人教版八年级上册数学学案:11.1 与三角形有关的线段 复习 学案
- 格式:doc
- 大小:49.50 KB
- 文档页数:3
11.1与三角形有关的线段第1课时三角形的边教学目标1.认识三角形,了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形.2.会判断三条线段可否构成一个三角形的方法,并能运用它解决有关问题.教学重点:三角形的有关概念,能用符号语言表示三角形,三角形的三边关系.教学难点:三边关系的推导及应用.教学过程:一、创设情景,明确目标投影:金字塔,斜拉大桥,塔吊,自行车等,让学生感受生活中处处有三角形的身影,我们研究的“三角形”这个课题来源于实际生活之中.请说一说你已经学习了三角形的哪些知识?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的概念表示方法及分类活动一:阅读教材第1至2页内容,并思考以下问题:(1)具有什么特征的图形叫三角形?(不在同一直线上的三条线段,首尾顺次相接所组成的图形)(2)三角形有几条边?有几个内角?有几个顶点?(3,3,3)(3)三角形ABC用符号如何表示?三角形ABC的边AB、AC和BC怎样用小写字母分别表示?(a,b,c)(4)三角形按边分可以分成几类?按角分呢?展示点评:学生结合图形分别回答,师生共同点评.小组讨论:三角形的概念,如何用符号表示及分类?反思小结:三角形的图形特征,有三条边,三个内角,三个顶点,边可以用两个大写字母表示,也可以用一个小写字母表示.探究点二三角形的三边关系活动二:画出一个△ABC,假设有一只小虫要从B出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长有什么数量关系?请说明你结论的正确性.展示点评:(1)小虫从B出发沿三角形的边爬到C如下几条线段.a.从__B____C__b.从__B____A____C__(2)从B沿边BC到C的路线长为__BC__.从B沿边BA到A,从A沿C到C的路线长为__AB+AC__.经过测量可以说__AB+AC__>__BC__,可以说这两条路线的长是__不相等__的.小组讨论:在同一个三角形中,任意两边之和与第三边有什么关系?任意两边之差与第三边有什么关系?三角形的三边有怎么样的不等关系?反思小结:三角形的任意两边之和大于第三边,任意两边之差小于第三边.探究点三三角形有关知识的运用活动三:见教材P3例题小组讨论:等腰三角形中有几个不同的边长?第(2)问中的长4 cm没有明确是腰还是底时应怎么处理?展示点评:等腰三角形的底和腰的长度,不确定时,应分情况予以讨论.反思小结:当题目中的条件不明确时要分类讨论.所有的三角形必须要满足三边关系定理.四、总结梳理,内化目标1.概念:三角形,内角,边,顶点2.符号语言.3.三边关系.4.三角形的分类.五、达标检测,反思目标1.现有两根木棒,它们的长度分别为20 cm和30 cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取( B )A.10 cm的木棒B.20 cm的木棒C.50 cm的木棒D.60 cm 的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为( C )A.9 B.12 C.15 D.12或153.已知三角形的三边长为连续整数,且周长为12 cm,则它的最短边长为( B ) A.2 cm B.3 cm C.4 cm D.5 cm4.若五条线段的长分别是1 cm,2 cm,3 cm,4 cm,5 cm,则以其中三条线段为边可构成__3__个三角形.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.5.如果以5 cm为等腰三角形的一边,另一边为10 cm,则它的周长为__25_cm__.6.工人师傅用35 cm长的铁丝围成一个等腰三角形铁架.(1)若腰长是底边长的3倍,那么各边的长分别是多少?(2)能围成有一边长为7 cm的等腰三角形吗?为什么?●布置作业,巩固目标教学难点课本P1、2、6、7.8教学反思:第2课时三角形的高、中线与角平分线教学目标:会用工具准确画出三角形的高、中线与角平分线,通过画图了解三角形的三条高(及所在的直线)交于一点,三角形的三条中线,三条角平分线等都交于一点.教学重点:了解三角形的高、中线与角平分线的概念,会画出三角形的高、中线与角平分线.教学难点:三角形角平分线与角的平分线的区别,三角形的高与垂线的区别.教学设计一、创设情景,明确目标你还记得“过一点画已知直线的垂线”吗?让学生动手操作,画一画.在此基础上再提问:过三角形的一个顶点,你能画出它的对边的垂线吗?从而引入课题.二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的高活动一:画出下面三角形的高AD.展示点评:三角形的高是什么线?三个图形中的高有什么区别?同一个三角形有几条高?他们在位置上有什么关系?请分别画出各个三角形的高.小组讨论:三角形的高的交点位置有何特征?反思小结:锐角三角形的高在三角形内部,直角三角形有两条高在边上,钝角三角形有两条高在三角形外部.任意三角形都有三条高,并且三条高所在的直线相交于一点.探究点二三角形的中线活动二:有一块三角形的草地,要把它平均分给四个牧民,且每个牧民所分得的草地都是三角形,请你探究出几种不同的分法.展示点评:如何将一个三角形分成两个面积相等的三角形?三角形的中线是什么线?一个三角形有几条中线?在位置上有什么关系?小组讨论:三角形的中线所分成的两个三角形的面积有什么关系?反思小结:三角形的中线可以把三角形分成面积相等的两个三角形.三角形的三条中线相交与一点,这一点在三角形的内部,这个点是三角形的重心.探究点三三角形的角平分线活动三:动手画出锐角三角形、直角三角形和钝角三角形的三角的角平分线.展示点评:学生分组合作画图,师生共同点评.小组讨论:三角形的角平分线是什么线?与角平分线有什么区别?一个三角形有几条角平分线?它们在位置上有什么关系?反思小结:任何三角形有三条角平分线,并且都在三角形的内部交于一点,我们把这个交点叫做三角形的内心.三角形的角平分线是一条线段,而角平分线是一条射线.四、总结梳理,内化目标1.本节学习的数学知识是三角形的中线、角平分线、高的概念.2.本节学习的数学方法是三角形中线、角平分线、高的画法.五、达标检测,反思目标1.下列各组图形中,哪一组图形中AD是△ABC的高( D )2.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( B )A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形3.如图,在△ABC中,∠1=∠2,G为AD中点,延长BG交AC于E,F为AB上一点,CF⊥AD于H,判断下列说法哪些是正确的,哪些是错误的.①AD是△ABE的角平分线(×)②BE是△ABD边AD上的中线(×)③BE是△ABC边AC上的中线(×)④CH是△ACD边AD上的高(√)4.如图,点D、E、F分别是BC、AD、BE的中点,且S△ABF =2,求S△ABC.(第4题图)●布置作业,巩固目标教学难点课本P83、4、8.教学反思:第3课时三角形的稳定性教学目标:1.了解三角形的稳定形,四边形不具有稳定形.2.能够用三角形稳定性解释生活中的现象.教学重点:了解三角形稳定性在生产、生活中的实际应用.教学难点:准确使用三角形稳定性于生产生活之中.教学设计:一、创设情景,明确目标多媒体展示:将四边形木架上再钉一根木条,将它的一对顶点连接起来,然后再扭动它,这时木架的形状还会改变吗?盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条.为什么要这样做呢?二、自主学习,指向目标三、合作探究,达成目标探究点一三角形的稳定性活动一:见教材P6“探究”部分.展示点评:1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)小组讨论:从以上活动中,可以分别发现三角形和四边形各具有什么特点?反思小结:三角形是具有稳定性的图形,而四边形等其它多边形不具稳定性.探究点二三角形稳定性的应用活动二:如图是四根木条钉成的四边形,为了使它不变形,小明加了一根木条AE,小明的做法正确吗?为什么?若不正确应怎样做?展示点评:小明可以有几种正确的做法?小组讨论:小明各种做法的依据是什么?反思小结:三角形具有稳定性.四边形不具有稳定性,生活中各有用途.四、总结梳理,内化目标1.本节课学习的数学知识:三角形具有稳定性,四边形具有不稳定性.2.本节课学习的数学方法是观察与操作.五、达标检测,反思目标1.下列图形中具有稳定性的是( C )A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架稳定各至少需要多少根木棍?(1根) (2根) (3根)3.如图,工人师傅砌门时,常用木条EF固定门框ABCD,使其不变形,这种做法的根据是( D )A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性4.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.5.下列设备,没有利用三角形的稳定性的是( A )A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架●布置作业,巩固目标教学难点5、9、10.课本P8教学反思:。
初中数学人教版八年级上册实用资料11.1.2三角形的高、中线与角平分线◇教学目标◇【知识与技能】1.了解三角形的高、中线、角平分线的概念;2.会用工具准确画出三角形的高、中线、角平分线.【过程与方法】1.让学生经历画三角形的高、中线、角平分线过程,理解三角形的高、中线、角平分线的特点以及符号语言和图形语言的表达方法;2.培养学生观察、分析、作图、解决问题的能力.【情感、态度与价值观】培养学生敢于实践操作、勇于发现、大胆探索、合作创新的精神.◇教学重难点◇【教学重点】三角形的高线、中线、角平分线的概念及画法.【教学难点】探究三角形的三条高线、三条角平分线、三条中线都交于一点的过程.◇教学过程◇一、情境导入有一块三角形的地,小明的爸爸想种花草,妈妈想种菜.于是想平分三角形的面积,一半种花草,一半种菜,不知如何作,小明说,这还不好办,做一边的中线就行了,聪明的你,能帮他们家把这块地分成面积相等的两部分吗?知道小明这样做的原因吗?二、合作探究探究点1三角形的高典例1如图,在△ABC中,AD⊥BC,垂足为D,BE⊥AC,垂足为E,AD,BE相交于点F,连接CF.(1)在△ABC中,AC边上的高为,BC边上的高为;(2)在△ABD中,AD边上的高为;(3)在△BCE中,CE边上的高为;(4)在△BCF中,BC边上的高为;(5)在△ABF中,AF边上的高为,BF边上的高为.[解析]三角形的高即从三角形的一个顶点向它的对边所在直线引垂线,顶点和垂足间的线段.[答案](1)BE;AD(2)BD(3)BE(4)FD(5)BD;AE【归纳提升】锐角三角形的三条高在三角形内部,相交于三角形内一点;直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.变式训练下列尺规作图,能判断AD是△ABC边上的高的是()[答案] D探究点2中线的特性典例2三角形一边上的中线把原三角形分成两个()A.形状相同的三角形B.面积相等的三角形C.直角三角形D.周长相等的三角形[解析]根据三角形的面积公式以及三角形的中线定义,知三角形的一边上的中线把三角形分成了等底同高的两个三角形,所以它们的面积相等.[答案] B【技巧点拨】三角形的中线把三角形分为两个等底同高的三角形,这两个三角形的面积相等.探究点3三角形的角平分线典例3如图,CD,BE分别是△ABC的角平分线,它们相交于点I,则:(1)∠ACD=∠=∠ACB,∠ABC=∠ABE.(2)BI是∠的平分线,CI是∠的平分线.(3)若∠ABC=60°,∠ACB=80°,则∠BIC=度.(4)你能画出△ABC的第三条角平分线吗?[解析](1)BCD;;2.(2)ABC;ACB.(3)110°.(4)连接AI并延长,即为∠BAC的角平分线.探究点4三角形的中线与周长典例4如图,AD是△ABC的中线,且AB=10 cm,AC=6 cm,求△ABD与△ACD的周长之差.[解析]∵AD为中线,∴BD=CD,∴△ABD与△ACD的周长之差=(AB+AD+BD)-(AC+AD+CD)=AB-AC,∵AB=10,AC=6,∴△ABD与△ACD的周长之差=10-6=4 cm.变式训练在△ABC中,AB=AC,AD是中线,△ABC的周长为34 cm,△ABD的周长为30 cm,求AD的长.[解析]由题意得AB+AC+BC=34,AB+AD+BD=30,∵AB=AC,BD=BC,∴②×2得2AB+2AD+BC=60,③③-①得2AD=26,∴AD=13 cm.三、板书设计三角形的高、中线与角平分线三角形的高、中线与角平分线◇教学反思◇通过本课时的教学要让学生认识三角形的三条重要线段的概念、图形和它们的相关特性,如三角形的中线把三角形分为面积相等的两部分,三角形的三条高线、三条中线、三条角平分线都相交于一点的性质,应逐步加强学生几何语言的表达能力.。
八年级数学上册 11.1《与三角形有关的线段》学案(新版)新人教版11、1、1 三角形的边(一)学习目标1、认识三角形,能用符号语言表示三角形,并把三角形分类;2、知道三角形三边不等的关系;3、懂得判断三条线段能否构成一个三角形的方法,并能用于解决有关的问题。
(二)学习重点知道三角形三边不等关系。
(三)学习难点判断三条线段能否构成一个三角形的方法。
(四)课前预习1、如图,图中共个三角形,分别是;以AB为边的三角形有;以AD为边的三角形有、2、如图所示,图中含∠A的所有三角形有个,它们分别是是:、3、下列长度的线段不能组成三角形的是()A、5,3,3B、6,3,8C、6,8,10D、9,4,54、为估计池塘两岸A,B间的距离,杨阳在池塘一侧选取了一点P,测得PA=16m,PB=12m,那么A,B间的距离不可能是( )A、5 mB、15mC、20 mD、28 m5、等腰三角形的周长为16,(1)其一边长为6,则另两边为;(2)其一边长为4,则另两边为、(五)疑惑摘要预习之后,你还有哪些没有弄清的问题,请记下来,课堂上我们共同探讨。
典型例题例1、(1)图中有几个三角形?用符号表示这些三角形、(2)以AB为边的三角形有哪些?(3)以E为顶点的三角形有哪些?(4)以∠D为角的三角形有哪些?例2、下列长度的三条线段能否组成三角形?为什么?(1)3,4,8;(2)5,6,11;(3)5,6,10课后作业一、选择题1、若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A、2对B、3对C、4对D、6对2、如果以4cm长的线段为底组成一个等腰三角形,腰长的取值范围是()A、>4cmB、>2cmC、≥4cmD、≥2cm3、已知三角形的三边长分别为2,,13,若为正整数,则这样的三角形个数为()A、2B、3C、5D、134、ABC的三边分别为,且,那么ABC为()A、不等边三角形B、等边三角形C、等腰三角形D、锐角三角形二、填空题5、有四根木条,长度分别是12cm、10cm、8cm、4cm,选其中三根组成三角形,能组成三角形的个数是个、6、△ABC的边长均为整数,且最大边为4,那么这样的三角形共有个、7、已知线段3cm,5cm,cm,为偶数,以3,5,为边能组成个三角形、8、若三角形的三条边长分别是3cm,5cm,cm,则这个三角形的最长边的取值范围为、三、解答题9、一个三角形有两条边相等,周长为20cm,三角形的一边长6cm,求其他两边长、10、已知是△ABC的三边长,化简、11、如图,O为△ABC内部任意一点,求证:OA+OB+OC>(AB+BC+AC)、四、拓展提高已知一个等腰三角形的三边长分别为,,,求这个等腰三角形的周长、11、1、2 三角形的高、中线、角平分线(一)学习目标1、认识并会画出三角形的高线,利用其解决相关问题;2、认识并会画出三角形的中线,利用其解决相关问题;3、认识并会画出三角形的角平分线,利用其解决相关问题。
人教版数学八年级上册教学设计11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要包括三角形的两边之和大于第三边,两边之差小于第三边的基本性质。
这些性质是三角形的基本构成要素,对于学生深入理解三角形的结构特征,以及在后续学习中解决三角形相关问题具有重要意义。
二. 学情分析学生在七年级已经学习了线段的性质,能够理解线段的基本概念和性质。
但是对于三角形两边之和大于第三边,两边之差小于第三边的性质的理解,还需要通过具体操作和实例来加深。
此外,学生对于抽象几何图形的理解能力也在逐步提高,但仍需要具体的形象支持。
三. 教学目标1.知识与技能:理解并掌握三角形的两边之和大于第三边,两边之差小于第三边的性质。
2.过程与方法:通过观察、操作、证明等方法,培养学生的几何思维和解决问题的能力。
3.情感态度价值观:激发学生对数学的兴趣,培养学生的合作意识和探究精神。
四. 教学重难点1.教学重点:三角形的两边之和大于第三边,两边之差小于第三边的性质。
2.教学难点:对于这些性质的理解和应用。
五. 教学方法采用问题驱动法、观察操作法、小组合作法等,引导学生主动探究,发现并证明三角形的这些基本性质。
六. 教学准备1.教师准备:教材、PPT、几何模型等。
2.学生准备:课本、笔记本、尺子、圆规等。
七. 教学过程1.导入(5分钟)通过提问方式复习线段的性质,为新课的学习打下基础。
然后,引入三角形的基本性质,激发学生的学习兴趣。
2.呈现(10分钟)利用PPT展示三角形的两边之和大于第三边,两边之差小于第三边的性质,引导学生观察和思考。
3.操练(10分钟)学生分组进行操作,用尺子和圆规构造三角形,验证这两条性质。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)学生独立完成教材中的相关练习题,教师选取部分题目进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:这些性质在实际生活中有哪些应用?如何解决与三角形相关的实际问题?6.小结(5分钟)教师引导学生总结本节课所学内容,强调三角形的两边之和大于第三边,两边之差小于第三边的性质。
人教版八年级数学上册说课稿11.1 与三角形有关的线段一. 教材分析人教版八年级数学上册第11.1节《与三角形有关的线段》,这部分内容是学生在学习了三角形的性质和分类后,进一步研究三角形的线段性质。
本节内容主要包括三角形的角平分线、中线和高线的性质及其应用。
这些线段在三角形中具有重要的地位,对于学生深入理解三角形的结构特征和解决三角形相关问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了三角形的基本性质和分类,对三角形有一定的认识。
但学生对于三角形的角平分线、中线和高线的性质及其应用可能还比较陌生,因此需要在教学过程中引导学生通过观察、思考、探究,从而理解和掌握这些线段的性质。
三. 说教学目标1.知识与技能目标:使学生了解三角形的角平分线、中线和高线的定义,掌握它们的性质及其应用。
2.过程与方法目标:通过观察、思考、探究,培养学生解决问题的能力和空间想象力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:三角形的角平分线、中线和高线的性质及其应用。
2.教学难点:理解和证明三角形的角平分线、中线和高线的性质,以及如何在实际问题中灵活运用。
五. 说教学方法与手段1.教学方法:采用问题驱动的教学方法,引导学生通过观察、思考、探究,从而理解和掌握三角形的角平分线、中线和高线的性质。
2.教学手段:利用多媒体课件辅助教学,通过动画演示和图形展示,帮助学生直观地理解三角形的线段性质。
六. 说教学过程1.导入新课:通过复习三角形的基本性质和分类,引出三角形的角平分线、中线和高线的概念。
2.探究性质:引导学生观察三角形,发现角平分线、中线和高线的特点,学生分组讨论,总结出它们的性质。
3.证明性质:学生代表上台演示和证明三角形的角平分线、中线和高线的性质,其他学生进行评价和补充。
4.应用拓展:给出一些实际问题,让学生运用所学的线段性质进行解决,教师进行指导和点评。
第十一章 三角形11.1与三角形有关的线段11.1.1 三角形的边学习目标:1、明确三角形的相关概念;能正确对三角形进行分类;2、能利用三角形三边关系进行有关计算。
新课导学:三角形的有关概念——阅读课本第1至3页,回答以下问题:(1)三角形概念:由不在同一直线上的 条线段 连接所组成的图形。
(2)三角形的表示法(如图1)三角形ABC 可表示为: ;(3)ΔABC 的顶点分别为A 、 、 ;(3)ΔABC 的内角分别为∠ABC , , ;(4)ΔABC 的三条边分别为AB , , ;或, 、 ;(5)顶点A 的对边是 ,顶点B 的对边分别是 ,顶点C 的对边分别是 。
三角形的分类:(1)下图中,每个三角形的内角各有什么特点?(2)下图中,每个三角形的三边各有什么特点?(3)结合以上图形你认为三角形可以如何分类?试一试①按角分类: ②按边分类:(4)在等腰三角形中, 叫做腰,另外一边叫做 ,两腰的夹角叫做 , 叫做底角。
(5)等边三角形是特殊的等腰三角形,即底边和腰 的等腰三角形。
3、三角形的三边关系问题1:如图,现有三块地,问从A 地到B 地有几种走法,哪一种走法的距离最近?请将你的设计方案填写在下表中:(3)阅读课本第3页,填写:三角形两边的和(4)用式子表示:BC + AC AB (填上“> ”或“ < ” ) ①B 地A 地BC + AB AC(填上“> ”或“ < ”)②AB + AC BC(填上“> ”或“ < ”)③4、例题:用一条长为18cm的细绳围成一个等腰三角形,如果腰长是底边的2倍,那么各边的长是多少?解:设底边长为xcm,则腰长是 cm因为三角形的周长为 cm所以:所以x= cm答:三角形的三边分别是、、课堂练习: A 组1②△ABC三条边是、、;2、如图中有个三角形,用符号表示3.判断下列线段能否组成三角形:①4,5,6 ()②1,2,3 ()③2,2,6 ()④8,8,2 ()4、等腰三角形一腰长为6,底边长为7,则另一腰为,周长为。
人教版八年级上册数学教学设计《11.1 与三角形有关的线段》一. 教材分析本节课的主题是“与三角形有关的线段”,这是人教版八年级上册数学的一个重要内容。
本节课主要让学生了解并掌握三角形的中线、角平分线、高线等概念,以及它们之间的关系。
通过对这些线段的性质和作用的学习,培养学生空间想象能力和逻辑思维能力,为学生进一步学习几何知识打下基础。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,如三角形的内角和、三角形的分类等。
但学生对三角形的中线、角平分线、高线等概念及性质可能较为陌生,因此,教师在教学中要注重引导学生从已知知识出发,探索新知识,培养学生自主学习的能力。
三. 教学目标1.知识与技能:让学生掌握三角形的中线、角平分线、高线的概念,理解它们之间的关系。
2.过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观:激发学生学习几何的兴趣,培养学生的合作意识,使学生感受到数学在生活中的应用。
四. 教学重难点1.重点:三角形的中线、角平分线、高线的概念及性质。
2.难点:三角形的中线、角平分线、高线之间的相互关系。
五. 教学方法1.情境教学法:通过设置问题情境,引导学生观察、操作、猜想、验证,激发学生的学习兴趣。
2.合作学习法:学生进行小组讨论,培养学生合作意识,提高学生解决问题的能力。
3.启发式教学法:教师引导学生从已知知识出发,探索新知识,培养学生的自主学习能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体设备等。
2.学具:学生每人一份三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师利用多媒体展示三角形的中线、角平分线、高线的图片,引导学生观察并思考这些线段的特征。
3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作,探索三角形的中线、角平分线、高线之间的关系。
11.1与三角形有关的线段(1)学习目标:1、通过观察、操作、想象、推理、交流等活动,发掌空间观念、推理能力和有条理地表达能力;2、结合具体实例,进一步认识三角形的概念及其基本要素,掌握三角形三边之间的不等关系.学习重点:三角形三边之间的不等关系.学习难点:应用三角形的三边之间的不等关系判断三条线段能否组成三角形教学过程:一、学前准备1.三角形是我们早已熟悉的图形,你能列举出日常生活中有什么物体是三角形吗?2.能从右图中找出4个不同的三角形吗?二、探究新知:1、你所知道的三角形的定义是什么?问题:根据你的理解,下列的图形是三角形吗?三角形的定义:2、三角形的有关概念:①边:。
②角:。
③顶点:。
问题:右图中三角形的三个顶点分别是,三条边分别是,三个内角分别是。
3、三角形的表示:ABCD EF GABCabc A B DC E如右图,以A、B、C为顶点的三角形记作,读作。
4、边都相等的三角形叫做等边三角形;有条边相等的三角形叫做等腰三角形。
问题:那么等边三角形是否属于等腰三角形呢?三角形的分类:①按三个内角的大小分类:、和。
②按边进行分类。
三角形5、自主探究(1)任意画一个△ABC,从点B出发,沿边到点C,有几条路线?(2)各条路线的长有什么关系?说明理由.结论:三角形任意两边之和;三角形任意两边之差。
6.例题讲解例:有一条长为18cm的细绳围成一个等腰三角形(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长为4cm的等腰三角形吗?为什么?三、练习内容1、课本4页练习1,22、等腰三角形的两边长分别为3cm,5cm.(1) 求这个三角形的周长。
(2)若两边分别为2cm,5cm呢?四、小结:本节课的收获:你还有什么疑惑?五、当堂清1.用木棒钉成一个三角架,两根小棒分别是7cm和10cm,第三根小棒可取()A、20cmB、 3cmC、11cmD、2cm2.下列三条线段,不能组成三角形的是()A、 3 4 6 B 、8 9 15 C 、20 18 5 D、16 30 143.已知等腰三角形一边等于5cm,一边等于10cm,另一边应等于()A、5cmB、 10cmC、5或10cmD、 12cm4.一个三角形的两边分别是5cm和11cm,第三边的长是一个偶数,则第三边的长是()A、2cmB、 4cmC、6cmD、8cm5、已知一个三角形的两边长分别是3cm和4cm,则第三边长x的取值范围。
人教版数学八年级上册教案11.1《与三角形有关的线段》一. 教材分析人教版数学八年级上册第11.1节《与三角形有关的线段》主要介绍了三角形的中线、角平分线和高的概念。
通过本节课的学习,学生能够理解三角形中线、角平分线和高的定义,掌握它们的基本性质,并为后续的三角形全等和三角形的证明打下基础。
二. 学情分析学生在七年级已经学习了线段的性质和三角形的基本概念,对线段和三角形有一定的认识。
但部分学生对概念的理解不够深入,对性质的运用不够熟练。
因此,在教学过程中,需要引导学生通过观察、操作、思考、交流等活动,加深对三角形中线、角平分线和高的理解,提高运用性质解决问题的能力。
三. 教学目标1.了解三角形的中线、角平分线和高的定义,掌握它们的基本性质。
2.能够运用中线、角平分线和高的性质解决一些简单问题。
3.培养学生的观察能力、操作能力、思考能力和交流能力。
四. 教学重难点1.重点:三角形的中线、角平分线和高的定义及基本性质。
2.难点:运用中线、角平分线和高的性质解决问题。
五. 教学方法1.采用问题驱动法,引导学生观察、操作、思考、交流,发现规律。
2.运用多媒体辅助教学,展示清晰的图形和动画,帮助学生形象地理解概念和性质。
3.采用案例分析法,精选典型例题,让学生在解决实际问题中掌握知识。
六. 教学准备1.多媒体教学设备。
2.三角板、直尺、量角器等绘图工具。
3.准备相关课件和教学素材。
七. 教学过程1. 导入(5分钟)利用多媒体展示一个三角形,引导学生观察并思考:三角形有哪些特殊的线段?2. 呈现(10分钟)介绍三角形的中线、角平分线和高的概念,并用多媒体展示它们的定义和性质。
让学生通过观察和思考,发现它们之间的关系。
3. 操练(10分钟)学生分组讨论,每组选择一个三角形,画出它的中线、角平分线和高,并观察它们之间的关系。
教师巡回指导,解答学生的疑问。
4. 巩固(10分钟)学生独立完成教材中的练习题,教师选取部分题目进行讲解和分析。
第十一章三角形11.1.1 三角形的边【知识与技能】(1)结合具体实例,进一步认识三角形的概念及其基本要素,并能用符号语言表示三角形.(2)利用边的相等关系能正确地给三角形分类.(3)掌握三角形的三边关系,并能利用此关系判断已知的三条线段能否组成三角形.【过程与方法】在探索三角形三边关系的过程中,让学生经历测量三角形边长的实践活动,理解三角形三边间的不等关系.【情感态度与价值观】帮助学生树立几何知识源于客观实际的观念,用客观实际的观念激发学生的学习兴趣.(1)对三角形的有关概念的了解,能用符号语言表示三角形.(2)三角形的三边关系.用三角形的三边关系判断已知三条线段能否组成三角形.多媒体课件、三角形纸片“三角形”这个课题来源于实际生活.本节我们将从认识三角形开始.(教师板书课题)教师提问:通过观察刚才的图片,你们能得出三角形完整的概念吗?探究1三角形的有关概念教师出示一个三角形纸片,让学生观察,然后由教师直接给出三角形的概念.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫作三角形.教师继续利用刚才的三角形纸片向学生直接指明相关的概念:1.相邻两边的公共端点叫作三角形的顶点.2.相邻两边组成的角叫作三角形的内角,简称三角形的角.3.组成三角形的线段叫作三角形的边.接着教师出示投影(△ABC),并提出问题:这个三角形该怎么用符号语言表示?它的内角、边又该怎么表示?学生独立思考,师生共同总结:图11-1.1-2“三角形”可用符号“△”表示,如图11-1.1-2,顶点是A,B,C的三角形,记作△ABC,读作“三角形ABC”.∠A,∠B,∠C是△ABC的三个内角;△ABC的三边分别是AB,BC,CA,有时也可用小写字母来表示,顶点A,B,C所对的边分别可用a,b,c来表示,即边AB可用c表示,边BC可用a表示,边CA可用b表示.教师安排学生完成教材P4练习第1题,并举手回答:图中有几个三角形?用符号表示这些三角形.解:5个.分别是△ABC,△BCD,△BCE,△ABE,△CDE.教师讲评学生的回答,然后师生共同归纳、总结数三角形个数的方法(列举法):(1)按图形形成的过程去数(即重新画一遍图形,按照三角形形成的先后顺序去数)(2)按三角形的大小顺序去数.(3)从图中的某一条线段开始沿着一定的方向去数.(4)先固定一个顶点,变换另两个顶点来数.探究2:三角形的分类方法教师布置学生自学,先让学生学习有关的概念,如等腰三角形、等边三角形等,然后通过小组进行讨论交流后完成下面的填空.在这一过程中,教师要注意点拨分类的思想和原则.探究3:三角形的三边关系教师出示教材P3的探究,先让学生动手画一画,试一试,教师再引导学生讨论、分析,得到两条线路:(1)由点B直接到点C,即BC;(2)先由点B到点A,再由点A到点C,即BA+AC.师生得到结论:线路(1)中的BC要短一些,即BC<BA+AC.教师进一步提出问题:为什么BC要短一些?学生举手回答:“两点之间,线段最短.”然后师生共同归纳得出:BC<AB+AC,①AC<AB+BC,②AB<BC+AC.③即三角形两边的和大于第三边.(教师板书)教师提问:由不等式①②③移项,你能得到怎样的不等式?通过这些不等式,你有什么发现呢?学生回答,师生共同归纳:三角形两边的差小于第三边.(教师板书)教师出示教材P3例题:用一条长为18 cm的细绳围成一个等腰三角形.(1)如果腰长是底边长的2倍,那么各边的长是多少?(2)能围成有一边的长是4 cm的等腰三角形吗?为什么?师生共同分析后,教师板书规X的解答过程:解:(1)设底边长为x cm,则腰长为2x cm.由题意,得x+2x+2x=18,解得x=3.6.所以,三边长分别为3.6 cm,7.2 cm,7.2 cm.(2)因为长为4 cm的边可能是腰,也可能是底边,所以需要分情况讨论.若4 cm长的边为底边,设腰长为x cm,则4+2x=18,解得x=7.若4 cm长的边为腰,设底边长为x cm,则2×4+x=18,解得x=10.因为4+4<10,不符合三角形两边的和大于第三边,所以不能围成腰长是4 cm的等腰三角形.由以上讨论可知,可以围成底边长是4 cm的等腰三角形.教师总结三角形三边关系的作用:(1)已知三角形的两边长,求第三边长的取值X围.(2)判断三条线段能否组成三角形.(3)利用三角形的三边关系解决含绝对值符号的化简问题.最后让学生独立完成教材P4练习第2题,学生举手口答.1.三角形的相关概念以及表示方法.2.三角形按边分类.3.三角形的三边关系.。
与三角形有关的线段【学习目标】通过练习进一步巩固三角形的边和相关线段。
【学习重点】巩固三角形的边和相关线段;【学习难点】三角形三边不等关系的运用【自主学习】学前准备1、什么叫做三角形?2、三角形按边可分为什么?按角可分为什么?3、三角形三边不等关系是什么?4、三角形的高、中线、角平分线各有什么特征?5、三角形具有_______性,四边形具有_________性。
【达标检测:】1.如图1,图中所有三角形的个数为 ,在△ABE 中,AE 所对的角是 ,∠ABC 所对的边是 ,在△ADE 中,AD 是∠ 的对边,在△ADC 中,AD 是∠ 的对边;2.如图2,已知∠1=21∠BAC ,∠2 =∠3,则∠BAC 的平分线为 ,∠ABC 的平分线为 ;3.如图3,D 、E 是边AC 的三等分点,图中有 个三角形,BD 是三角形 中 边上的中线,BE 是三角形 中 边上的中线;图1 图2 图34.若等腰三角形的两边长分别为7和8,则其周长为 ;若两边长分别为4和8,则其周长为_____.5. 如右图,木工师傅做完门框后,为了防止变形,常常像图中所示那样钉上两条斜拉的木条(图中的AB 、CD ),这样做的数学道理是 ;6. 一个三角形的三边之比为2∶3∶4,周长为36cm ,则此三角形三边的长分别为_____________.7.已知△ABC 中,AD 为BC 边上的中线,AB=10cm ,AC=6cm ,则△ABD 与△ACD 的周长之差为________.7.如右图,图中共有三角形 ( )A 、4个B 、5个C 、6个D 、8个8.下列长度的三条线段中,能组成三角形的是 ( )A 、 3cm ,5cm ,8cmB 、8cm ,8cm ,18cmC 、0.1cm ,0.1cm ,0.1cmD 、3cm ,40cm ,8cm9.如果线段a ,b ,c 能组成三角形,那么,它们的长度比可能是 ( )A 、1∶2∶4B 、1∶3∶4C 、3∶4∶7D 、2∶3∶410.如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 ( )A 、5B 、6C 、7D 、811.如图,分别画出三角形过顶点A 的中线、角平分线和高。
第十一章三角形11.1与三角形有关的线段【教材分析】教学目标知识技能1.进一步认识三角形的三边关系,三角形的稳定性,与三角形有关的线段;2.能熟练的运用三角形三边关系解决有关问题;3.能熟练地画出三角形的高、中线、角平分线,并能解决有关题目过程方法经历对与三角形有关的边、线段的复习,培养梳理知识的能力,学会类比、对比、整体认识,提高观察、分析、解决问题的能力.情感态度通过对两节内容的回顾与思考,让学生在学习的过程中获得成功的体验,发展学生应用数学的意识,并培养归纳、总结以及语言表达能力,增强学生学习数学的自信心.重点应用三角形的三边关系、三角形的有关线段解决有关问题.难点钝角三角形高的认识及综合应用知识解决有关问题.【教学流程】环节导学问题师生活动二次备课知识回顾1.(2016·温州)下列各组数可能是一个三角形的边长的是( )A.1,2,4B.4,5,9C.4,6,8D.5,5,112.三角形的木架不易变形的原因是 .3. 如图,在△ABC中,AD⊥BC于点D,ED=DC,∠1=∠2,则:(1)AD是△ABC的边上的高,也是△ABE的边上的高;(2)A D既是的边上的中线,又是边上的高,还是的角平分线.3题图4.锐角三角形的三条高都在,钝角三角形有条高在三角形外,直角三角形有两条高恰是它的.你能根据以上题目,回顾出本单元的知识点,完成本单元知识结构图吗?教师:出示题目,巡视了解学生完成情况,最后讲评,总结.学生:独立完成,回顾所学知识点,完成后组内交流,理解各知识点.参考答案:1.C;2.三角形的稳定性3.BC,BE;△AEC,EC,EC,△AEC.4、三角形内部,两,直角边,本单元知识结构图:综合运用例1、(2015·南通)有3cm,6cm,8cm,9cm四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()A.1B.2C.3D.4例2、三角形一边长11,另一边长为5,已知第三边长是整数,求第三边的长.教师:出示题目,引导学生分析生:尝试分析,并根据分析板演出过程,教师简要讲评.答案:例1:选C.四条线段的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9和3,8,9能组成三角形.例2:解:设第三边为X,则:11+5>X >11-516 >X >6∵X为整数∴X=15,14,13,12,11,10,9,8,7.矫正补偿1.(2016·梧州)以下列各组线段的长为边,能组成三角形的是( )A.2 cm,3 cm,4 cmB.2 cm,3 cm,5 cmC.2 cm,5 cm,10 cmD.8 cm,4 cm,4 cm2.如果一个三角形的两边长分别为2和4,则第三边的长可能是( )A.2B.4C.6D.83.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )A.2B.3C.4D.84.若等腰三角形的两边长为3cm和7cm,则等腰三角形的周长为 cm.5.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )A.AB=2BFB.∠ACE=错误!未找到引用源。
11.1 与三角形有关的线段 11.1.1 三角形的边【出示目标】1.通过观察、操作、想象、推理、交流等活动,发展空间观念、推理能力和表达能力. 2.通过具体实例,进一步认识三角形的概念及其基本要素.3.学会三角形的表示及根据“是否有边相等”对三角形进行的分类. 4.掌握三角形三条边之间的关系. 【预习导学】自学指导:阅读教材P2—4,完成下列各题. 【自学反馈】 一、三角形1.定义:由不在__同一条直线上__的三条线段首尾__顺次相接__所组成的图形叫做三角形.2.有关概念如图,线段AB ,BC ,CA 是三角形的__边__,点A ,B ,C 是三角形的__顶点__,∠A ,∠B ,∠C 是相邻两边组成的角,叫做三角形的__内角__,简称三角形的角.3.表示方法:顶点是A ,B ,C 的三角形,记作“__△ABC __”,读作“__三角形ABC __”. 二、三角形的分类1.等边三角形:三条边都__相等__的三角形.2.等腰三角形:有两边__相等__的三角形,其中相等的两条边叫做__腰__,另一边叫做__底边__,两腰的夹角叫做__顶角__,腰和底边的夹角叫做__底角__.3.不等边三角形:三条边都__不相等__的三角形. 4.三角形按边的相等关系分类三角形⎩⎪⎨⎪⎧不等边三角形等腰三角形⎩⎪⎨⎪⎧底边和腰不相等的等腰三角形等边三角形【合作探究】活动1 自主学习三角形的相关概念 (1)什么是三角形:如图,由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.(2)三角形的有关概念:①边:组成三角形的三条线段叫做三角形的三条边.②角:三角形相邻两边的夹角叫做三角形的内角,简称三角形的角. ③顶点:三角形相邻两边的公共端点叫做三角形的顶点. (3)三角形的表示:如图,以A 、B 、C 为顶点的三角形记作“△ABC ”,读作“三角形ABC ”.【教师点拨】(1)三角形的表示方法中“△”代表“三角形”,后边的字母为三角形的三个顶点,字母的顺序可以自由安排,即△ABC ,△ACB ,△BAC ,△BCA ,△CAB ,△CBA 为同一个三角形.(2)角的两边为射线,三角形的三条边为线段.(3)由于在三角形内一个角对着一条边,那么这条边就叫这个角的对边,同理,这个角也叫做这个边的对角.如图,∠A 的对边是BC (经常也用a 表示),∠B 的对边是AC (经常也用b 表示),∠C 的对边为AB (经常也用c 表示);AB 的对角为∠C ,AC 的对角为∠B ,BC 的对角为∠A .活动2 跟踪训练1.小强用三根木棒组成下列图形,其中符合三角形概念是( C )2.找一找,图中有多少个三角形,并把它们写下来.解:图中有5个三角形.分别是:△ABE 、△DEC 、△BEC 、△ABC 、△DBC . 活动3 三角形的分类三角形按角分类如下:三角形⎩⎪⎨⎪⎧锐角三角形直角三角形纯角三角形三角形按边分类如下:三角形⎩⎪⎨⎪⎧等腰三角形⎩⎪⎨⎪⎧腰和底边不相等的等腰三角形等边三角形不等边三角形【教师点拨】等边三角形是特殊的等腰三角形,即底边和腰相等的等腰三角形.活动4 三角形的三边关系(1)三角形任意两边之和大于第三边.【教师点拨】组成一个三角形必须满足任意两条线段的和大于另一条线段.(2)推论:由于a +b >c ,根据不等式的性质,得c -b <a ,即三角形两边之差小于第三边. (3)利用三角形三边关系,可以确定在已知两边的三角形中,第三边的取值范围,以及判断任意三条线段能否构成三角形.【教师点拨】三角形两边之和大于第三边指的是三角形任意两边之和大于第三边,即a +b >c ,b +c >a ,c +a >b 三个不等式同时成立.活动5 跟踪训练下列长度的三条线段能否组成三角形?(1)3,4,8( 不能 ) (2)2,5,6( 能 )_(3)5,6,10( 能 ) (4)5,6,11( 不能 ) 问题:判断三条线段能否组成三角形,是否一定要检验三条线段中任何两条的和都大于第三条?根据你刚才的解题经验,你有没有更简便的判断方法?【教师点拨】用较短的两条线段之和与最长的线段比较,若和大,能组成三角形;反之,则不能.活动6 例题解析【例1】 若三角形的两边长分别是2和7,第三边长为奇数,求第三边的长.解:设第三边的长为x ,根据两边之和大于第三边得:x <2+7即x <9.根据两边之差小于第三边得:x >7-2即x >5.所以x 的值大于5小于9,又因为它是奇数,所以x 只能取7.【例2】用一根长为18厘米的细铁丝围成一个等腰三角形. (1)如果腰长是底边的2倍,那么各边的长是多少? (2)能围成有一边的长为4厘米的等腰三角形吗? 解:(1)设底边长为x 厘米,则腰长为2x 厘米.则 x +2x +2x =18.解得x =3.6.∴三边长分别为3.6厘米,7.2厘米,7.2厘米; (2)①当4厘米长为底边,设腰长为x 厘米, 则4+2x =18.解得x =7.∴等腰三角形的三边长为7厘米、7厘米、4厘米; ②当4厘米长为腰长,设底边长为x 厘米,可得 4×2+x =18.解得x =10. ∵4+4<10,∴此时不能构成三角形.综上可得,可围成等腰三角形,且三边长分别为7厘米、7厘米和4厘米. 活动7 跟踪训练1.现有两根木棒,它们的长度分别为20cm 和30cm ,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取(B)A.10cm的木棒B.20cm的木棒C.50cm的木棒D.60cm的木棒2.已知等腰三角形的两边长分别为3和6,则它的周长为(C)A.9B.12C.15D.12或153.已知三角形的三边长为连续整数,且周长为12cm,则它的最短边长为(B)A.2cm B.3cm C.4cm D.5cm4.若五条线段的长分别是1cm,2cm,3cm,4cm,5cm,则以其中三条线段为边可构成__3__个三角形.5.若等腰三角形的两边长分别为3和7,则它的周长为__17__;若等腰三角形的两边长分别是3和4,则它的周长为__10或11__.活动8课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.2三角形的高、中线与角平分线【出示目标】1.三角形的高、中线与角平分线的概念.2.三角形的高、中线与角平分线的画法.【预习导学】自学指导:阅读教材P4—5,回答下列问题:【合作探究】1.从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做__三角形的高__.2.在三角形中,连接一个顶点与它对边中点的线段,叫做这个__三角形的中线__.3.在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫__三角形的角平分线__.【自学反馈】1.三角形的高从△ABC的顶点A向它所对的边BC所在直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的__高__.如图1,AD是△ABC的高,则AD⊥__BC__.图1图2图32.连接△ABC的顶点A和它所对的边BC的中点D,所得线段AD叫做△ABC的边BC 上的__中线__.如图2,AD是△ABC的中线,则BD=__CD__.3.∠BAC的平分线AD,交∠BAC的对边BC于点D,所得线段AD叫做△ABC的__角平分线__.如图3,AD是△ABC的角平分线,则∠BAD=__∠CAD__.4.三角形的角平分线与角的平分线有什么区别?高与垂线呢?解:三角形的角平分线是线段,角的平分线是射线;高是线段,垂线是直线.5.一个三角形有几条高?几条中线?几条角平分线?解:一个三角形有3条高,3条中线,3条角平分线.【合作探究】活动1三角形的高用工具准确画出三角形的高.三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.如图,线段AD是BC边上的高.注意:画三角形的高时要标明垂直的记号和垂足的字母.【教师点拨】回忆并演示“过一点画已知直线的垂线”画法.分别在锐角三角形、直角三角形、钝角三角形中画出所有的高,观察高与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条高线相交于__一__点;(2)锐角三角形的三条高线相交于三角形的__内部__;(3)钝角三角形的三条高线相交于三角形的__外部__;(4)直角三角形的三条高线相交于三角形的__直角顶点__;活动2三角形的中线三角形的中线:在三角形中连接一个顶点与它对边中点的线段,叫做这个三角形的中线.如图,AD是△ABC中BC边上的中线.分别在锐角三角形、直角三角形、钝角三角形中画出所有的中线,观察中线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条中线相交于__一__点;(2)锐角三角形的三条中线相交于三角形的__内部__;(3)钝角三角形的三条中线相交于三角形的__内部__;(4)直角三角形的三条中线相交于三角形的__内部__.活动3三角形的角平分线以前所学的“角平分线”是一条射线,“三角形的角平分线”还是射线吗?三角形的角平分线:在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫三角形的角平分线.如图,AD是△ABC的角平分线,图中∠BAD=∠CAD.【教师点拨】三角形的角平分线”是一条线段.分别在锐角三角形、直角三角形、钝角三角形中画出所有的角平分线,观察角平分线与三角形的位置关系.由作图可得出如下结论:(1)三角形的三条角平分线相交于__一__点;(2)锐角三角形的三条角平分线相交于三角形的__内部__;(3)钝角三角形的三条角平分线相交于三角形的__内部__;(4)直角三角形的三条角平分线相交于三角形的__内部__.活动4课堂小结【随堂训练】教学至此,敬请使用学案随堂训练部分11.1.3三角形的稳定性【出示目标】1.通过观察和实地操作得知三角形具有稳定性,四边形没有稳定性.2.稳定性与不稳定性在生产、生活中广泛应用.【预习导学】自学指导:阅读教材P6—7,回答下列问题.【合作探究】1.下列图形中具有稳定性的是(C)A.正方形B.长方形C.直角三角形D.平行四边形2.要使下列木架变稳定各至少需要多少根木棍?解:四、五、六边形木架分别需要一、二、三根木棍才能使其变稳定.【自学反馈】1.下列图中具有稳定性的有(C)A.1个B.2个C.3个D.4个2.下列设备中,没有利用三角形的稳定性的是(A)A.活动的四边形衣架B.起重机C.屋顶三角形钢架D.索道支架3.人站在晃动的公共汽车上,若你分开两腿站立,则需伸出一只手去抓住栏杆才能站稳,这是利用了__三角形的稳定性__.【合作探究】活动1思考盖房子时,在窗框未安装好之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?(防止窗框变形)【教师点拨】家里的门窗最怕变形.观察下面的图片,有什么共同点?(都具有三角形的形状.)活动2讨论观察上面这些图片,你发现了什么?发现这些物体都用到了三角形.【教师点拨】这说明三角形有它所独有的性质.到底是什么性质呢?下面我们通过实验来探讨三角形的特性.活动3动手操作探究三角形的稳定性1.用三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(不会)错误!,第2题图),第3题图)2.用四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?(会) 3.在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?(不会)从上面实验过程你能得出什么结论?与同学交流.解:三角形木架形状不会改变,四边形木架形状会改变,这就是说,三角形具有稳定性,四边形没有稳定性.【教师点拨】第一个三角形不变形,第二个四边形变形,当在四边形的木架上再钉一根木条,然后扭动它,不变形.通过对比得出三角形具有稳定性的结论.还有什么发现?解:还可以发现,斜钉一根木条的四边形木架的形状不会改变.原因是斜钉一根木条后,四边形变成两个三角形,由于三角形有稳定性,所以斜钉一根木条的四边形木架的形状不会改变.【教师点拨】现在你知道为什么窗框未安装好之前,要先在窗框上斜钉一根木条了吧.其实就是利用了三角形的稳定性.活动4理解三角形的稳定性只要三角形三条边的长度固定,这个三角形的形状和大小也就完全确定,三角形的这种性质叫做三角形的稳定性.这就是说,三角形的稳定性不是“拉得动、拉不动”的问题,其实质应是“三角形边长确定,其形状和大小就确定了”.活动5四边形的不稳定性的应用四边形的不稳定性是我们常常需要克服的,那么四边形的不稳定性在生活中有没有应用价值呢?如果有,你能举出实例吗?活动6跟踪训练1.下列图形中哪些具有稳定性?【教师点拨】判断一个图形是否稳定,关键是看图形中是否都是三角形.2.如图,桥梁的斜拉钢索是三角形的结构,主要是为了(C)A.节省材料,节约成本B.保持对称C.利用三角形的稳定性D.美观漂亮,第2题图),第3题图)3.如图,工人师傅砌门时,常用木条EF和EG固定门框ABCD,使其不变形,这种做法的根据是(D)A.两点之间线段最短B.矩形的对称性C.矩形的四个角都是直角D.三角形的稳定性【随堂训练】教学至此,敬请使用学案随堂训练部分。
11.1与三角形有关的线段(第二课时)一、内容和内容解析1.内容三角形的高、中线与角平分线,三角形的稳定性2.内容解析三角形的高、中线与角平分线是三角形内部的三条重要线段,也是“图形与几何”必备的知识基础。
既是对前面学过的线段的中点、垂线及角平分线等知识的内化,又为后面学习全等三角形及相似三角形等知识奠定了基础。
理解三角形的高、中线与角平分线的概念到用几何语言精确表述,这是学生在几何学习上的一个深入.基于以上分析,确定本节课的教学重点:理解三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线。
二、目标和目标解析1.目标(1)理解三角形的高、中线与角平分线的概念,了解三角形的稳定性。
(2)会用工具准确画出三角形的高、中线与角平分线。
2.目标解析达成目标(1)的标志是:学生通过画图操作理解三角形的高、中线与角平分线的概念,并能用几何语言表述;通过教具展示感受三角形的稳定性。
达成目标(2)的标志是:能在具体的图形中利用工具作出三角形的高线、中线、角平分线。
三、教学问题诊断分析画钝角三角形的高时,有两个垂足落在边的延长线上,对于图形的这种特点学生不太适应,教学时可结合过线段外一点画已知线段的垂线(垂足在线段的延长线上)的知识帮助学生理解。
基于以上分析,确定本节课的教学难点是:画钝角三角形的高。
四、教学过程设计1.质疑展示,操作验证问题1.通过画三角形的中线,你有什么发现?师生活动:学生回答,三角形有三条中线。
追问1.教材中以三角形一条边上的中线为例介绍了三角形的中线,结合作图你能用语言描述三角形中线的定义吗?师生活动:学生通过讨论概括三角形中线的定义,教师加以完善。
设计意图:让学生通过亲自作图,先从形象上认识三角形中线的定义,然后用语言归纳出中线定义,这样做,不仅容易理解定义,同时也培养了他们的语言表达能力。
追问2.除此之外你还有什么发现?师生活动:学生回答,三角形三条中线交于一点追问3.在作图过程中三角形的三条中线都交于一点吗?师生活动:学生交流,提出质疑,教师提供技术帮助,学生亲自操作验证。
教材分析一、情景导入三角形是一种最常见的几何图形, [投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。
那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
注意:三条线段必须①不在一条直线上,②首尾顺次相接。
组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。
三角形ABC 用符号表示为△ABC 。
三角形ABC 的顶点C 所对的边AB 可用c 表示,顶点B 所对的边AC 可用b 表示,顶点A 所对的边BC 可用a 表示.三、三角形三边的不等关系探究:[投影7]任意画一个△ABC,假设有一只小虫要从B 点出发,沿三角形的边爬到C,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从B→C ,(2)从B→A→C ;不一样, AB+A C >BC ①;因为两点之间线段最短。
同样地有 AC+BC >AB ②AB+BC >AC ③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。
按角分类:三角形 直角三角形 斜三角形 锐角三角形 钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。
三边都相等的三角形叫做等边三角形; 有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。
⎧⎨⎩⎧⎨⎩ ab c (1)CBA 腰 腰 底边顶角 底角 底角。
八年级数学上册11.1与三角形有关的线段学案(新版)新人教版11、1 与三角形有关的线段一、学习目标1、了解三角形的性质;学会按边划分三角形。
2、应用已掌握的三角形知识解决生活中的实际问题。
3、培养学生热爱数学,热爱生活的情感。
二、学习重难点三角形的性质和分类及应用三、学习过程第一课时三角形的边(一)构建新知1、阅读教材2~4页(1)三角形由_____条线段_____相连组成的几何图形。
(2)长度分别是1、2,3,4,5,6的6根木条能组成_____个不同的三角形。
(3)一根6米长的铁丝围成的三角形,若每边均为整数值,可以围城的三角形有_____________________;若是9米的铁丝呢?(二)合作学习1、已知△ABC的周长为21cm,边AB=xcm,边BC比AB的2倍长3cm。
(1)用含x的代数式表示AC的长。
(2)求x的取值范围。
(3)x求何值时是等腰三角形。
(三)课堂检查1、若一个三角形三边长分别为2,3,x,则x的值可以为____(只需填一个整数)。
2、设a,b,c为三角形的三边长度,则|a+b-c|+|a-b-c|=________。
3、若等腰三角形的两条边长分别为23cm和10cm,那么第三边的长为 ____cm。
4、用7根火柴棒首尾顺次连接摆成一个三角形,能摆成的三角形有()。
A、三边不等的三角形B、只两边相等的三角形C、三边相等的三角形D、不等边三角形和等腰三角形5、如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整、若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值为()。
A、5B、6C、7D、106、已知△ABC的两边长(3-x),第三边长为2x,若△ABC的边长均为整数,试判断此三角形的形状。
(四)学习评价(五)课后练习1、学习指要1~2页2、教材8~9页1题,2题,6题,7题第二课时三角形的高、中线与角平分线(一)构建新知1、阅读教材4~5页(1)如图,在△ABC中,作BC边上的高AD和中线AE;并作∠A的角平分线AF。
11.1与三角形有关的线段复习
【学习目标】
1.进一步认识三角形的三边关系,三角形的稳定性,与三角形有关的线段;
2.能熟练的运用三角形三边关系解决有关问题;
3.能熟练地画出三角形的高、中线、角平分线,并能解决有关题目
【重点难点】
重点:应用三角形的三边关系、三角形的有关线段解决有关问题;
难点:钝角三角形高的认识及综合应用知识解决有关问题.
【学习过程】
一、知识回顾:
1.(2016·温州)下列各组数可能是一个三角形的边长的是( )
A.1,2,4
B.4,5,9
C.4,6,8
D.5,5,11
2.三角形的木架不易变形的原因是 .
3. 如图,在△ABC中,AD⊥BC于点D,ED=DC,∠1=∠2,则:
○1AD是△ABC的边上的高,也是△ABE的边上的高;
○2AD既是的边上的中线,又是边上的高,还是的角平分线.
3题图
4.锐角三角形的三条高都在,
钝角三角形有条高在三角形外,直角三角形有两条高恰是它的 .钝角三角形的三条高在 .
你能根据以上题目,回顾出本单元的知识点,完成本单元知识结构图吗?
二、综合探究:
例1、(2015·南通)有3cm,6cm,8cm,9cm四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()
A.1
B.2
C.3
D.4
例2、三角形一边长11,另一边长为5,已知第三边长是整数,求第三边的长.
三、尝试应用
1.(2016·梧州)以下列各组线段的长为边,能组成三角形的是( )
A.2 cm,3 cm,4 cm
B.2 cm,3 cm,5 cm
C.2 cm,5 cm,10 cm
D.8 cm,4 cm,4 cm
2.如果一个三角形的两边长分别为2和4,则第三边的长可能是( )
A.2
B.4
C.6
D.8
3.如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是( )
A.2
B.3
C.4
D.8
4.若等腰三角形的两边长为3cm和7cm,则等腰三角形的周长为 cm.
5.如图,CD,CE,CF分别是△ABC的高、角平分线、中线,则下列各式中错误的是( )
A.AB=2BF
B.∠ACE=∠ACB
C.AE=BE
D.CD⊥BE
6.把三角形的面积分为相等的两部分的是( )
A.三角形的角平分线
B.三角形的中线
C.三角形的高
D.以上都不对
7.(2016·茂名)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的哪个性质?答: (填“稳定性”或“不稳定性”)
四、补偿提高
8.如图,在△ABC中,∠ACB=90°,CD⊥AD,垂足为点D,下列说法中正确的个数为()
①点A与点B的距离是线段AB的长;
②点A到直线CD的距离是线段AD的长;
③线段CD是△ABC边AB上的高;
④线段CD是△BCD边BD上的高.
A.1个
B.2个
C.3个
D.4个
【学后反思】
参考答案:
知识回顾:
1.C;
2.三角形的稳定性
3.BC,BE;△AEC,EC,EC,△AEC.
4、三角形内部,一,直角边,三角形的外部.
综合探究:
例1:选C.四条线段的所有组合:3,6,8和3,6,9和6,8,9和3,8,9;只有3,6,8和6,8,9和3,8,9能组成三角形.
例2:解:设第三边为X,则:11+5>X >11-5
16 >X >6
∵X为整数
∴X=15,14,13,12,11,10,9,8,7.
尝试应用:
1. A;
2. B;
3. C;
4.17;
5. C;
6. B;
7. 稳定性;
补偿提高
【解析】选D.①根据两点间的距离的定义得出:点A与点B的距离是线段AB的长,∴①正确;②点A到直线
CD的距离是线段AD的长,∴②正确;③根据三角形的高的定义,△ABC边AB上的高是线段CD,∴③正确;④
根据三角形的高的定义,△BCD边BD上的高是线段CD,∴④正确.综上所述,正确的是①②③④共4个.。