无穷级数的形式。
a r Xi v :0711.0499v 1 [m a t h .N T ] 4 N o v 2007ON RELATIONS AMONG DIRICHLET SERIESWHOSE COEFFICIENTS ARECLASS NUMBERS OF BINARY CUBIC FORMSYASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKIAbstract.We study the class numbers of integral binary cubic forms.For each SL 2(Z )invariant lattice L ,Shintani introduced Dirichlet series whose coefficients are the class numbers of binary cubic forms in L .We classify the invariant lattices,and investigate explicit relationships between Dirichlet series associated with those lattices.We also study the analytic properties of the Dirichlet series,and rewrite the functional equation in a self dual form using the explicit relationship.1.Introduction Study of the class numbers of integral binary cubic forms was initiated by G.Eisenstein and developed by many mathematicians including C.Hermite,F.Arndt,H.Davenport and T.Shintani.Davenport [D]obtained asymptotic formulas for the sum of the class numbers of integral irreducible binary cubic forms of positive and negative discriminants.Shintani [S2]improved the error term by using the Dirichlet series whose coefficients are the class numbers of binary cubic forms introduced in [S1].Let V Q be the space of binary cubic forms over the rational number field Q ;V Q ={x (u,v )=x 1u 3+x 2u 2v +x 3uv 2+x 4v 3|x 1,...,x 4∈Q }.For x ∈V Q ,the discriminant P (x )is defined by P (x )=x 22x 23+18x 1x 2x 3x 4−4x 1x 33−4x 32x 4−27x 21x 24.The group Γ=SL 2(Z )acts on V Q by the linear change of variables and P (x )is invariant under the action.Let L be a Γ-invariant lattice in V Q .We put L ±={x ∈L |±P (x )>0}.For x ∈L ,let Γx be the stabilizer of x in Γand #Γx its order.Definition 1.1.For each invariant lattice L and sign ±,we put˜ξ±(L,s ):=x ∈Γ\L ±(#Γx )−1Date :February 2,2008.The first author is supported by JSPS Grant-in-Aid No.18740020.The second author is supported by Research Fellowships for Young Scientists of JSPS.The third author is supported by JSPS Grant-in-Aid No.18840018.12YASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKIIn1997,thefirst author[O]conjectured that there are simple relations between ˜ξ∓(L1,s)and˜ξ±(L2,s).This was proved by Nakagawa[N].Theorem1.2(Conjectured in[O],proved in[N]).˜ξ−(L1,s)=33s˜ξ+(L2,s)and˜ξ+(L1,s)=33s−1˜ξ−(L2,s).The primary purpose of this paper is to classify theΓ-invariant lattices and investigate whether there are similar formulas for those lattices.In Section3we prove the following. Theorem1.3(Theorem3.3).There are10kinds ofΓ-invariant lattices up to scaling. If we denote these lattices by L1,...,L10as in Theorem2.1,then for Dirichlet series associated with L7,...,L10we have˜ξ−(L7,s)=33s˜ξ+(L8,s),˜ξ+(L7,s)=33s−1˜ξ−(L8,s),˜ξ−(L9,s)=33s˜ξ+(L10,s),˜ξ+(L9,s)=33s−1˜ξ−(L10,s).On the other hand,the Dirichlet series associated with L3,...,L6do not satisfy such simple relations as above.For example,˜ξ−(L3,s)and33s˜ξ+(L4,s)do not coincide with each other.These relations of the Dirichlet series are proved in Theorem3.3using Theorem1.2. (In Section3we slightly modify the definition of the Dirichlet series.)It is likely that the relations among the Dirichlet series for L3,...,L6are somewhat more complicated. If we take the arithmetic subgroupΓsmaller,there appears more invariant lattices and it may be an interesting problem to study Dirichlet series associated with those lattices. We hope these problems to be answered in the future.Such a relation of the Dirichlet is expected to exist also for some other represen-tations.Among them for the space of pairs of ternary quadratic forms(G,V)= (GL3×GL2,(Sym2Aff3)∗⊗Aff2),this problem is considerably interesting and being studied by several mathematicians including Bhargava and Nakagawa.We note that there are only2types of G Z-invariant lattices for this case.We explain a curious application of this theorem to the functional equation for˜ξ±(L i,s). Let a1=a2=0and a3=···=a10=2.Following Datskovsky and Wright[DW]we putΛ±(L i,s):=2(a i+1)s33s/22+13)Γ(s4∓13˜ξ+(L i,s)±˜ξ−(L i,s)for each sign.Then Shintani’s functional equation between the vector valued functions (˜ξ+(L i,1−s),˜ξ−(L i,1−s))and(˜ξ+(L i+1,s),˜ξ−(L i+1,s))(i=1,3,5,7,9)is diagonalized and symmetrized asΛ±(L i,1−s)=±2a i−b i33s−1/2Λ±(L i+1,s)where b1=0,b3=1,b5=3and b7=b9=2.Let i be either1,7or9.Then Theorems 1.2and1.3state thatΛ±(L i+1,s)=±31/2−3sΛ±(L i,s).Since a i=b i holds also,we can write the functional equations above as follows.Theorem1.4(Theorem4.8).Let i be either1,7or9.ThenΛ±(L i,1−s)=Λ±(L i,s).A similar formula holds for i=2,8or10.BINARY CUBIC FORMS3The case i=1,2is stated in[O,p.1088].Unlike Shintani’s original one,this functional√equation is of the single Dirichlet series3˜ξ+(L i,s)±˜ξ−(L i,s) does not have an Euler product for any L i(see Proposition4.7.)This paper is organized as follows.In Section2,we give the classification of the invariant lattices without a proof.The proof is given in Section5.In Section3,we study the explicit relationship of the Dirichlet series.In Section4we study the analytic properties of the Dirichlet series.In Theorem4.3we give functional equations explicitly and evaluate the residues of the poles.After that we study on the diagonalization of the functional equation and give a simple symmetric functional equation using the result of Section3.We also give in Theorem4.9the density of the class numbers of the lattices. In Section6,we give a table of aboutfirstfifty coefficients of the Dirichlet series. Acknowledgments.Dr.Noriyuki Abe wrote a good C++program to compute the coefficients of the Dirichlet series.The table of coefficients played an important role in studying the Dirichlet series.The authors express their deep gratitude to him.The au-thors are also grateful to Professor Tomoyoshi Ibukiyama for useful comments,especially on applications of our results to the functional equations.Notations.The standard symbols Q,R,C and Z will denote respectively the set of rational,real and complex numbers and the rational integers.If V is a variety defined over a ring R and S is an R-algebra then V S denotes its S-rational points.The1-dimensional affine space is denoted by Aff.2.Classification of invariant latticesLet G be the general linear group of rank2and V the space of binary cubic forms;G=GL2,V={x=x(v1,v2)=x1v31+x2v21v2+x3v1v22+x4v32|x i∈Aff}.We identify V with Aff4via the map x→(x1,x2,x3,x4).We define the action of G on V by1(gx)(v1,v2)=4YASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKITheorem2.1.Up to scaling,the following is a complete list of SL2(Z)-invariant lattices in V Q:L1={(a,b,c,d)∈Z4}L2={(a,3b,3c,d)∈Z4|b,c∈Z}L3={(a,b,c,d)∈L1|b+c∈2Z}L4={(a,3b,3c,d)∈L2|a,d,b+c∈2Z}L5={(a,b,c,d)∈L1|a,d,b+c∈2Z}L6={(a,3b,3c,d)∈L2|b+c∈2Z}L7={(a,b,c,d)∈L1|a+b+c,b+c+d∈2Z}L8={(a,3b,3c,d)∈L2|a+b+d,a+c+d∈2Z}L9={(a,b,c,d)∈L1|a+b+d,a+c+d∈2Z}L10={(a,3b,3c,d)∈L2|a+b+c,b+c+d∈2Z}We give a proof of this theorem in Section5.Each of L3,L5,L7,L9is a sublattice of L1and is containing2L1.The relations of inclusions and their indices are given by[L1:L3]=[L3:L9]=[L7:L5]=[L5:2L1]=2,[L1:L7]=[L3:L5]=[L9:2L1]=4.L9L7There are similar relations for L2,...,L10.We define the alternating form on V Q by x,y =x1y4−3−1x2y3+3−1x3y2−x4y1. Then L i and2−1L i+1are the dual lattices to each other for i=3,5,7,9.Remark2.2.We immediately see that all of the lattices in Theorem2.1are invariant under the action of(0110)∈G Z.Since the group G Z=GL2(Z)is generated by(0110)and G1Z,Theorem2.1also gives the list of GL2(Z)-invariant lattices.3.Relations of the Dirichlet seriesIn this section,we define the Dirichlet series for each lattice and study their relations. Let L+i={x∈L i|P(x)>0}and L−i={x∈L i|P(x)<0}.For x∈L i,we put G1Z,x={γ∈SL2(Z)|γx=x}and denote by#G1Z,x its order.We note that#G1Z,x is either1or3.Definition3.1.(1)For i=1,3,5,7,9,we putξ±(L i,s)= x∈G1Z\L±i(#G1Z,x)−1BINARY CUBIC FORMS5 (2)For i=2,4,6,8,10,we putξ±(L i,s)=33s x∈G1Z\L±i(#G1Z,x)−16YASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKI(1)P(x)≡1mod8if and only if one of the following holds;(a)a,d∈E,b,c∈O,(b)a,d∈O,b+c∈O.(2)P(x)≡5mod8if and only if one of the following holds;(a)b,c∈E,a,d∈O,(b)b,c∈O,a+d∈O.Proof.Let P(x)≡1mod4.Then ad+bc∈O and P(x)≡1+4∆mod8.Hence to know P(x)mod8,what we should see is∆mod2.Now the lemma follows from the observations below.In the following congruence expression means modulo2.(I)Assume a+d∈O.Then ad∈E,bc∈O,b,c∈O.Hence∆≡ac3+bd3≡a+d≡1.(II)Assume a+d∈E.If a,d∈O,then bc∈E and∆≡b3+c3+1≡b+c+1.Hence either(b,c∈E,∆≡1)or(b+c∈O,∆≡0).If a,d∈E,then bc∈O and hence∆≡0.Proof of Proposition3.5.Wefirst show L7=2L1∐L1,≡1(8).Let x=(a,b,c,d)∈L1,≡1(8).Then by the lemma above we have a+b+c,b+c+d∈E and so x∈L7.Hence L7⊃2L1∐L1,≡1(8).We consider the reverse inclusion.Let x=(a,b,c,d)∈L7.Then a+b+c,b+c+d∈E,and so a+d∈E.First assume a,d∈O.Then b+c∈O and hence x∈L1,≡1(8).Next assume a,d∈E.Then b+c∈E and hence either(a,b,c,d∈E)or (a,d∈E,b,c∈O).This shows x∈2L1∐L1,≡1(8).Hence L7⊂2L1∐L1,≡1(8).The equation L9=2L1∐L1,≡5(8)is proved similarly. We next consider the lattices in L2.Recall that for x∈L2,P(x)is a multiple of27. We put Q(x)=P(x)/27.Then Q(x)≡3P(x)mod8.Definition3.7.Let L be a lattice in L2.For l,N∈Z,N=0,we putL≡′l(N)={x∈L|Q(x)≡l mod N}.Since Q(x)≡3P(x)mod8,we have L≡l(8)=L≡′3l(8).Proposition3.8.We haveL8=2L2∐L2,≡′7(8),L10=2L2∐L2,≡′3(8),Proof.Thefirst one follows from L9=2L1∐L1,≡5(8)we proved in Proposition3.5and L9∩L2=L8,2L1∩L2=2L2,L1,≡5(8)∩L2=L2,≡5(8)=L2,≡′7(8).The second one is proved similarly. We now give a proof of Theorem3.3.Proof of Theorem3.3.Let{a n}be the coefficients ofξ−(L1,s);ξ−(L1,s)= n≥1a nBINARY CUBIC FORMS 7Then by Proposition 3.5,ξ−(L 7,s )=1n s ,ξ−(L 9,s )=1n s .If we put ξ+(L 2,s )= n ≥1b n /n s then similarly by Proposition 3.8we haveξ+(L 8,s )=1n s,ξ+(L 10,s )=1n s .Hence the first two formulas follows from ξ−(L 1,s )=ξ+(L 2,s )and a n =b n .The rests are proved similarly. We will give some properties on ξ±(L i ,s ).These can be checked using the table of the coefficients of ξ±(L i ,s )given in Section 6.Proposition 3.9.(1)The Dirichlet series ξ±(L i ,s )does not have an Euler product.(2)The linear relations of the twenty Dirichlet series {ξ±(L i ,s )}are exhausted bythat given in Theorems 3.2and ly,the C -vector space spanned by Dirichlet series by {ξ±(L i ,s )}is of dimension 14.4.Analytic properties of the Dirichlet seriesIn this section,we study analytic properties of ξ±(L i ,s ).We also separate the contri-butions of irreducible binary cubic forms and reducible binary cubic forms in the residue formulas.Let V ird Z ={x (v )∈V Z |x (v )is irreducible over Q }and V rd Z =V Z \V ird Z .They are G Z -invariant subsets.Definition 4.1.(1)For i =1,3,5,7,9,we put ξird ±(L i ,s )=x ∈G 1Z \(L ±i ∩V ird Z )(#G 1Z ,x )−1|P (x )|s.(2)For i =2,4,6,8,10,we put ξird ±(L i ,s )=33sx ∈G 1Z \(L ±i ∩V ird Z )(#G 1Z ,x )−1|P (x )|s .By definition we have ξ±(L i ,s )=ξird ±(L i ,s )+ξrd ±(L i ,s ).Definition 4.2.For i =1,3,5,7,9,we put a i =[ Li :L i +1]and 2b i =[V Z :L i ],where L i is the dual lattice of L i with respect to the bilinear form x,y .It is easy to see that (a i ,b i )is (0,0),(2,1),(2,3),(2,2),(2,2)for i =1,3,5,7,9,respectively.The analytic properties of these series are summarized as follows.8YASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKITheorem4.3.(1)The Dirichlet seriesξ±(L i,s)can be continued holomorphically to the whole complex plane except for simple poles at s=1and5/6.Furthermore, they satisfy the following functional equationsξ+(L i,1−s)ξ−(L i,1−s) =22a i s−b i33s−26)Γ(s+19,β=31/2(2π)1/33 Γ13 −1,the values are given by Table1.Proof.For L1and L2,Shintani[S1,S2]proved this theorem by establishing the theory of zeta functions associated with the space of binary cubic forms and the space of binary quadratic forms.His global theory was rewritten in the adelic language by Wright[W] and the second author[T].We would like to mention that a quite simpler version of the global theory for the space of binary cubic forms[W]were given by Kogiso[K].Let A and A f be the rings of adeles andfinite adeles of Q,respectively.Note that A f= Z⊗Z Q and A=A f×R,where Z is the profinite completion of Z.Let S(V A),S(V A f)and S(V R)be the spaces of Schwartz-Bruhat functions on each of the indicated domains. LetΦf∈S(V A f)be the characteristic function of L i⊗Z Z⊂V A f andΦ∞∈S(V R) arbitrary.Then by considering the global zeta functions in[T,W]with the test function Φf⊗Φ∞∈S(V A),we can prove the theorem the same way as[S1,S2].Here we illustrate the proof of(3)with i=3,5,7,9.Wefix a prime p.Wefix any Haar measures du on Q p and d×t on Q×p.For t∈Q×p,we put|t|p=d(tu)/du.ForΦ∈S(V Qp),we defineA irdp(Φ)= Q4pΦ(u1,u2,u3,u4)du1du2du3du4,A rdp(Φ)= Q×p×Q2p|t|2pΦ(0,t,u1,u2)d×tdu1du2,B p(Φ)= Q×p×Q3p|t|1/3pΦ(t,u1,u2,u3)d×tdu1du2du3.LetΦi be the characteristic function of L i⊗Z p.Since i=3,5,7,9we haveΦi=Φ1 unless p=2.Hence by[T,Proposition8.6],we haveαird i,±A ird2(Φ1),αrd i,±A rd2(Φ1),βi,±B2(Φ1).BINARY CUBIC FORMS9 i13579αi,+αα32αα42α94α38α2β2β43β√43√333αird i,+18α116α1332α316α3αrd i,+38α316α3316α316α3αi,−34α98α33α152α34α3β√2β√43√333β32β34β3αird i,−38α316α3932α916α9αrd i,−38α316α3316α316α3A ird2(Φ1)=1A rd2(Φ1)=1B2(Φ1)=1π2sΓ(s)Γ(s4∓12+13) √10YASUO OHNO,TAKASHI TANIGUCHI,AND SATOSHI WAKATSUKIAs a corollary to Theorem4.3we have the following.Corollary4.6.(1)For i=1,3,5,7,9,Λ±(L i,1−s)=±3−1/22a i−b iΛ±(L i+1,s).(2)Let1≤i≤10.The functionΛ+(L i,s)is holomorphic except for simple polesat s=0,1/6,5/6,1,whileΛ−(L i,s)is holomorphic except for simple poles at s=0,1.√(3)Let1≤i≤10.The set of zeros of the Dirichlet series3ξ+(L i,s)−ξ−(L i,s)in the negative real axis are respectively given by{−n|n∈Z≥1}∪{−2n+1/6|n∈Z≥1}∪{−2n+11/6|n∈Z≥1},{−n|n∈Z≥1}∪{−2n+5/6|n∈Z≥1}∪{−2n+7/6|n∈Z≥1}, where we put Z≥1={n∈Z|n≥1}.Proof.By a simple computation we can prove that the equalities in(1)are equivalent to the functional equation given in Theorem4.3(1).(2)follows from the values of residues given in Theorem4.3(3)and equalities(1)of this corollary.(3)follows from(2)and Definition4.5. It is interesting that the poles ofΛ−(L i,s)at s=5/6vanishes.Taking the propertiesin Corollary4.6into account,it may be natural to ask that whether the Dirichlet series √√3ξ+(L i,s)+ξ−(L i,s),3Λ±(L i,s). Since a i=b i also,the functional equation in Corollary4.6(1)turns out to be of a single functionΛ±(L i,s).Theorem4.8.For i=1,2,7,8,9,10,Λ±(L i,1−s)=Λ±(L i,s).Namely,for i=1,2,7,8,9,10,the functionΛ±(L i,s)is invariant if we replace s by 1−s.We conclude this section with deriving asymptotic behavior of some arithmetic func-tions.For n∈Z,n=0,let h(L i,n)be the number of G1Z-orbit in L i∩V ird Z with discriminant n.Applying Tauberian theorem,Shintani[S2,Theorem4]obtained an asymptotic formula of the function 0<±n<X h(L1,n).By the same argument,we have the following.Note that the functional equations ofξ±(L i,s)andξrd±(L i,s)are used in the proof.Theorem4.9.(1)Let i be either1,3,5,7or9.For anyε>0,0<±n<X h(L i,n)=αird i,±X+βi,±(2)Let i be either2,4,6,8or10.For anyε>0,0<±n<X h(L i,27n)=αird i,±X+βi,±x′1∈Z×3,3x4∈3Z×3.Then since x−14ψ(X8)=3E1+6E2,2−1ψ(3E1+6E2)=3E1, 3E2=2−1((3E1+6E2)−3E1)and E1=x′−11·(X8−3x4E3),we get(L2)3⊂(L)3. We see(L2)3⊂(L)3⊂(L1)3from the above results.Suppose(L2)3=(L)3.Since (L1)3/(L2)3is represented by the set{aE2+bE3;0≤a,b≤2},(L)3has an element of the form aE2+bE3for some(a,b)=(0,0).Hence we have(L)3=(L1)3.So we get this lemma. Lemma5.3.(L)2contains(L5)2or(L9)2.Proof.Let x=(x1,x2,x3,x4)∈L be primitive for2.(i)We assume x1∈Z×2or x4∈Z×2.We may assume x4∈Z×2.Let X1= u(−3−1x−14x3)·x=(∗,∗,0,x4),X2=(3x4)−1ψ(X1)=(x′1,1,1,0).Then since2E1+ 2E2=ψ(X2)and2E1=ψ(ψ(X2)),we have2E1,2E2,2E3,2E4∈(L)2.(i-a)We assume x′1∈Z×2.We have E2+E3=X2−(2−1x′1)·(2E1)∈(L)2.Since L5=Z(2E1)+Z(2E4)+Z(E2+E3)+Z(2E2),we get(L5)2⊂(L)2.(i-b)We assume x′1∈Z×2.From x′1=1+x′′1,(x′′1∈2Z2),we have X2−(2−1x′′1)·(2E1)= E1+E2+E3.Since L9=Z(E1+E2+E3)+Z(E2+E3+E4)+Z(2E1)+Z(2E2).we get(L9)2⊂(L)2.(ii)We assume x1,x4∈Z×2.(ii-a)We assume x2+x3∈Z×2.Since thefirst component ofψ(x)is x2+x3+x4∈Z×2, we can reduce the case(ii-a)to the case(i).(ii-b)We assume x2+x3∈Z×2.Since x is primitive,we have x2,x3∈Z×2.We have X3= (x3+3x4)−1ψ(ψ(x))=(2,c,0,0),c∈4Z2,X4=w−1·X3=−cE3+2E4.Furthermore we put X5=x−(2−1x1)·X3−(2−1x4)·X4=(0,α,β,0).Thenα=x2−2−1x1c∈Z×2,β=x3+2−1x4c∈Z×2.Let X6=ψ(X5)−2−1(α+β)X3=(0,2β−2−1(α+β)c,0,0).Then 2β−2−1(α+β)c∈2Z×2.Hence we have2E2=(β−2−2(α+β)c)−1X6,2E1=X3−(2−1c)·(2E2),2E3,2E4∈(L)2,E2+E3=X5−2−1(α−1)·(2E2)−2−1(β−1)·(2E3)∈(L)2. Therefore we get(L5)2⊂(L)2. Lemma5.4.(L)2=(L1)2,(L3)2,(L5)2,(L7)2or(L9)2.Proof.Form Lemma5.3,we know(L5)2⊂(L)2⊂(L1)2or(L9)2⊂(L)2⊂(L1)2.Hence we have only to take all representation elements of(L1)2/(L5)3,(L1)2/(L9)3and compute all cases for subspaces containing representation elements.(I)We treat the case(L5)2⊂(L)2⊂(L1)2.Let(L)2=(L5)2.Since L1=Z E1+ Z E4+Z(E2+E3)+Z E2and L5=Z(2E1)+Z(2E4)+Z(E2+E3)+Z(2E2),(L1)2/(L5)2 is represented by the set{aE1+bE4+cE2;0≤a,b,c≤1}.(I-1)(L)2contains one of E1,E4,E1+E4.We easily see that(L)2contains(L3)2.Since (L1)2/(L3)2∼=Z/2Z,(L)2is either(L1)2or(L3)2.(I-2)(L)2contains either E2,E1+E2or E2+E4.Since E1=ψ(E2)=ψ(E1+E2)=ψ(w·(E2+E4))−2E2,we have(L)2=(L1)2.(I-3)(L)2contains E1+E2+E4.Since L7=Z(E1+E2+E4)+Z(E1+E3+E4)+ Z(2E1)+Z(2E4),we see(L7)2⊂(L)2.Furthermore(L1)2/(L7)2is represented by {0,E1,E4,E1+E4}.If(L)2contains one of this representation element,then we have (L)2=(L1)2.Therefore(L)2=(L1)2or(L7)2.(II)We treat the case(L9)2⊂(L)2⊂(L1)2.Suppose(L)2=(L9)2.Since L1= Z E1+Z E2+Z(E1+E2+E3)+Z(E2+E3+E4)and L9=Z(E1+E2+E3)+Z(E2+ E3+E4)+Z(2E1)+Z(2E2),(L1)2/(L9)2is represented by{aE1+bE2;0≤a,b≤1}. (II-1)(L)2contains E1.We have(L3)2⊂(L)2.Hence we have(L)2=(L1)2or(L3)2. (II-2)(L)2contains E2or E1+E2.Sinceψ(E2)=ψ(E1+E2)=E1,we have(L1)2=(L)2.Form(I)and(II),we get this lemma.6.Table of the coefficientsWe give the table of aboutfirstfifty coefficients of the Dirichlet seriesξ±(L i,s).In the table,we give the value multiplied by3for the each coefficient except forξ+(L i,s), i=2,4,6,8,10where in which cases we give the exact value of the coefficients.Hence the table means,for example,ξ+(L4,s)=1/311s+127s+143s+151s+...,ξ−(L7,s)=1/39s+1/317s+133s+149s+...,ξ+(L8,s)=19s+117s+333s+349s+....L−3L+4L−5L+633101330000 73033330000 113303330000 153033660000 193303330000 233039330000 276404990000 313039660000 353303330000 393033330000 433303990000 473033663333 513303L+1L−2L+7L−8L+9L−10111100 40002330033 80000333300 120000330033 161113333300 200000330033 240000333300 280000330033 323003333300 360006330033 400000333300 440000330033 483003555500References[D]H.Davenport.On the class-number of binary cubic forms I and II.London Math.Soc.,26:183–198,1951.Corrigendum:ibid.,27:512,1952.[DW]B.Datskovsky and D.J.Wright.The adelic zeta function associated with the space of binary cubic forms II:Local theory.J.Reine Angew.Math.,367:27–75,1986.[IS]T.Ibukiyama and H.Saito.On L-functions of ternary zero forms and exponential sums of Lee and Weintraub.J.Number Theory,48:252–257,1994.[K]T.Kogiso.Simple calculation of the residues of the adelic zeta function associated with the space of binary cubic forms.J.Number Theory,51:233–248,1995.[N]J.Nakagawa.On the relations among the class numbers of binary cubic forms.Invent.Math., 134:101–138,1998.[O]Y.Ohno.A conjecture on coincidence among the zeta functions associated with the space of binary cubic forms.Amer.J.Math.,119:1083–1094,1997.[S1]T.Shintani.On Dirichlet series whose coefficients are class-numbers of integral binary cubic forms.J.Math.Soc.Japan,24:132–188,1972.[S2]T.Shintani.On zeta-functions associated with vector spaces of quadratic forms.J.Fac.Sci.Univ.Tokyo,Sect IA,22:25–66,1975.[T]T.Taniguchi.Distributions of discriminants of cubic algebras.Preprint2006,math.NT/0606109. [W] D.J.Wright.The adelic zeta function associated to the space of binary cubic forms part I:Global theory.Math.Ann.,270:503–534,1985.(Y.Ohno)Department of Mathematics,Kinki University,Kowakae3-4-1,Higashi-Osaka,Osaka577-8502,Japan/Max-Planck-Institut f¨u r Mathematik,Vivatsgasse7, 53111Bonn,GermanyE-mail address:ohno@math.kindai.ac.jp(T.Taniguchi)Department of Mathematical Sciences,F aculty of Science,Ehime Uni-versity,Bunkyocho2-5,Matsuyama-shi,Ehime,790-8577,JapanE-mail address:tani@math.sci.ehime-u.ac.jp(S.Wakatsuki)Department of Mathematics,Graduate School of Science,Kanazawa University,Kakumamachi,Kanazawa,Ishikawa,920-1192,JapanE-mail address:wakatuki@kenroku.kanazawa-u.ac.jp。