数学 建模
- 格式:ppt
- 大小:326.50 KB
- 文档页数:26
什么是数学建模数学建模是指运用数学的理论、方法和技术,以模型为基础,通过对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据的过程。
数学建模可以帮助我们更好地理解、分析、解决实际问题。
它是一种综合运用数学、物理、计算机科学和其他相关学科知识的跨学科研究领域,可以应用于各个领域的问题,包括自然科学、工程技术、社会科学、医学、金融等。
数学建模的过程一般包括以下几个步骤:1. 定义问题和目标。
在这个阶段,我们需要对实际问题进行全面的了解,明确研究的目标和需要解决的问题是什么,确定问题的限制和条件。
2. 建立模型。
在这个阶段,我们需要根据实际问题的特点和需要解决的问题,选择适当的模型类型,建立数学模型。
模型应该尽可能简明明了,能够比较好地描述实际问题,并且便于求解。
3. 求解模型。
在这个阶段,我们需要根据所建立的模型,采用数学和计算机科学等相关方法,对模型进行求解,得到具体的结果和解决方案。
4. 验证模型。
在这个阶段,我们需要根据模型的求解结果,进行模型的验证。
验证模型的正确性和可靠性,以及对模型的结果进行误差分析和敏感性分析,以保证模型的可行性和实用性。
5. 应用模型。
在这个阶段,我们需要将模型的结果应用于实际问题的解决中。
根据模型的结果,提出相应的决策和措施,实现问题的解决和优化。
数学建模具有广泛的应用领域和重要性。
在物理、化学、生物学和工程技术等领域,数学建模可以帮助我们解决复杂的系统问题,如气候模型、流体力学模型、生物进化模型等。
在社会科学领域,数学建模可以应用于经济学、管理学、社会学等领域,对社会现象进行建模和预测,如人口增长模型、市场模型、网络模型等。
在医学领域,数学建模可以帮助我们研究疾病的发展和治疗方法,如病毒传播模型、治疗模型等。
在金融领域,数学建模可以帮助我们分析风险和投资策略,如股票价格模型、期权评估模型等。
总之,数学建模是一种重要的跨学科研究领域,以模型为基础,运用数学和相关学科知识,对实际问题进行抽象、建模、求解和验证,为实际问题的研究和决策提供可靠依据,具有广泛的应用领域和重要性。
数学建模介绍1.1 数学模型及其分类数学建模作为用数学方法解决问题的第一步,它与数学本身有着同样悠久的历史。
一个羊倌看着他的羊群进入羊圈,为了确信他的羊没有丢失,他在每只羊进入羊圈时,则在旁边放一颗小石子,如果每天羊全部入圈而他那堆小石子刚好全部放完,则表示他的羊和以前一样多。
究竟羊倌数的是石子还是羊,那是毫无区别的,因为羊的数目同石子的数目彼此相等。
这实际上就使石子与羊“联系”起来,建立了一个使石子与羊一一对应的数学模型。
(1)什么是数学模型人们在认识研究现实世界里的客观对象时,常常不是直接面对那个对象的原形,有些是不方便,有些甚至是不可能直接面对原形,因此,常常设计、构造它的各种各样的模型。
如各式各样的玩具模型、展览厅里的三峡大坝模型、化学上的分子结构模型等。
这些模型都是人们为了一定目的,对客观事物的某一部分进行简化、抽象、提炼出来的原形替代物,集中反映了原形中人们需要的那一部分特征,因而有利于人们对客观对象的认识。
数学模型也是反映客观对象特征的,只不过它刻画的是事物在数量方面的特征或数学结构及其变化规律。
数学模型是人们为了认识客观对象在数量方面的特征、定量地分析对象的内在规律、用数学的语言和符号去近似地刻画要研究的那一部分现象时,所得到的一个数学表述。
建立数学模型的过程称为数学建模。
(2) 数学模型的重要作用进入20世纪以来,数学以空前的广度和深度向一切领域渗透,作为数学的应用,数学建模也越来越受到人们的重视。
在一般工程技术领域,数学模型仍是工程技术人员定量研究有关工程技术问题的重要工具;而随着数学与其他学科领域诸如经济、人口、生态、地质等所谓非物理领域的渗透,一些交叉学科如计量经济学、人口控制论、数学生态学、数学地质学等应运而生;计算机的发展给数学及作为数学应用的数学建模带来了前所未有的机遇和挑战。
计算机改变了人类的生活方式、思考方式和研究方式,极大地提高了人们的计算能力、搜索和分析海量数据和信息的能力。
什么是数学建模数学建模是指对现实世界的一特定对象,为了某特定目的,做出一些重要的简化和假设,运用适当的数学工具得到一个数学结构,用它来解释特定现象的现实性态,预测对象的未来状况,提供处理对象的优化决策和控制,设计满足某种需要的产品等。
一般来说数学建模过程可用如下框图来表明:数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。
例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。
今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。
特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。
因此数学建模被时代辅予更为重要的意义。
大学生数学建模竞赛自1985年由美国开始举办,竞赛以三名学生组成一个队,赛前有指导教师培训。
赛题来源于实际问题。
比赛时要求就选定的赛题每个队在连续三天的时间里写出论文,它包括:问题的适当阐述;合理的假设;模型的分析、建立、求解、验证;结果的分析;模型优缺点讨论等。
数学建模竞赛宗旨是鼓励大学师生对范围并不固定的各种实际问题予以阐明、分析并提出解法,通过这样一种方式鼓励师生积极参与并强调实现完整的模型构造的过程。
以竞赛的方式培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。
他还可以培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。
这项赛事自诞生起就引起了越来越多的关注,逐渐有其他国家的高校参加。
我国自1989年起陆续有高校参加美国大学生数学建模竞赛。
1992年起我国开始举办自己的大学生数学建模竞赛,并成为国家教育部组织的全国大学生四项学科竞赛之一竞赛简介:本竞赛每年9月下旬举行,竞赛面向全国大专院校的学生,不分专业。
数学建模是什么
数学建模是指利用数学工具和方法分析和解决实际问题的过程,是一种跨学科的综合性应用科学研究方法。
数学建模的基本步骤包括:问题建模、假设、模型的构建、模型求解和模型评价。
在这个过程中,数学建模的核心是模型的构建和求解,其中模型的构建需要理解实际问题的基本特征和数学方法的应用,而模型求解则需要掌握数学分析、数值计算等技能和方法。
数学建模的应用范围非常广泛,包括但不限于自然科学、社会科学、经济学、工程学等领域的问题。
数学建模在现实生活中的应用包括:企业生产、物流配送、城市交通规划、自然资源评估、环境保护、金融、医学等各个领域。
数学建模的方法多种多样,常见的数学方法包括:微积分、线性代数、概率论、统计学、优化理论等。
通过对实际问题的建模、数学方法的应用和模型求解的计算和分析,数学建模可进一步为决策提供科学依据和参考。
数学建模的主要特点是模型化思维、跨学科交叉和创新性思维。
在这个过程中,数学建模要求研究者对问题进行深入的分析和研究,要对数学方法的应用有较大的理解和掌握,并且要结合实际考虑模型的可行性。
数学建模的创新性思维则要求研究者在模型的构建和求解中体现出一定的创新性和思维深度。
无论是学术界还是实际应用领域,数学建模的应用都已经深入到各个角落。
在数学建模中,数学是一种工具性语言,
而模型则是实际问题的一种映射。
数学建模不仅促进了数学研究和应用之间的相互促进和发展,还连接了传统学科和新兴学科之间的桥梁,推动了知识的跨领域传播和交流。
什么叫数学建模:数学建模指的是,利用数学方法和理论对现实问题进行描述、分析和解决的过程。
这种过程需要数学、自然科学、工程技术等学科的知识和技能,同时需要对现实问题的深入理解和实地调查。
数学建模在解决现实问题方面起着非常重要的作用,尤其是涉及到科学、工程、经济和社会等各个领域。
数学建模可以帮助人们更好地理解问题的本质和特征,从而提供更精确和有效的解决方案。
数学建模的过程可以分为以下几个步骤:1.问题描述。
将现实问题转化为数学问题,确定问题的目标、限制条件、变量等。
2.建立模型。
通过分析问题的本质和特征,选择合适的数学方法和理论,建立数学模型。
3.求解模型。
采用数学计算方法和技术,对模型进行求解和优化,得出问题的解决方案。
4.模型验证。
将建立的模型与实际情况进行比较和验证,检验模型的有效性和可行性。
5.预测和应用。
根据问题的特点,应用建立好的模型进行预测和实际应用。
数学建模在现代科学技术和社会发展中扮演着至关重要的角色。
它可以帮助人们更好地理解复杂的现实问题,并提供科学有效的解决方案。
同时,数学建模也推动了数学学科的发展和应用。
在应用领域,数学建模被广泛应用于车辆运输、环境保护、金融投资、医疗卫生、城市规划等多个方面。
例如,在车辆运输领域,数学建模可以在路面拥堵、车辆行驶路径、节能减排等方面提供解决方案;在环境保护领域,数学建模可以针对大气污染、水质污染等问题提供有效的控制策略。
总之,数学建模是一种非常有价值的方法,它能够帮助人们更好地理解问题、提供科学有效的解决方案,是现代科学技术和社会发展中不可或缺的重要工具。
数学建模常用方法介绍数学建模是指利用数学方法对实际问题进行数学描述和分析的过程。
它是数学与实际问题相结合的一种科学研究方法。
在数学建模中,常用的方法有线性规划、非线性规划、动态规划、数值模拟、统计分析等。
下面将介绍这些常用的数学建模方法。
1.线性规划线性规划是一种优化问题的数学描述方法,可以用于求解最优化问题,例如最大化利润或最小化成本。
线性规划的基本思想是在一定的约束条件下,通过线性目标函数和线性约束条件,寻找最优解。
线性规划常用的算法有单纯形法、内点法等。
2.非线性规划非线性规划是一种在约束条件下求解非线性最优化问题的方法。
与线性规划不同,非线性规划中目标函数和/或约束条件是非线性的。
非线性规划的求解方法包括梯度下降法、牛顿法等。
3.动态规划动态规划是一种常用的求解最优化问题的方法,它可以用于求解具有重叠子问题结构的问题。
动态规划将原问题分解为一系列子问题,并通过保存子问题的解来避免重复计算,从而降低计算复杂度。
动态规划常用于求解最短路径问题、背包问题等。
4.数值模拟数值模拟是通过数值方法对实际问题进行计算机模拟和仿真的方法。
数值模拟在现代科学和工程中得到广泛应用。
数值模拟方法包括有限差分法、有限元法、蒙特卡洛方法等。
5.统计分析统计分析是通过数理统计方法对数据进行分析和推断的方法。
统计分析可以帮助我们了解数据的分布、关系和趋势,并做出科学的推断和预测。
统计分析方法包括假设检验、方差分析、回归分析等。
除了以上常用方法,还有一些其他常用的数学建模方法,例如图论、随机过程、优化算法等。
不同的问题需要选用不同的数学建模方法。
为了解决实际问题,数学建模需要结合实际背景和需求,在数学建模的过程中运用合适的数学方法,建立准确的模型,并通过数学分析和计算机辅助求解,得到符合实际情况的解答和结论。
数学建模的过程不仅仅是将数学工具应用于实际问题,更要注重问题的形式化、合理性和可行性。
在实际建模过程中,需要对问题进行适当的简化和假设,并考虑到模型的稳定性和可靠性。
数学建模是将实际问题抽象成数学模型,并通过数学方法进行求解和分析的过程。
以下是一些常见的数学建模方法:
1.数理统计:利用概率论和统计学方法来分析数据,建立统计模型并进行参数估计、假设
检验等,从而对问题进行量化和预测。
2.最优化方法:使用最优化理论和方法,在给定约束条件下寻找最优解,如线性规划、非
线性规划、整数规划等。
3.微分方程模型:通过建立微分方程或偏微分方程描述系统的动态行为,包括常微分方程
和偏微分方程模型。
4.离散事件模拟:通过离散事件模拟方法模拟系统的运作过程,包括随机过程、排队论等。
5.图论与网络流模型:使用图论和网络流算法对复杂的关系和网络结构进行建模和分析,
如最短路径、最小生成树等。
6.时间序列分析:对时间序列数据进行建模和预测,涉及自相关函数、谱分析、回归分析
等方法。
7.近似方法:如插值、拟合、逼近等方法,通过寻找适当的函数形式来近似真实问题。
8.随机过程:通过建立随机过程来描述系统的不确定性和随机性,包括马尔可夫链、布朗
运动等。
9.图像处理与模式识别:利用数学方法和算法对图像和模式进行处理和识别,如图像滤波、
边缘检测、模式匹配等。
10.数据挖掘与机器学习:利用统计学和机器学习算法对大规模数据进行分析和挖掘,发现
隐藏的模式和关联规律。
这些方法只是数学建模中的一部分,实际应用还需根据具体问题进行选择和组合。
在数学建模过程中,常常需要结合领域知识和实际情况,并使用计算机软件和工具进行模型求解和结果分析。
数学建模学习数学建模的基本原理与方法数学建模是一门应用数学学科,它将数学方法与实际问题相结合,通过建立数学模型来解决各种实际问题。
数学建模在现代科学、工程技术以及社会经济各个领域中都有广泛的应用。
本文将介绍数学建模学习的基本原理与方法。
一、数学建模的基本原理数学建模的基本原理是将实际问题抽象为数学模型,并通过数学方法对模型进行求解,进而得到解决问题的方法和结论。
数学建模的核心思想是用数学语言和工具描述实际问题,通过运用数学原理和方法对问题进行分析和求解。
数学建模的基本原理包括以下几个方面:1. 抽象问题:将实际问题转化为数学问题。
通过对问题的分析和理解,找出问题的关键因素和变量,建立数学模型。
2. 建立模型:选择适当的数学模型来描述实际问题,如线性模型、非线性模型、随机模型等。
3. 建立假设:在建立数学模型时,需要进行一定的假设和简化,以降低问题的复杂性。
4. 求解模型:运用适当的数学方法对建立的模型进行求解,如解析解、数值解、优化方法等。
5. 模型评价:对求解得到的结果进行评价,分析结果的合理性和可行性。
如果结果不符合实际需求,需要对模型进行修正和改进。
二、数学建模的学习方法学习数学建模需要掌握一定的数学知识和方法,并能熟练运用这些知识和方法解决实际问题。
以下是学习数学建模的一般方法与步骤:1. 学习数学知识:数学建模需要运用到多个数学学科的知识,包括数学分析、线性代数、概率论与数理统计等。
因此,首先要通过系统学习数学基础知识,掌握数学的基本概念、定理和方法。
2. 学习建模方法:了解数学建模的基本方法和步骤,学会如何对实际问题进行抽象和建模。
这包括问题分析、模型建立、模型求解和结果评价等方面的内容。
3. 实践运用:通过实际问题的练习和应用,提升建模能力。
可以选择一些典型的数学建模问题进行实践,如交通流量预测、股票价格预测等。
4. 深入研究与拓展:在掌握基础知识和基本方法的基础上,进一步深入研究和探索数学建模的领域和技术。
数学建模的七个步骤
1. 确定问题和问题的约束:首先需要确定问题的具体意义、情境和约束条件,
明确要解决什么问题,以及该问题所涉及的限制条件和假设。
2. 收集相关数据和信息:收集和整理有关问题的数学和非数学相关数据和信息,包括现有的已知条件、相关文献、研究报告等。
3. 建立数学模型:根据问题的具体情况和要求,选择适合的数学方法和模型,
建立数学表达式和方程,完成数学模型的构建。
4. 模型分析和求解:对建立的数学模型进行分析和求解,深入了解问题背后的
规律、关系和性质。
其中可能涉及到计算机程序和数值解法,进行模拟计算和实验验证。
5. 模型评价和优化:评价模型的准确性、稳定性和实用性,优化模型的性能和
效果。
6. 模型实现和应用:将已建立、分析、求解、评价和优化过的数学模型应用到
实践中,解决实际问题。
7. 结果通报和总结:将模型解决的结果、意义和应用体现反馈到问题的相关部门、领域和社会大众中,总结和推广研究成果。
数学建模入门篇(新手必看)一、什么是数学建模1、什么是数学模型数学模型是针对参照某种事物系统的特征或数量依存关系,采用数学语言,概括地或近似地表述出的一种数学结构,这种数学结构是借助于数学符号刻画出来的某种系统的纯关系结构。
从广义理解,数学模型包括数学中的各种概念,各种公式和各种理论。
(MBA智库)2、数学建模数学建模课看作是把问题定义转化为数学模型的过程。
简单的来说,对于我们学过的所有数学知识,要去解决生活中遇到的各种各样的问题,就需要我们建立相关的模型,使用数学这个工具来解决各种实际的问题,这就是建模的核心。
3、数学建模的思想对于数学建模的思想可以分为下列方法:(知乎张浩驰)对于数学建模的思想知乎上有各种解释,下面一篇解释的非常好,大家感兴趣的可以去知乎浏览什么是数学建模(讲的比较好)?二、数学建模比赛数学建模的相关比赛有很多,不同的比赛的影响力不同,在各个高校的认可度也不一样。
下面列举一些影响力和认可度较大的比赛。
1、"高教社杯"全国大学生数学建模竞赛参赛对象:本科生参赛时间:每年9月份(2020年为9月10日-9月13日)竞赛简介:“高教社杯”是目前影响力以及认可度最高的数学建模比赛,俗称“国赛”。
2020年共有来自全国及美国、英国、马来西亚的1470所院校/校区、45680队(本科41826队、专科3854队)、13万多人报名参赛。
在一些高校中对于国赛的认可度较高,国家级奖更是有极高的含金量。
竞赛官网:"高教社杯"全国大学生数学建模竞赛2、美国大学生数学建模竞赛参赛对象:本科生参赛时间:每年2月份左右竞赛简介:美国大学生数学建模竞赛(MCM/ICM)由美国数学及其应用联合会主办,是唯一的国际性数学建模竞赛,也是世界范围内最具影响力的数学建模竞赛。
赛题内容涉及经济、管理、环境、资源、生态、医学、安全、等众多领域。
竞赛官网:[美国大学生数学建模竞赛]添加链接描述(https:///undergraduate/contests/mcm/login.php)3、中国研究生数学建模竞赛(华为杯)参赛对象:研究生参赛时间:每年9月份左右竞赛简介:该赛事起源于2003年东南大学发起并成功主办的“南京及周边地区高校研究生数学建模竞赛”,2013年被纳入教育部学位中心“全国研究生创新实践系列活动”。
数学建模的几个过程数学建模是一种将实际问题转化为数学问题并求解的方法,通常包括四个基本过程:问题建模、模型建立、模型求解和模型验证。
下面将详细介绍这四个过程。
一、问题建模:问题建模是数学建模的第一步,其目的是明确问题的具体解决要求和限制条件。
具体步骤如下:1.问题描述:对问题进行全面准确的描述,了解问题的背景、目标和约束条件。
2.数据收集与处理:收集和整理与问题相关的数据,并进行必要的处理和分析,以便后续建模和求解。
3.确定目标函数与约束条件:明确问题的目标和约束条件,将其转化为数学表达式。
二、模型建立:模型建立是数学建模的核心过程,其目的是将问题转化为数学形式。
具体步骤如下:1.建立模型的数学描述:根据问题的特点和要求,选取适当的数学方法,将问题进行数学化描述。
2.假设与简化:对问题进行适度的简化和假设,以降低问题的复杂性和求解难度。
3.变量定义和量纲分析:明确定义模型中的各个变量和参数,并进行量纲分析和归一化处理,以确保模型的合理性和可靠性。
三、模型求解:模型求解是对建立的数学模型进行求解,以得到问题的解答。
具体步骤如下:1.求解方法选择:根据模型的特点和求解要求,选择适当的数学方法进行求解,如解析解法、数值解法、近似解法等。
2.模型编程与计算:对所选的求解方法进行程序设计和算法实现,利用计算机进行模型求解,得到问题的数值解。
3.求解结果分析与解释:对求解结果进行分析和解释,解释结果的含义和对问题的解答进行验证。
四、模型验证:模型验证是对建立的数学模型进行验证和评估,以确定模型的合理性和可靠性。
1.合理性检验:对模型的假设和简化进行合理性的检验,检查是否存在明显的偏差和不合理的结果。
2.稳定性与敏感性分析:对模型的稳定性和敏感性进行分析,研究模型对参数变化和扰动的响应情况。
3.模型与数据的拟合度:比较模型的预测结果与实际观测数据之间的拟合度,评估模型对实际问题的适用性。
综上所述,数学建模的主要过程包括问题建模、模型建立、模型求解和模型验证。
数学建模是什么1. 什么是数学建模?:数学建模是一种以数学方法描述和分析实际问题的方法。
它是一种将实际问题的复杂性转化为数学模型,以便更好地理解和解决实际问题的方法。
数学建模的过程包括描述实际问题,建立数学模型,求解模型,验证模型,以及分析模型的结果。
数学建模的目的是提出有效的解决方案,以解决实际问题,并且可以更好地控制和管理实际问题。
数学建模的应用非常广泛,可以用于科学研究,经济分析,社会研究,工程设计,管理决策,以及其他各种实际问题的分析和解决。
2. 数学建模的基本步骤:数学建模是一种将实际问题转换为数学模型,以便利用数学方法来解决实际问题的方法。
它是一种以数学抽象的方式来描述实际问题的过程,是一种将实际问题转换为数学模型的过程,是一种将实际问题转换为数学模型的过程。
数学建模的基本步骤包括:首先,要确定问题的范围和目标,明确问题的描述,确定变量和参数,构建数学模型,解决模型,分析模型的结果,并将模型的结果应用到实际问题中。
确定问题的范围和目标时,要明确问题的描述,以便确定问题的范围和目标,以及确定变量和参数。
确定变量和参数时,要确定变量的类型,变量的取值范围,参数的取值,以及变量和参数之间的关系。
构建数学模型时,要根据问题的描述,确定变量和参数,构建一个恰当的数学模型,以表达问题的特征。
解决模型时,要根据模型的特征,利用数学方法来解决模型,求出模型的解。
分析模型的结果时,要分析模型的结果,分析模型的有效性,并对模型的结果进行评价。
最后,将模型的结果应用到实际问题中,以解决实际问题。
3. 数学建模的应用领域数学建模的应用领域十分广泛,从社会科学到工程科学,从经济学到生物学,都可以使用数学建模来解决问题。
在社会科学领域,数学建模可以用来研究社会系统中的结构和行为,以及社会系统中的社会经济、政治、文化等因素之间的关系。
在工程科学领域,数学建模可以用来研究和设计工程系统,比如电力系统、燃气系统、水利系统等,以及这些系统中的各种参数和变量之间的关系。