全等三角形的应用
- 格式:docx
- 大小:453.63 KB
- 文档页数:6
经典例题透析类型一:三角形全等的应用1. 如图:BE、CF相交于点D,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF。
求证:AB=AC。
思路点拨:挖掘并合理运用隐含条件:(1)隐含相等的线段:公共边、线段的和(或差);(2)隐含相等的角:公共角、对顶角、角的和或差。
解析:∵DE⊥AC,DF⊥AB∴∠DFB=∠DEC=90°(垂直的定义)在△BDF和△CDE中∴△BDF≌△CDE(ASA)∴BD=CD(全等三角形对应边相等)又DE=DF∴BE=CF在△ABE和△ACF中∴△ABE≌△ACF(AAS)∴AB=AC(全等三角形对应边相等)总结升华:复杂题目都是由简单题目组合而成,所以要特别注意简单典型题目的解题思想以及图形特点。
举一反三:【变式1】如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。
求证:(1)AM=AN;(2)AM⊥AN。
解析:∵BE⊥AC,CF⊥AB∴∠AEB=∠AFC=90°(垂直的定义)∴∠1+∠BAC=∠2+∠BAC=90°(直角三角形的两个锐角互余)∴∠1=∠2在△ABM和△NCA中∴△ABM≌△NCA(SAS)∴AM=AN,∠3=∠N(全等三角形对应边、对应角相等)在Rt△AFN中:∠4+ ∠N=90 °(直角三角形两个锐角互余)∴∠3+ ∠4=90 °∴AM⊥AN(垂直的定义)【变式2】如图:∠BAC=90°,CE⊥BE,AB=AC ,∠ABE=∠CBE,求证:BD=2EC。
解析:延长BA、CE相交于点F∵CE⊥BE∴∠BEF=∠BEC=90°(垂直的定义)在△BEC和△BEF中∴△BEC≌△BEF(ASA)∴CE=EF(全等三角形对应边相等)即FC=2CE∵CA⊥BA∴∠BAC=∠FAC=90°(垂直的定义)在Rt△ABD和Rt△BEF中∠ABD+∠ADB=∠ABD+∠F=90°(直角三角形两个锐角互余)∴∠ADB=∠F在△ABD和△ACF中∴△ABD≌△ACF(AAS)∴BD=FC(全等三角形对应边相等)∴BD=2EC类型二:构造全等三角形2.如图,△ABC与△ABD中,AD与BC相交于O点,∠1=∠2,请你添加一个条件(不再添加其它线段,不再标注或使用其他字母),使AC=BD,并给出证明。
利用三角形全等解决实际问题三角形全等是几何学中的一个重要概念,它具有广泛的应用。
通过运用三角形全等,我们可以解决实际生活和工作中的很多问题。
本文将介绍三角形全等的定义与性质,并通过几个实例来说明如何利用三角形全等解决实际问题。
三角形全等定义与性质在几何学中,三角形全等是指两个三角形的对应边和对应角完全相等。
当两个三角形的三个边和三个角分别相等时,我们可以得出这两个三角形全等的结论。
换句话说,如果两个三角形的三个边长度和三个夹角大小分别相等,那么这两个三角形就是全等的。
利用三角形全等解决实际问题的实例例1:测量高楼的高度假设我们在测量一座高楼的高度时,无法直接测量,但我们可以通过测量影子的长度来获得一些有用的信息。
为了解决这个问题,我们可以利用三角形全等的原理。
首先,选择一棵垂直于地面的直杆,使得直杆的长度和影子的长度成等比例。
然后,测量直杆的长度和它的投影长度,以及高楼的投影长度。
由于直杆和高楼的投影都是等比例关系,而直杆和影子之间的三角形是全等的,我们可以通过设置一个方程组来解决问题,从而计算出高楼的高度。
例2:求解行走距离假设我们需要从A点到B点行走,但由于某些原因,我们只能从A 点看到B点的某一侧,不直接看到B点。
为了确定行走的距离,我们可以利用三角形全等原理。
首先,从A点出发,设想一条虚拟的直线使其与B点相连。
然后,选择一个合适的地方设立一个测量点C,使得C点能够和B点连成一条直线。
测量AC的长度和∠C的角度。
由于三角形ABC与实际的三角形ABD是全等的,我们可以通过计算得到BD的长度,进而确定行走的距离。
总结通过本文的介绍,我们了解了三角形全等的定义与性质,并且通过两个实际问题的解决,展示了如何利用三角形全等来解决实际问题。
三角形全等在几何学中发挥着重要的作用,通过合理运用三角形全等的原理,我们可以解决许多实际问题,提升工作和生活的效率。
虽然本文只提供了两个实例,但是通过进一步的学习和实践,我们可以应用三角形全等的原理解决更多的实际问题。
专训1六种常见的实际应用名师点金:利用三角形全等解决实际问题的步骤:(1)明确应用哪些知识来解决实际问题;(2)根据实际问题抽象出几何图形;(3)结合图形和题意分析已知条件;(4)找到已知与未知的联系,寻求恰当的解决途径,并表述清楚.利用三角形全等测量能到两端的距离1.如图,为了测量出池塘两端A,B之间的距离,在地面上找到一点C,连接BC,AC,使∠ACB=90°,然后在BC的延长线上确定点D,使CD=BC,那么只要测量出AD的长度就得到了A,B两点之间的距离.你能说明其中的道理吗(第1题)利用三角形全等求两端的距离2.【中考·宜昌】杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下,|如图,AB∥OH∥CD,相邻两平行线间的距离相等.AC,BD相交于O,OD⊥CD垂足为D.已知AB=20米.请根据上述信息求标语CD的长度.(第2题)利用三角形全等测量物体的内径3.如图,已知零件的外径为a,要求它的厚度x,动手制作一个简单的工具,利用三角形全等的知识,求出x.(第3题)利用三角形全等解决工程中的问题4.如图,工人师傅要在墙壁的点O处用钻打孔,要使孔口从墙壁对面的点B处打开,墙壁厚35 cm,点B与点O的垂直距离AB长20 cm,在点O处作一直线平行于地面,再在直线上截取OC=35 cm,过点C作OC的垂线,在垂线上截取CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从点B处打出,这是什么道理`(第4题)利用三角形全等解决面积问题5.育新中学校园内有一块直角三角形(Rt△ABC,∠BAC=90°)空地,如图所示,园艺师傅以角平分线AD为界,在其两侧分别种上了不同的花草,在△ABD区域内种植了一串红,在△ACD区域内种植了鸡冠花,并量得两直角边AB=20 m,AC=10 m,求两种花草的种植面积各是多少.(第5题)利用角平分线的判定和性质设计方案6.如图,湖边的三条公路两两相交于A,B,C三点,现计划修建一个商品超市,要求这个超市到三条公路的距离相等,则可供选择的地方有多少处【导学号:】(第6题)答案1.解:因为∠ACB=90°,所以∠ACD=180°-∠ACB=90°.在△ABC和△ADC中,、⎩⎪⎨⎪⎧BC =DC ,∠ACB=∠ACD,AC =AC ,所以△ABC≌△ADC (SAS ). 所以AB =AD. 2.解:∵AB∥DC, ∴∠ABO=∠CDO. 又∵DO⊥CD, ∴∠CDO=90°,∴∠ABO=90°,即BO⊥AB, ∵相邻两平行线间的距离相等, ∴BO=DO.又∵∠AOB=∠COD, ∴△BOA≌△DOC.{∴CD=AB =20米.(第3题)3.解:可设计如图所示的工具,其中O 为AC ,BD 的中点. 在△AOB 和△COD 中, ⎩⎪⎨⎪⎧AO =CO ,∠AOB=∠COD,BO =DO ,所以△AOB≌△COD (SAS ).所以AB =CD ,即CD 的长就是A ,B 间的距离. 因为AB =a -2x , 所以x =a -AB 2=a -CD 2.4.解:在△AOB 和△COD 中,!⎩⎪⎨⎪⎧OA =OC ,∠OAB=∠OCD=90°,AB =CD ,所以△AOB≌△COD (SAS ). 所以∠AOB=∠COD.又因为∠AOB+∠BOC=180°, 所以∠BOC+∠COD=180°,即∠BOD=180°.所以D ,O ,B 三点在同一条直线上. 所以钻头沿着DO 的方向打孔,一定从点B 处打出. 5.解:由已知,AB =20 m ,AC =10 m .在Rt △ABC 的边AB 上取点E ,使AE =AC =12AB.连接DE.∵AD 是∠BAC 的平分线, ∴∠CAD=∠BAD.~又∵AD 是△ACD 和△AED 的公共边, ∴△ACD≌△AED (SAS ). ∴S △ACD =S △AED .又易得S △AED =S △BED =12S △ABD .∴S △ACD =13S △ABC =16×20×10=1003 m 2.S △ABD =2003m 2.答:一串红的种植面积是2003 m 2,鸡冠花的种植面积是1003 m 2.6.解:如图所示.①作出△ABC 的两个内角的平分线,其交点为O 1; ②分别作出△ABC 外角平分线,其交点分别为O 2,O 3. 故满足条件的修建点有三处,即点O 1,O 2,O 3.(第6题)点拨:解题的关键是分情况讨论:分所选位置在三条公路所围三角形的内部和外部两种情况.本章角平分线的性质和判定定理尚未学到,但结合全等三角形的判定及性质,很容易理解角平分线的性质及判定定理.前后呼应相得益彰.。
全等三角形在生活中的应用在全等图形中,全等三角形是最基本,应用最广泛的一类图形,利用全等三角形的有关知识,不仅可以帮助我们进行决策,还可以帮助我们制作一些仪器,现举例说明这个问题,供同学们学习时参考.一、仪器我也会做例1 如图1是小亮做的一个平分角的仪器,其中AB=AD ,BC=DC ,将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明其中的道理吗?分析:由已知条件易得△ABC 和△ADC 全等,由全等三角形的对应角相等,可知∠BAC=∠DAC ,即AE 是角平分线.解:已知AB=AD ,BC=DC ,又因为AC 是公共边,所以△ABC ≌△ADC ,所以∠BAC=∠DAC .所以AE 是角平分线.评析:利用三角形全等的知识,常常可以说明两个角相等的问题.二、巧测内口直径例2 小红家有一个小口瓶(如图2所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少.你知道这是为什么吗?请说明理由.(木条的厚度不计)分析:只要量出AB 的长,就知道内径是多少?显然只需要说明AB 和CD 相等就行. 解:连结AB ,CD ,因为AO=DO ,BO=CO , 图 1 图2又因为∠AOB=∠DOC,所以△ABO≌△DCO(SAS).所以AB=CD,也就是AB的长等于内径CD的长.评析:利用三角形全等的知识,可以说明线段长相等的问题.三、距离相等的解释例3 如图3,从小丽家(C处)到学校A和菜市场B的夹角∠C是锐角,又知道从小丽家到学校、菜市场的距离相等,小丽说学校到路段BC的距离AD与菜市场到路段AC的距离BE相等,你认为她说的有道理吗?请说明理由.分析:只要能说明AD与BE相等,就说明她说的有道理.解:小丽说的有道理,理由如下:图3 已知AC=BC,因为∠ADC=∠BEC=90°,又因为∠C是公共角,所以△ACD≌△BCE,所以AD=BE.即学校到路段BC的距离与菜市场到路段AC的距离相等.你还知道全等三角形有哪些应用,说出来和同学们交流交流!应把握的两种模型利用三角形全等测距离,主要有以下两种模型:一、视线模型当需要测量距离的两个点中有一个点无法接近时,常采用这种方法. 视线法简便易行,但有一定的误差,一般在仅适应于目测的情况下使用. 如:例1如图1所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距离.你能解释其中的道理吗?解:这个战士实际上是运用了全等三角形的知识. 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形.如图2所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD的长度可以测得,又因为战士与地面是垂直的,也就是∠BCA=∠EFD=90°,另外战士的身高与姿态是不变的,所以BC=EF,∠ABC=∠FED.依据“SAS”可知△ABC≌△DEF,所以AC=FD.所以只要测得FD的距离,就可得到AC的距离.这就是“视线法”的基本模型与解题原理.二、构图模型当需要测量距离的两点均可到达,但两点之间不能通过直接测得距离时,可通过构造两个全等的三角形,进行间接的测量.构图法间接测量的结果比较准确.如:例2如图3所示,A,B两点分别位于一个池塘的两端,小明想用绳子测量这两点之间的距离,但绳子不够长,老师为他出了一个主意:先在地上取一个可以直接到达A,B 两点的点C,连接AC并延长到点D,使DC=AC;连接BC并延长BC到点E,使CE=CB,连接DE并测出它的长度,DE的长度就是A,B之间的距离.你能说明其中的道理吗?解:池塘两端的A点和B点不好直接测量,取一个可以直接到达A,B两点的点C,连接AC并延长的D,使DC=AC;连接BC并延长BC到点E,使CE=CB,这样在△ABC 与△DEC中,有CA=CD,CB=CE,且∠ACB=∠ECD,则依据“SAS”可得△ABC≌△DEC,从而DE=AB,因为DE是可直接测得的,这样即可得到AB的距离.这就是“构图法”的基本模型与解题原理.。
全等三角形在实际生活中的应用2012-06-05 20:33:53| 分类:默认分类|字号订阅在现实生活中,有很多问题需要用全等三角形的知识来解决。
下面,我们举例谈谈全等三角形在实际生活中的应用。
例1(教材151页)、有一池塘,要测池塘两端A、B间的距离,可先在平地上取一个可以直接到达A和B的点C,连结AC并延长到D,使CD=CA,连结BC并延长到E,使CE=CB,连结DE,量出DE的长,这个长就是A、B之间的距离。
(1)按题中要求画图。
(2)说明DE=AB的理由,并试着把说明的过程写出来。
解:(1)如图1。
(2)因为在△ABC和△DEC中,所以△ABC≌△DEC所以DE=AB例2、如图2,某同学把一块三角形的玻璃摔成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以()A.带①去B.带②去C.带③去D.带①和②去。
析解:怎样做一个三角形与已知三角形全等,可以依据全等三角形的判定方法进行具体分析,题目中的一块三角形的玻璃被摔成三块,其中①仅留一个角,仅凭一个角无法做出全等三角形;而②没边没角;③存在两角和夹边,于是根据“ASA”不难做出与原三角形全等的三角形。
故应选C。
例3、如图3、小红和小亮两家分别位于A、B两处隔河相望,要测得两家之间的距离,请你设计出测量方案。
分析:本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,使一个三角形在河岸的同一边,通过测量这个三角形中与AB相等的线段的长,就可求出两家的距离。
方案:如图3,在点B所在的河岸上取点C,连结BC并延长到D,使CD=CB,利用测角仪器使得∠B=∠D,A、C、E三点在同一直线上。
测量出DE的长,就是AB的长。
因为∠B=∠D,CD=CB,∠ACB=∠ECD,所以△ACB≌△ECD所以AB=DE。
例4、如图4,点C是路段AB的中点,两人从C点同时出发,以相同的速度分别沿两条直线行走,并同时到过D、E两地,DA⊥AB,EB⊥AB,D、E到路段AB的距离相等吗?为什么?分析:因为两人是以相同的速度从点C同时出发,且同时到达D、E两点,所以CD=CE。
全等三角形的重要意义及其应用——三角形学习方案二。
全等三角形的重要意义:
1.全等三角形是数学中最基本和最重要的概念之一。
全等三角形的研究是三角形学习的核心,也是建立在三角形学习基础之上的。
2.全等三角形的研究可以帮助学生进一步了解三角形的性质、特征和规律,掌握三角形的分类和判定方法,提高数学思维能力和解决问题的能力。
3.全等三角形的研究也可以帮助学生认识到三角形的基本概念和几何学基本原理,这些基本概念和原理对于后续数学学习和其他学科的学习都具有重要的作用。
全等三角形的应用:
1.在测量工程中,全等三角形可以用于求解长度、角度和面积等量值。
通过全等三角形的基本理论,可以快速且准确地确定不可直接测量的物理量。
2.在建筑工程和城市规划领域中,全等三角形的基本原理也是很重要的。
通过分析和应用全等三角形的基本原理,可以预测建筑物和城市中的各种形状和结构的稳定性,确保它们能够在各种情况下各自保持平衡和稳定。
3.在机械制造、航空航天和船舶工程等领域中,全等三角形
也是很重要的。
在这些领域中,人们需要准确地计算和设计各种机件和结构,而全等三角形的基本原理可以帮助人们快速计算、确定和设计这些结构。
全等三角形是三角形学习和数学学科中最基本的概念之一。
通过研究和应用全等三角形,不仅可以帮助学生加深对三角形的认识和理解,还能让他们更好地掌握数学思维方法和解决问题的能力。
同时,全等三角形也被广泛地应用于各个领域,为我们的生活和工作提供了良好的支持和帮助。
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
全等三角形的判定与应用全等三角形是指具有相同形状和大小的两个三角形,它们的对应边长相等,对应角度相等。
全等三角形的判定以及应用在几何学中有着重要的意义,本文将探讨全等三角形的判定方法以及其在实际问题中的应用。
一、全等三角形的判定方法1. SSS判定法(边边边判定法)若两个三角形的三条边分别相等,则它们是全等三角形。
这是最直观且常用的全等三角形判定方法。
2. SAS判定法(边角边判定法)若两个三角形的一对相等的边及其夹角相等,则它们是全等三角形。
3. ASA判定法(角边角判定法)若两个三角形的一对相等的角及其夹边相等,则它们是全等三角形。
4. RHS判定法(直角边相等判定法)若两个三角形的直角边及斜边分别相等,则它们是全等三角形。
通过这些判定法,我们可以快速判断两个三角形是否全等,为后续的应用打下基础。
二、全等三角形的应用1. 几何证明全等三角形在几何证明中经常被使用。
通过证明两个三角形全等,可以推导出许多几何性质。
例如,我们可以利用全等三角形的性质证明角平分线定理、垂心定理等。
2. 测量与构造在实际测量和构造问题中,全等三角形的概念也得到了广泛应用。
例如,当我们需要在地图上等比例地绘制某个区域时,可以通过寻找与已知三角形全等的三角形来实现。
这种方法可以保证地图的比例尺度正确。
3. 三角函数运算全等三角形也在三角函数运算中发挥重要作用。
通过利用全等三角形的性质,我们可以推导出三角函数之间的关系式,简化三角函数运算的复杂性。
4. 相似三角形应用相似三角形是指两个三角形的对应角相等,对应边成比例。
在相似三角形的问题中,全等三角形的判定与应用经常被使用。
通过寻找与已知三角形全等的三角形,我们可以解决相似三角形的各种问题,如边长比例求解、面积比例求解等。
总结:全等三角形判定是几何学中的重要内容,它有利于准确推导出几何性质,并且在实际问题中有广泛应用。
通过SSS、SAS、ASA、RHS 等判定法,我们可以快速判断两个三角形是否全等。
全等直角三角形在实际生活中的应用全等直角三角形是一种非常常见且有趣的几何形状。
它在实际生活中有许多应用,下面将介绍其中一些。
建筑设计全等直角三角形在建筑设计中经常被用来计算和确定角度、长度和比例关系。
例如,在设计一个房屋的楼顶斜坡时,建筑师可以利用全等直角三角形的性质来确定合适的斜坡角度以及相关的长度关系。
地理测量全等直角三角形被广泛应用于地理测量领域。
它们可以用来测量难以达到的地点的高度或长度。
例如,在测量一个高山的高度时,可以使用全等直角三角形的原理来计算高山的高度与测量地点的距离。
航海导航全等直角三角形在航海导航中也起着重要的作用。
通过使用全等直角三角形的特性来测量方向和角度,船舶的航向和位置可以被准确地确定。
这对于导航和航海安全至关重要。
数学教学全等直角三角形在数学教学中是一个重要的概念,它帮助学生理解几何学基本原理。
通过实际应用,学生可以更容易地理解全等直角三角形的性质,并将其应用到解决实际问题中。
工程设计除了建筑设计之外,全等直角三角形在其他工程设计领域也起着重要的作用。
例如,在电子工程中,全等直角三角形的性质可以帮助工程师计算电路元件的有效阻抗和相位差。
这对于电路的正确设计和性能优化至关重要。
总结全等直角三角形在实际生活中有许多应用。
无论是在建筑设计、地理测量、航海导航还是数学教学和工程设计中,全等直角三角形的性质都发挥着重要的作用。
了解并应用这些性质可以帮助我们更好地理解和解决实际问题。
全等三角形的运用原理全等三角形的运用原理是基于三角形的一系列性质和定理。
所谓全等三角形,指的是具有相同形状和大小的三角形,它们的对应的三边长度和对应的三个角度都是相等的。
全等三角形的运用原理主要有以下几个方面:1. SSS(边边边)判定法:如果两个三角形的三边分别相等,则它们是全等的。
这个原理可以通过两个三角形的对应边的长度是否相等来判定,如果所有边的长度都相等,则两个三角形是全等的。
2. SAS(边角边)判定法:如果两个三角形的两边和夹角分别相等,则它们是全等的。
这个原理可以通过两个三角形的一个夹角和两边的长度是否相等来判定,如果夹角和两边的长度都相等,则两个三角形是全等的。
3. ASA(角边角)判定法:如果两个三角形的两个角和一边分别相等,则它们是全等的。
这个原理可以通过两个三角形的两个角和一边的长度是否相等来判定,如果两个角和一边的长度都相等,则两个三角形是全等的。
4. RHS(直角边斜边)判定法:如果两个三角形的一个角度是直角,并且两个直角边的长度分别相等,则它们是全等的。
这个原理可以通过两个三角形的一个直角和两个直角边的长度是否相等来判定,如果一个直角和两个直角边的长度都相等,则两个三角形是全等的。
全等三角形的运用原理可以应用在解决各种几何问题中,比如计算不规则图形的面积、证明两个三角形是全等的、解决三角形的边长和角度等。
在解题过程中,我们可以根据题目给出的条件,利用全等三角形的运用原理来推导解题的过程。
例如,当我们需要计算一个不规则图形的面积时,可以通过将该图形切分成一系列全等的三角形,然后计算每个三角形的面积,最后将这些三角形的面积相加得到最终结果。
通过使用全等三角形的原理,我们可以避免复杂的计算和推导,简化计算过程。
另外,全等三角形的运用原理也可以用于证明两个三角形是全等的。
以SSS判定法为例,如果我们知道两个三角形的三边分别相等,我们就可以断定这两个三角形是全等的。
通过这个原理,我们可以证明两个三角形的全等关系,从而得出更多的结论和定理。
第十讲 全等三角形(三)考点一 全等三角形的应用利用全等三角形可以计算不能直接测量的两点之间的距离,其关键是构造两个全等三角形,其根据是全等三角形的对应边相等。
例1.小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸到里边直接测,于是她拿来了两根长度相同的细木条,并且把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,那么OCD OAB ∆≅∆理由是( )A. 边角边B. 角边角C. 边边边D. 角角边 例2.要测量河两岸相对的两点B A 、的距离,先在AB 的垂线BF 上取两点D 、C ,使BC CD =,再作出BF 的垂线DE ,使E C 、、A 在一条直线上,可以证ABC EDC ∆≅∆,得到AB ED =.因此测得ED 的长就是AB 的长(如图).判定ABC EDC ∆≅∆的理由是( )A.边角边B.角边角C.边边边D.斜边直角边例3.一块三角形玻璃样板不慎被小强同学碰破,成了如图所示的四块,聪明的小强经过仔细的考虑认为只要带其中的两块碎片去玻璃店就可以让师傅画一块与以前一样的玻璃样板,你认为可行的方案是( )A. 带其中的任意两块去都可以B(1)在上下转动横板的过程中,两人上升的最大高度B B ''、A A 有何数量关系?为什么?(2)若立柱OC 的高为5.0米,求上升最大高度A A '的值。
例8.在矩形ABCD 中,AB AD 2=,E 是AD 的中点,一块三角板的直角顶点与点E 重合,将三角板绕点E 按顺时针方向旋转,当三角板的两直角边与BC 、AB 分别相交于点N 、M 时,观察或测量BM 与CN 的长度,你能得到什么结论?并证明你的结论。
考点二 测距的方案设计例12.在湖的两岸B 、A 间建一座观赏桥,由于条件限制,无法直接度量B 、A 两点间的距离。
请你用学过的数学知识按以下要求设计一测量方案。
全等三角形及其应用【知识精读】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;(3)通过观察,想象图形的运动变化状况,确定对应关系。
通过对两个全等三角形各种不同位置关系的观察和分析,可以看出其中一个是由另一个经过下列各种运动而形成的。
①翻折如图(1),∆BOC≌∆EOD,∆BOC可以看成是由∆EOD沿直线AO翻折180︒得到的;②旋转如图(2),∆COD≌∆BOA,∆COD可以看成是由∆BOA绕着点O旋转180︒得到的;如图(3),∆DEF≌∆ACB,∆DEF可以看成是由∆ACB沿CB方向平行移动而得到的。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
三角形的全等条件证明认识三角形的全等条件证明方法和应用三角形的全等条件证明及其方法应用在几何学中,全等是一个重要的概念,它意味着两个几何图形在形状和大小上完全相同。
对于三角形而言,我们可以通过证明它们满足一定的全等条件来确认它们是全等三角形。
本文将介绍三角形的全等条件证明的基本方法和应用。
一、全等三角形的定义在介绍全等条件证明之前,我们首先需要了解全等三角形的定义。
对于两个三角形ABC和DEF来说,如果它们的三个对应边长相等,则称这两个三角形是全等的,记作△ABC ≌△DEF。
二、全等条件证明的基本方法下面将介绍几种常用的全等条件证明方法:1. SAS(边-角-边)法SAS法是最常用的一种证明方法。
当我们知道两个三角形的一个边长和夹角以及另一个边长时,可以使用这种方法进行证明。
具体步骤如下:步骤一:确定两个三角形的一个对应边长相等,例如AB = DE;步骤二:确定两个三角形的一个夹角相等,例如∠ABC = ∠DEF;步骤三:确定两个三角形的另一个对应边长相等,例如AC = DF;步骤四:根据SAS法则,可以得出△ABC ≌△DEF。
2. SSS(边-边-边)法SSS法是另一种常用的证明方法。
当我们知道两个三角形的三个边长相等时,可以使用这种方法进行证明。
具体步骤如下:步骤一:确定两个三角形的三个对应边长相等,例如AB = DE,BC = EF,AC = DF;步骤二:根据SSS法则,可以得出△ABC ≌△DEF。
3. ASA(角-边-角)法ASA法是一种常用的证明方法。
当我们知道两个三角形的一个角度和两个夹角以及另一个角度时,可以使用这种方法进行证明。
具体步骤如下:步骤一:确定两个三角形的一个夹角相等,例如∠ABC = ∠DEF;步骤二:确定两个三角形的一个边长相等,例如AB = DE;步骤三:确定两个三角形的另一个夹角相等,例如∠ACB = ∠DFE;步骤四:根据ASA法则,可以得出△ABC ≌△DEF。
全等三角形在实际生活中的应用三角形全等在解决实际问题中有广泛的应用,如测量无法直接测量的距离时,可根据三角形全等进行转化.有许多图形分割问题,也蕴含着全等思想.一、测量中的全等三角形例1.图1为人民公园中的荷花池,现要测量此荷花池两旁A 、B 两棵树间的距离(我们不能直接量得).请你根据所学知识,以卷尺和测角仪为测量工具设计一种测量方案.要求:(1)画出你设计的测量平面图;(2)简述测量方法,并写出测量的数据(长度用,,,c b a …表示;角度用,,,γβα…表示);(3)根据你测量的数据,计算A 、B 两棵树间的距离.分析:此题的测量方法很多,这里用全等知识来解决,方案如图2,步骤为:(1)在地上找可以直接到达的一点O ,(2)在OA 的延长线上取一点C ,使OC=OA ;在BO 的延长线上取一点D ,使OD=OB ;(3)测得DC=a ,则AB=a . 点评:本题是一道全开放式的设计方案题,它的解题策略非常多,可以利用三角函数、三角形中位线定理、全等三角形、三角形相似等许多知识,本题来源于课本、来源于生活,可以激发学生“学有用的数学”,更激发学生的学习热情和创新热情以及求知欲望.例2.如图3所示,在一次战役中,我军阵地与敌军碉堡隔河相望,为用炮火实施定点轰炸,需要测量我军阵地与敌军碉堡隔的距离,在不能过河测量又没有任何测量工具的情况下,一个战士想出来一个办法,他面向碉堡方向站好,然后调整帽子,使视线通过帽檐,正好落在碉堡的底部,然后转过一个角度,身体保持刚才的姿势,使视线落在我军一岸的某一点上,接着他用步测法测出自己与那个点的距离,这个距离就是他与碉堡之间的距 B A C D O 图2 A • • • B图1 图3离。
你能解释其中的道理吗?解:这个战士实际上是运用了三角形全等的知识 . 要说明其中的道理,首先要根据实际情景建立数学模型,将情景中示意图抽象为几何图形。
如图4所示,我军阵地与敌军碉堡之间的距离无法测量,即AC不可测量,但线段FD 的长度可以测得,又战士与地面是垂直的,也就是∠BAC =∠EFD =900,另外战士的身高与姿态是不变的,所以BC =EF ,∠ABC =∠FED . 依据“SAS”可知△ABC ≌△DEF ,所以AC =FD . 所以只要测得FD的距离,就可得到AC 的距离 .二、修路中的全等三角形例3.如图5,有一块不规则土地ABCD ,分别被甲、乙二人承包,一条公路GEFH 穿过这块土地,EF 左边是甲,右边是乙,AB ∥CD.为方便通行,决定将这条公路尽量修直,但要求甲、乙二人的土地面积不变.请你设计一种方案,解决这个问题,并说明方案正确的理由.分析:将公路修直并不困难,关键是要保持甲、乙二人的土地面积不变.这里,我们应注意充分利用AB ∥CD 这一条件来构造全等三角形.解:取EF 的中点O ,连接GO 并延长交FH 于点M ,GM 就是修直后的公路.理由是:设GM 分别交AB 、CD 于点P 、Q ,由AB ∥CD ,可得∠PEO =∠QFO ,又因为EO =FO ,∠EOP =∠FOQ ,故△EOP ≌△FOQ ,所以这个方案能保持甲、乙二人的土地面积不变.三、其他问题中的全等三角形例4.如图6,某同学把一块三角形的玻璃打碎成了三块,现在要去玻璃店配一块完全一样的玻璃,请你设计一个最省事的配玻璃方案,并说明理由.解:最省事的配玻璃方案是带着碎玻璃块③去玻璃店.理由是:玻璃块③含有一条完整的边BC 和夹BC 的两个图 5图4图6完整的角,根据ASA,只需将∠B和∠C的不完整的边延长相交即可,得到的三角形与原三角形全等.例5.如图7,点C是路段AB的中点,两人从C同时出发以相同的速度分别沿两条直线行走,并同时到达D,E两地,DA⊥AB,EB⊥AB,D,E与路段AB的距离相等吗?为什么?分析:因为两人是从点C同时出发,且同时到达D,E两点,所以CD=CE.要说明DA与EB是否相等,则只需说明△ADC和△BEC是否全等.解:D,E与路段AB的距离相等.理由:因为点C是AB的中点,所以CA=CB,又CD=CE,DA⊥AB,EB⊥AB,所以Rt△ADC≌Rt△BEC(Hl).所以DA=EB.即D,E与路段AB的距离相等.例6.如图8是用两根拉线固定电线杆的示意图,其中,两根拉线的长AB=AC,BD和DC的长相等吗?为什么?分析:因为电线杆和地面垂直,它和两根拉线分别构成两个直角三角形,所以通过全等三角形的知识解决.解:BD和DC相等.因为AD⊥BC,所以∠ADB=∠ADC=90°,又AB=AC,AD=AD,所以Rt△ABD≌Rt△ACD(HL).所以BD=DC.例7.如图9,海岛上有A,B两个观测点,点B在点A 的正东方,海岛C在观测点A的正北方,海岛D在观测点B 图7图8图9的正北方,从观测点A看海岛C、D的视角∠CAD与从观测点B看海岛C、D 的视角∠CBD相等,那么海岛C、D到观测点A、B所在海岸的距离相等吗?为什么?分析:本题是一道和三角形全等有关的实际问题,要看海岛C、D到海岸AB的距离是否相等,则要看△ABC与△BAD是否全等.解:海岛C、D到观测点A、B所在海岸的距离相等.理由:由已知得∠CAB=∠DBA=90°,又∠CAD=∠CBD,所以∠DAB=∠CBA,在Rt△ABC和Rt△BAD中,∠CAB=∠DBA,AB=BA,∠CBA=∠DAB,所以△ABC≌△BAD(ASA),所以CA=DB,即海岛C、D到观测点A、B所在海岸的距离相等.。
全等三角形总结三角形是几何学中最基本的图形之一,而全等三角形则是其中的一个特殊类型。
在数学学习中,我们常常会遇到全等三角形的概念和相关的性质。
本文将对全等三角形进行总结,探讨其定义、性质、判定条件以及一些常见的应用。
一、定义全等三角形是指具有完全相等的三边和三角形的对应角度的三角形。
当两个三角形的所有边长和对应的角度均相等时,我们就可以说它们是全等三角形。
二、性质1. 全等三角形的对应边长相等。
根据定义,全等三角形的边长相等,这意味着它们的边长可以一一对应。
2. 全等三角形的对应角度相等。
由于全等三角形具有相等的边长和角度,它们的对应角度也必然相等。
3. 全等三角形的面积相等。
由于两个全等三角形的边长和角度均相等,它们的面积也必然相等。
三、判定条件1. SSS判定法。
当两个三角形的三边分别相等时,可以判定它们是全等三角形。
2. SAS判定法。
当两个三角形的两边和夹角分别相等时,可以判定它们是全等三角形。
3. ASA判定法。
当两个三角形的一个角度和两边对应的两个角度分别相等时,可以判定它们是全等三角形。
4. AAS判定法。
当两个三角形的两个角度和对应两边的角度分别相等时,可以判定它们是全等三角形。
四、应用1. 三角形的构造。
在实际应用中,我们经常需要构造与已知三角形全等的新三角形。
掌握全等三角形的判定条件,可以帮助我们准确地进行构造。
2. 解决几何问题。
在解决几何问题时,我们经常需要利用全等三角形的性质推理和证明一些结论。
全等三角形的性质可以为我们提供一些有力的推理依据。
3. 计算三角形的面积。
利用全等三角形的面积性质,我们可以简化三角形的面积计算过程。
通过找到一个已知三角形的全等三角形,我们只需要计算已知三角形的面积,然后将结果乘以对应边长的比例因子,即可得到另一个三角形的面积。
总结:全等三角形是具有完全相等的三边和三角形的对应角度的三角形。
它们的性质包括对应边长相等、对应角度相等以及面积相等。
全等三角形实际中的例子全等三角形是指具有相同的三个角和相等的三个边的三角形。
在实际生活中,我们可以找到很多与全等三角形相关的例子。
下面列举了十个例子来说明全等三角形的应用。
一、地图上的全等三角形在地理学中,地图上的三角形可以用来测量地球上的距离和角度。
当我们在地图上绘制三角形时,可以使用全等三角形来测量无法直接测量的距离和角度。
二、建筑物的设计在建筑设计中,全等三角形经常被用来保持建筑物的对称性和比例。
例如,在设计一座大型建筑物时,可以使用全等三角形来确定建筑物的比例和比例关系,从而保持建筑物的整体美观和稳定性。
三、裁剪布料在裁剪布料时,可以使用全等三角形来确保裁剪的布料均匀且正确。
通过使用全等三角形的性质,可以将布料正确地对齐,并确保裁剪的布料具有相同的形状和大小。
四、航海导航在航海导航中,全等三角形可以用来测量船只的位置和航向。
通过测量观测到的角度和距离,可以绘制全等三角形来确定船只的位置和目标位置的距离。
五、地面测量在土地测量中,全等三角形可以用来测量地面的高度和距离。
通过观测到的角度和已知的距离,可以绘制全等三角形来计算地面的高度和距离。
六、照相机的焦距调节在摄影中,照相机的焦距调节可以使用全等三角形来确定。
通过观察到的物体大小和距离,可以绘制全等三角形来计算出焦距的调节量。
七、地图的放大和缩小在地图制作中,全等三角形可以用来放大或缩小地图的比例。
通过观察到的角度和距离,可以绘制全等三角形来确定地图的比例尺。
八、建筑物的测量和绘制在建筑测量和绘制中,全等三角形可以用来测量建筑物的高度和距离。
通过观察到的角度和已知的距离,可以绘制全等三角形来计算建筑物的高度和距离。
九、地质勘探在地质勘探中,全等三角形可以用来确定地下的岩层和地质结构。
通过测量地面上的角度和距离,可以绘制全等三角形来计算地下的岩层和地质结构的位置和形状。
十、航空导航在航空导航中,全等三角形可以用来确定飞机的位置和航向。
通过测量观测到的角度和距离,可以绘制全等三角形来计算飞机的位置和目标位置的距离。