2020—2021学年人教A版高中数学必修四课件:第二章阶段复习课平面向量
- 格式:ppt
- 大小:8.14 MB
- 文档页数:81
高中数学教案学案平面向量的数量积及其应用学习目标: 1.理解平面向量数量积的含义及其物理意义.2.了解平面向量的数量积与向量投影的关系.3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.4.能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.会用向量方法解决某些简单的平面几何问题.6.会用向量方法解决简单的力学问题与其他一些实际问题.1.向量数量积的定义(1)向量数量积的定义:____________________________________________,其中|a |cos 〈a ,b 〉叫做向量a 在b 方向上的投影.(2)向量数量积的性质:①如果e 是单位向量,则a·e =e·a =__________________; ②非零向量a ,b ,a ⊥b ⇔________________; ③a·a =________________或|a |=________________; ④cos 〈a ,b 〉=________; ⑤|a·b |____|a||b |.2.向量数量积的运算律 (1)交换律:a·b =________; (2)分配律:(a +b )·c =________________; (3)数乘向量结合律:(λa )·b =________________. 3.向量数量积的坐标运算与度量公式(1)两个向量的数量积等于它们对应坐标乘积的和,即若a =(a 1,a 2),b =(b 1,b 2),则a·b =________________________;(2)设a =(a 1,a 2),b =(b 1,b 2),则a ⊥b ⇔________________________; (3)设向量a =(a 1,a 2),b =(b 1,b 2),则|a |=________________,cos 〈a ,b 〉=____________________________.(4)若A (x 1,y 1),B (x 2,y 2),则|AB →=________________________,所以|AB →|=_____________________.1.(2010·湖南)在Rt △ABC 中,∠C =90°,AC =4,则AB →·AC →等于 ( ) A .-16 B .-8 C .8 D .16 2.(2010·重庆)已知向量a ,b 满足a·b =0,|a |=1,|b |=2,则|2a -b |= ( ) A .0 B .2 2 C .4 D .8 3.(2011·福州月考)已知a =(1,0),b =(1,1),(a +λb )⊥b ,则λ等于 ( )A .-2B .2 C.12 D .-124.平面上有三个点A (-2,y ),B (0,2y ),C (x ,y ),若A B →⊥BC →,则动点C 的轨迹方程为________________.5.(2009·天津)若等边△ABC 的边长为M 满足CM →=16CB →+23CA →,则MA →·MB →=________.考点一 向量的模及夹角问题 例1 (2011·马鞍山月考)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61. (1)求a 与b 的夹角θ;(2)求|a +b |;(3)若AB →=a ,BC →=b ,求△ABC 的面积.举一反三1 (1)已知a ,b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是 ( )A .1B .2C. 2D.22(2)已知i ,j 为互相垂直的单位向量,a =i -2j ,b =i +λj ,且a 与b 的夹角为锐角,实数λ的取值范围为________.考点二 两向量的平行与垂直问题 例2 已知a =(cos α,sin α),b =(cos β,sin β),且k a +b 的长度是a -k b 的长度的3倍(k >0).(1)求证:a +b 与a -b 垂直; (2)用k 表示a ·b ; (3)求a ·b 的最小值以及此时a 与b 的夹角θ.举一反三2 (2009·江苏)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥b .考点三 向量的数量积在三角函数中的应用例3 已知向量a =⎝⎛⎭⎫cos 32x ,sin 32x , b =⎝⎛⎭⎫cos x 2,-sin x 2,且x ∈⎣⎡⎦⎤-π3,π4. (1)求a·b 及|a +b |; (2)若f (x )=a·b -|a +b |,求f (x )的最大值和最小值.举一反三3 (2010·四川)已知△ABC 的面积S =12AB →·AC →·=3,且cos B =35,求cos C .1.一些常见的错误结论:(1)若|a |=|b |,则a =b ;(2)若a 2=b 2,则a =b ;(3)若a ∥b ,b ∥c ,则a ∥c ;(4)若a·b =0,则a =0或b =0;(5)|a·b |=|a |·|b |;(6)(a·b )c =a (b·c );(7)若a·b =a·c ,则b =c .以上结论都是错误的,应用时要注意.2.平面向量的坐标表示与向量表示的比较:(1)要证AB =CD ,可转化证明AB →2=CD →2或|AB →|=|CD →|.(2)要证两线段AB ∥CD ,只要证存在唯一实数λ≠0,使等式AB →=λCD →成立即可.(3)要证两线段AB ⊥CD ,只需证AB →·CD →=0.一、选择题(每小题5分,共25分) 1.(2010·重庆)若向量a =(3,m ),b =(2,-1),a·b =0,则实数m 的值为 ( )A .-32 B.32C .2D .62.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为 ( )A .-6B .-3C .3D .63.已知△ABC 中,AB →=a ,AC →=b ,a·b <0,S △ABC =154,|a |=3,|b |=5,则∠BAC 等于 ( )A .30°B .-150°C .150°D .30°或150° 4.(2010·湖南)若非零向量a ,b 满足|a |=|b |,(2a +b )·b =0,则a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 5.已知a =(2,3),b =(-4,7),则a 在b 上的投影为 ( )A.135B.655C.65D.136.(2010·湖南长沙一中月考)设a =(cos 2α,sin α),b =(1,2sin α-1),α∈⎝⎛⎭⎫π2,π,若a·b =25,则sin α=________. 7.(2010·广东金山中学高三第二次月考)若|a |=1,|b |=2,c =a +b ,且c ⊥a ,则向量a 与b 的夹角为________.8.已知向量m =(1,1),向量n 与向量m 夹角为3π4,且m·n =-1,则向量n =__________________.三、解答题(共38分)9.(12分)已知OA →=(2,5),OB →=(3,1),OC →=(6,3),在线段OC 上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标;若不存在,请说明理由.10.(12分)(2011·杭州调研)已知向量a =(cos(-θ),sin(-θ)),b =(cos ⎝⎛⎭⎫π2-θ,sin ⎝⎛⎭⎫π2-θ). (1)求证:a ⊥b ;(2)若存在不等于0的实数k 和t ,使x =a +(t 2+3)b ,y =-k a +t b ,满足x ⊥y ,试求此时k +t 2t 的最小值.11.(14分)(2011·济南模拟)已知a =(1,2sin x ),b =⎝⎛⎭⎫2cos ⎝⎛⎭⎫x +π6,1,函数f (x )=a·b (x ∈R ).(1)求函数f (x )的单调递减区间;(2)若f (x )=85,求cos ⎝⎛⎭⎫2x -π3的值.答案1.(1)a·b =|a ||b |cos 〈a ,b 〉 (2)①|a |cos 〈a ,e 〉 ②a·b =0 ③|a |2 a·a ④a·b|a||b |⑤≤ 2.(1)b·a(2)a·c +b·c (3)λ(a ·b ) 3.(1)a 1b 1+a 2b 2 (2)a 1b 1+a 2b 2=0 (3)a 21+a 22 a 1b 1+a 2b 2a 21+a 22b 21+b 22(4)(x 2-x 1,y 2-y 1) (x 2-x 1)2+(y 2-y 1)22.B [|2a -b |=(2a -b )2=4a 2-4a·b +b 2=8=2 2.] 3.D [由(a +λb )·b =0得a·b +λ|b |2=0,∴1+2λ=0,∴λ=-12.]4.y 2=8x (x ≠0)解析 由题意得AB →=⎝⎛⎭⎫2,-y 2, BC →=⎝⎛⎭⎫x ,y 2,又AB →⊥BC →,∴AB →·BC →=0, 即⎝⎛⎭⎫2,-y 2·⎝⎛⎭⎫x ,y 2=0,化简得y 2=8x (x ≠0). 5.-2解析 合理建立直角坐标系,因为三角形是正三角形,故设C (0,0),A (23,0),B (3,3),这样利用向量关系式,求得MA →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫32,-12,MB →=⎝⎛⎭⎫-32,52,所以MA →·MB →=-2.课堂活动区例1 解 (1)∵(2a -3b )·(2a +b )=61, ∴4|a |2-4a·b -3|b |2=61. 又|a |=4,|b |=3,∴64-4a·b -27=61, ∴a·b =-6.∴cos θ=a·b|a||b |=-64×3=-12.又0≤θ≤π,∴θ=2π3.(2)|a +b |=(a +b )2 =|a |2+2a·b +|b |2=16+2×(-6)+9=13.(3)∵AB →与BC →的夹角θ=2π3,∴∠ABC =π-2π3=π3.又|AB →|=|a |=4,|BC →|=|b |=3,∴S △ABC =12|AB →||BC →|sin ∠ABC=12×4×3×32=3 3. 举一反三1 (1)C [∵|a |=|b |=1,a·b =0,展开(a -c )·(b -c )=0⇒|c |2=c·(a +b ) =|c |·|a +b |cos θ,∴|c |=|a +b |cos θ=2cos θ, ∴|c |的最大值是 2.](2)λ<12且λ≠-2解析 ∵〈a ,b 〉∈(0,π2),∴a ·b >0且a ·b 不同向.即|i |2-2λ|j |2>0,∴λ<12.当a ·b 同向时,由a =k b (k >0)得λ=-2.∴λ<12且λ≠-2.例2 解题思路 1.非零向量a ⊥b ⇔a ·b =0⇔x 1x 2+y 1y 2=0.2.当向量a 与b 是非坐标形式时,要把a 、b 用已知的不共线的向量表示.但要注意运算技巧,有时把向量都用坐标表示,并不一定都能够简化运算,要因题而异.解 (1)由题意得,|a |=|b |=1, ∴(a +b )·(a -b )=a 2-b 2=0, ∴a +b 与a -b 垂直. (2)|k a +b |2=k 2a 2+2k a ·b +b 2=k 2+2k a ·b +1, (3|a -k b |)2=3(1+k 2)-6k a ·b . 由条件知,k 2+2k a ·b +1=3(1+k 2)-6k a ·b ,从而有,a ·b =1+k24k(k >0).(3)由(2)知a ·b =1+k 24k =14(k +1k )≥12,当k =1k时,等号成立,即k =±1.∵k >0,∴k =1.此时cos θ=a ·b |a ||b |=12,而θ∈[0,π],∴θ=π3.故a ·b 的最小值为12,此时θ=π3.举一反三2 (1)解 因为a 与b -2c 垂直, 所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β =4sin(α+β)-8cos(α+β)=0. 因此tan(α+β)=2.(2)解 由b +c =(sin β+cos β,4cos β-4sin β), 得|b +c |=(sin β+cos β)2+(4cos β-4sin β)2 =17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2.(3)证明 由tan αtan β=16得4cos αsin β=sin α4cos β,所以a ∥b .例3 解题思路 与三角函数相结合考查向量的数量积的坐标运算及其应用是高考热点题型.解答此类问题,除了要熟练掌握向量数量积的坐标运算公式,向量模、夹角的坐标运算公式外,还应掌握三角恒等变换的相关知识.解 (1)a·b =cos 32x cos x 2-sin 32x sin x2=cos 2x ,|a +b |=⎝⎛⎭⎫cos 32x +cos x 22+⎝⎛⎭⎫sin 32x -sin x 22 =2+2cos 2x =2|cos x |,∵x ∈⎣⎡⎦⎤-π3,π4,∴cos x >0, ∴|a +b |=2cos x .(2)f (x )=cos 2x -2cos x =2cos 2x -2cos x -1=2⎝⎛⎭⎫cos x -122-32. ∵x ∈⎣⎡⎦⎤-π3,π4,∴12≤cos x ≤1, ∴当cos x =12时,f (x )取得最小值-32;当cos x =1时,f (x )取得最大值-1.举一反三3 解 由题意,设△ABC 的角B 、C 的对边分别为b 、c ,则S =12bc sin A =12.AB →·AC →=bc cos A =3>0,∴A ∈⎝⎛⎭⎫0,π2,cos A =3sin A . 又sin 2A +cos 2A =1,∴sin A =1010,cos A =31010.由题意cos B =35,得sin B =45.∴cos(A +B )=cos A cos B -sin A sin B =1010.∴cos C =cos [π-(A +B )]=-1010.课后练习区 1.D [因为a·b =6-m =0,所以m =6.] 2.D [由(2a +3b )·(k a -4b )=0得2k -12=0,∴k =6.]3.C [∵S △ABC =12|a ||b |sin ∠BAC =154,∴sin ∠BAC =12.又a·b <0,∴∠BAC 为钝角.∴∠BAC =150°.] 4.C [由(2a +b )·b =0,得2a·b =-|b |2.cos 〈a ,b 〉=a·b|a||b |=-12|b |2|b |2=-12. ∵〈a ,b 〉∈[0°,180°],∴〈a ,b 〉=120°.] 5.B [因为a·b =|a|·|b |·cos 〈a ,b 〉, 所以,a 在b 上的投影为|a |·cos 〈a ,b 〉=a·b |b |=21-842+72=1365=655.] 6.35解析 ∵a·b =cos 2α+2sin 2α-sin α=25,∴1-2sin 2α+2sin 2α-sin α=25,∴sin α=35.7.120°解析 设a 与b 的夹角为θ,∵c =a +b ,c ⊥a , ∴c·a =0,即(a +b )·a =0.∴a 2+a·b =0. 又|a |=1,|b |=2,∴1+2cos θ=0.∴cos θ=-12,θ∈[0°,180°]即θ=120°.8.(-1,0)或(0,-1)解析 设n =(x ,y ),由m·n =-1, 有x +y =-1.①由m 与n 夹角为3π4,有m·n =|m|·|n |cos 3π4,∴|n |=1,则x 2+y 2=1.②由①②解得⎩⎪⎨⎪⎧ x =-1y =0或⎩⎪⎨⎪⎧x =0y =-1,∴n =(-1,0)或n =(0,-1).9.解 设存在点M ,且OM →=λOC →=(6λ,3λ) (0≤λ≤1), MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).…………………………………………(4分) ∵MA →⊥MB →,∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,………………………………………………(8分)即45λ2-48λ+11=0,解得λ=13或λ=1115.∴M 点坐标为(2,1)或⎝⎛⎭⎫225,115.故在线段OC 上存在点M ,使MA →⊥MB →,且点M 的坐标为(2,1)或(225,115).………(12分)10.(1)证明 ∵a·b =cos(-θ)·cos ⎝⎛⎭⎫π2-θ+sin ()-θ·sin ⎝⎛⎭⎫π2-θ =sin θcos θ-sin θcos θ=0.∴a ⊥b .……………………………………………………(4分) (2)解 由x ⊥y 得,x·y =0,即[a +(t 2+3)b ]·(-k a +t b )=0, ∴-k a 2+(t 3+3t )b 2+[t -k (t 2+3)]a·b =0,∴-k |a |2+(t 3+3t )|b |2=0.………………………………………………………………(6分) 又|a |2=1,|b |2=1,∴-k +t 3+3t =0,∴k =t 3+3t .…………………………………………………………(8分) ∴k +t 2t =t 3+t 2+3t t =t 2+t +3=⎝⎛⎭⎫t +122+114.……………………………………………………………………………(10分) 故当t =-12时,k +t 2t 有最小值114.………………………………………………………(12分)11.解 (1)f (x )=a·b =2cos ⎝⎛⎭⎫x +π6+2sin x =2cos x cos π6-2sin x sin π6+2sin x=3cos x +sin x =2sin ⎝⎛⎭⎫x +π3.…………………………………………………………(5分) 由π2+2k π≤x +π3≤3π2+2k π,k ∈Z , 得π6+2k π≤x ≤7π6+2k π,k ∈Z . 所以f (x )的单调递减区间是⎣⎡⎦⎤π6+2k π,7π6+2k π (k ∈Z ).……………………………………………………………(8分)(2)由(1)知f (x )=2sin ⎝⎛⎭⎫x +π3. 又因为2sin ⎝⎛⎭⎫x +π3=85, 所以sin ⎝⎛⎭⎫x +π3=45,……………………………………………………………………(11分) 即sin ⎝⎛⎭⎫x +π3=cos ⎝⎛⎭⎫π6-x =cos ⎝⎛⎭⎫x -π6=45. 所以cos ⎝⎛⎭⎫2x -π3=2cos 2⎝⎛⎭⎫x -π6-1=725.………………………………………………(14分)。
必修4 第二章 向量(一)一、选择题:1.下列各量中不是向量的是 ( )A .浮力B .风速C .位移D .密度2.下列命题正确的是( )A .向量AB 与BA 是两平行向量B .若a 、b 都是单位向量,则a =bC .若AB =DC ,则A 、B 、C 、D 四点构成平行四边形 D .两向量相等的充要条件是它们的始点、终点相同3.在△ABC 中,D 、E 、F 分别BC 、CA 、AB 的中点,点M 是△ABC 的重心,则 MC MB MA -+等于( )A .OB .MD 4C .MF 4D .ME 44.已知向量b a 与反向,下列等式中成立的是 ( )A .||||||b a b a -=-B .||||b a b a -=+C .||||||b a b a -=+D .||||||b a b a +=+5.在△ABC 中,AB =AC ,D 、E 分别是AB 、AC 的中点,则( )A .AB 与AC 共线 B .DE 与CB 共线 C .与相等D .与相等6.已知向量e 1、e 2不共线,实数x 、y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 的值等于( ) A .3 B .-3 C .0 D .2 7. 设P (3,-6),Q (-5,2),R 的纵坐标为-9,且P 、Q 、R 三点共线,则R 点的横坐标为 ( ) A .-9 B .-6 C .9 D .6 8. 已知a 3=,b 23=,a ⋅b =-3,则a 与b 的夹角是( )A .150︒B .120︒C .60︒D .30︒9.下列命题中,不正确的是( )A .a =2aB .λ(a ⋅b )=a ⋅(λb )C .(a -b )c =a ⋅c -b ⋅cD .a 与b 共线⇔a ⋅b =a b10.下列命题正确的个数是( ) ①=+0 ②0=⋅0③=-④(a ⋅b )c =a (b ⋅c )A .1B .2C .3D .411.已知P 1(2,3),P 2(-1,4),且12P P 2PP =,点P 在线段P 1P 2的延长线上,则P 点的坐标为( )A .(34,-35) B .(-34,35) C .(4,-5)D .(-4,5) 12.已知a 3=,b 4=,且(a +k b )⊥(a -k b ),则k 等于( )A .34±B .43±C .53±D .54±二、填空题13.已知点A(-1,5)和向量a ={2,3},若AB =3a ,则点B 的坐标为 . 14.若3=OA 1e ,3=OB 2e ,且P 、Q 是AB 的两个三等分点,则=OP ,=OQ . 15.若向量a =(2,-x )与b =(x, -8)共线且方向相反,则x= . 16.已知e 为一单位向量,a 与e 之间的夹角是120O ,而a 在e 方向上的投影为-2,则a = .三、解答题17.已知菱形ABCD 的边长为2,求向量AB -CB +CD 的模的长.18.设OA 、OB 不共线,P 点在AB 上.求证: OP =λOA +μOB 且λ+μ=1,λ、μ∈R .19.已知向量,,32,32212121e e e e e e 与其中+=-=不共线向量,9221e e -=,问是否存在这样的实数,,μλ使向量c b a d 与μλ+=共线20.i、j是两个不共线的向量,已知AB=3i+2j,CB=i+λj, CD=-2i+j,若A、B、D三点共线,试求实数λ的值.必修4 第二章 向量(一)必修4第三章向量(一)参考答案 一、选择题1.D 2.A 3.C 4.C 5.B 6. A 7. D 8.C 9.B 10.A 11.D 12.C 二、填空题 13.3 14.12e 2e +122e e + 15.4- 16.4三、解答题17.解析: ∵AB -CB +CD =AB +(CD -CB )=AB +BD =AD又|AD |=2 ∴|AB -CB +CD |=|AD |=218.证明: ∵P 点在AB 上,∴AP 与AB 共线.∴AP =t AB (t ∈R )∴OP =OA +AP =OA +t AB =OA +t (OB -OA )=OA (1-t )+ OB令λ=1-t ,μ=t ∴λ+μ=1∴OP =λOA +μOB 且λ+μ=1,λ、μ∈R19.解析:222,2,,.2339,k R k λμλμλμλμλμ+=⎧=-∈=-⎨-+=-⎩解之故存在只要即可.20.解析: ∵BD =CD -CB =(-2i +j )-(i +λj )=-3i +(1-λ)j∵A 、B 、D 三点共线,∴向量AB 与BD 共线,因此存在实数μ,使得AB =μBD , 即3i +2j =μ[-3i +(1-λ)j ]=-3μi +μ(1-λ)j ∵i 与j 是两不共线向量,由基本定理得:⎩⎨⎧=-=∴⎩⎨⎧=-=-312)1(33λμλμμ 故当A 、B 、D 三点共线时,λ=3.第二章平面向量(A 卷)(测试时间:120分钟 满分:150分)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .2.【2017届北京房山高三上期末】已知向量31,2BA ⎛⎫= ⎪ ⎪⎝⎭, ()0,1BC =,则向量BA 与BC 夹角的大小为( ) A.π6 B. π4 C. π3 D. 2π3【答案】C3.【2018届四川省成都市郫都区高三上期中】已知向量()11a =-,, ()12b =-,,则()2a b a +⋅=( ) A. 1- B. 0 C. 1 D. 2 【答案】C【解析】()()()21,01,11a b a +⋅=-=,故选:C. 4.已知向量,若,则实数m 的值为 ( ) A. 0 B. 2 C. D. 2或【答案】C 【解析】∵向量,且∴, ∴.选C.5.如上图,向量1e , 2e , a 的起点与终点均在正方形网格的格点上,则向量a 用基底1e , 2e 表示为( )A. 1e +2eB. 21e -2eC. -21e +2eD. 21e +2e 【答案】C6.若三点()1,2A --、()0,1B -、()5,C a 共线,则a 的值为( ) A. 4 B. 4- C. 2 D. 2- 【答案】A 【解析】()1,2A --, ()()0,1,5B C a -,三点共线ABACλ∴→=→即()()1162a λ=+,,()16{ 12a λλ==+ 16λ∴=, 4a = 故答案选A .7.【2018届全国名校大联考高三第二次联考】已知平面向量,a b 的夹角为60°,()1,3a =, 1b =,则a b +=( )A. 2B. 23C. 7D. 4 【答案】C8.已知向量a 与b 的夹角是120︒,且5a =, 4b =,则 a b ⋅=( ). A. 20 B. 10 C. 10- D. 20- 【答案】C【解析】向量a 与b 的夹角是120︒,且5a =, 4b =,则a b a b ⋅=⨯ 1cos12054102⎛⎫︒=⨯⨯-=- ⎪⎝⎭.故选:C .9.【2018届福建省福安市一中上学期高三期中】已知向量()()()3,1,0,1,,3a b c k ==-=,若(2a b -)与c 互相垂直,则k 的值为 A. 1 B. 1- C. 3 D. 3- 【答案】D 【解析】()23,3a b -=,因为(2a b -)与c 互相垂直,则()233303a b c k k -⋅=+=⇒=-,选D.10.【2018届河南省中原名校高三第三次考评】已知点()0,1A , ()1,2B , ()2,1C --, ()3,4D ,则向量AB 在CD 方向上的投影为( )A.322 B. 2 C. 322- D. 3152- 【答案】B【解析】()()1,1.5,5AB CD ==则向量AB 在CD 方向上的投影为10cos ,252AB CD AB AB CD AB AB CD⋅=⋅== 故选B.11.【2018届黑龙江省齐齐哈尔地区八校高三期中联考】在矩形ABCD 中, 3AB =, 3BC =,2BE EC =,点F 在边CD 上,若•3AB AF =,则•AE BF 的值为( )A. 0B. 833C. 4-D. 4 【答案】C【解析】12.【2018届河南省漯河市高级中学高三上期中】已知ABC ∆是边长为4的等边三角形, P 为平面ABC 内一点,则()PA PB PC ⋅+的最小值为 ( ) A. 3- B. 6- C. 2- D. 83- 【答案】B【解析】如图建立坐标系, (()()0,23,2,0,2,0A B C -,设(),P x y ,则()()(),23,2,,2,PA x y PB x y PC x y =--=---=--,()()()22,232,22243PA PB PC x y x y x y ∴⋅+=-⋅--=+-()222366x y ⎡⎤=+--≥-⎢⎥⎣⎦, ∴最小值为6-,故选B.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设a 与b 是两个不共线向量,且向量a b λ+与2a b -共线,则λ=__________. 【答案】12-【解析】由题意得()11:2:12λλ=-∴=-. 14.【2018届河北省邢台市高三上学期第二次月考】已知单位向量a , b 满足()1•232a a b -=,则向量a 与b 的夹角为__________. 【答案】60°(或3π) 【解析】因为()1232a a b ⋅-=,化简得: 2123232a a b a b -⋅=-⋅=,即12a b ⋅=,所以1cos ,2a b a b a b⋅==⋅,又0,a b π≤≤,所以,3a b π=,故填3π. 15.【2018届福建省三明市第一中学高三上学期期中】在平行四边形ABCD 中, AC 与BD 交于点 O ,E 是线段OD 的中点, AE 的延长线与CD 交于点F . 若AC a =, BD b =,则AF 等于_______【答案】2133a b +【解析】∵AC a =, BD b =,∴11112222AD AC BD a b =+=+. ∵E 是OD 的中点,∴=,∴DF =AB .∴111111332266DF AB AC BD a b ⎛⎫==-=- ⎪⎝⎭, ∴111121226633AF AD DF a b a b a b =+=++-=+. 16.已知正方形ABCD 的边长为1,点E 在线段AB 边上运动(包含线段端点),则DE CB ⋅的值为__________; DE DB ⋅的取值范围为__________. 【答案】 1 []1,2【解析】如图,以D 为坐标原点,以DC , DA 分别为x , y 轴,建立平面直角坐标系, ()0,0D , ()0,1DE x , ()1,1B , ()0,1CB ,()1,0C , ()1,1DB , ()0,1E x , []00,1x ∈,∴1DE CB ⋅=, 01DE DB x ⋅=+,∵001x ≤≤,0112x ≤+≤,∴DE DB ⋅的取值范围为[]1,2,故答案为1, []1,2.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题10分)已知四点A (-3,1),B (-1,-2),C (2,0),D (23,4m m +) (1)求证: AB BC ⊥;【答案】(1)见解析(2) 12-或1 【解析】试题分析:(1)分别根据向量的坐标运算得出AB BC ,算出AB BC ⋅(2)由向量的平行进行坐标运算即可. 试题解析:(1)依题意得, ()()2,3,3,2AB BC =-= 所以()23320AB BC ⋅=⨯+-⨯= 所以AB BC ⊥.18.(本小题12分)已知向量()1,2a =,()3,4b =-. (1)求a b +与a b -的夹角; (2)若()a ab λ⊥+,求实数λ的值. 【答案】(1)34π;(2)1-. 【解析】(1)因为()1,2a =,()3,4b =-,所以()2,6a b +=-,()4,2a b -=- 所以2,64,22cos ,240204020a b a b -⋅-+-===-⨯⨯,由[],0,a b a b π+-∈,则3,4a b a b π+-=; (2)当()a ab λ⊥+时,()0a a b λ⋅+=,又()13,24a b λλλ+=-+,所以13480λλ-++=,解λ=-.得:119.(本小题12分)已知是夹角为的两个单位向量,,.(1)求;(2)求与的夹角.【答案】(1) ;(2) 与的夹角为.【解析】试题分析:(1)向量点积的运算规律可得到再展开根据向量点积公式得最终结果;(2)同第一问,由向量点积公式展开=0.∵是夹角为的两个单位向量,∴,(1)(2) ,,∴,∴与的夹角为.20.(本小题12分)如图,在平行四边形中,,是上一点,且. (1)求实数的值;(2)记,,试用表示向量,,.【答案】(1);(2),,.【解析】试题分析:(1)根据平面向量共线定理得到,由系数和等于1,得到即。
课时作业18 平面向量基本定理——基础巩固类——一、选择题1.已知向量a 与b 的夹角为π3,则向量2a 与-3b 的夹角为( C ) A.π6 B.π3 C.2π3D.5π6解析:∵a 与2a 同向,b 与-3b 反向,∴向量2a 与-3b 的夹角和a 与b 的夹角互补,∴向量2a 与-3b 的夹角为2π3.2.在△ABC 中,已知D 为AC 上一点,若AD →=2DC →,则BD →=( D )A .-13BC →-23BA →B.13BC →+23BA →C .-23BC →-13BA → D.23BC →+13BA →解析:如图,BD →=BA →+A D →=BA →+23AC →=BA →+23(BC →-BA →)=23BC →+13BA →,故选D.3.已知e 1,e 2是平面α内两个不共线的向量,下列说法中正确的个数为( B )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内的任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个;③若平面向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0.A .1B .2C .3D .4解析:根据平面向量基本定理,易知①④正确,②③错误.故选B.4.e 1,e 2为基底向量,已知向量AB→=e 1-k e 2(k ∈R ),CB →=2e 1-e 2,CD→=3e 1-3e 2,若A 、B 、D 三点共线,则k 的值是( A ) A .2 B .-3 C .-2D .3 解析:若A 、B 、D 三点共线,则AB →∥BD →, 设AB→=tBD →(t ∈R ), 由于BD→=BC →+CD →=e 2-2e 1+3e 1-3e 2=e 1-2e 2, 所以e 1-k e 2=t (e 1-2e 2),又e 1,e 2不共线,所以t =1,2t =k ,所以k =2,故选A. 5.已知非零向量OA →,OB →不共线,且2OP →=xOA →+yOB →,若P A →=λAB→(λ∈R ),则x ,y 满足的关系是( A ) A .x +y -2=0 B .2x +y -1=0 C .x +2y -2=0D .2x +y -2=0解析:由P A →=λAB →,得OA →-OP →=λ(OB →-OA →),即OP →=(1+λ)·OA→-λOB →.又2OP →=xOA →+yOB →,∴⎩⎪⎨⎪⎧x =2+2λ,y =-2λ,消去λ得x +y =2. 6.已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点),则AP→=( A ) A .λ(AB→+AD →),λ∈(0,1)B .λ(AB →+BC →),λ∈(0,22) C .λ(AB→-AD →),λ∈(0,1) D .λ(AB →-BC →),λ∈(0,22) 解析:如图所示,AC→=AB →+AD →,又点P 在AC 上,∴AP →与AC →同向,且|AP→|<|AC →|,故AP →=λ(AB →+AD →),λ∈(0,1). 二、填空题7.设一直线上三点A ,B ,P 满足AP →=λPB →(λ≠±1),O 为平面内任意一点,则OP →用OA →,OB →表示为OP →=OA →+λOB →1+λ.解析:∵OP →=OA →+λPB →=OA →+λ(OB →-OP →)=OA →+λOB →-λOP →,∴(1+λ)OP→=OA →+λOB →, ∴OP →=OA →+λOB →1+λ. 8.已知向量a ,b 为平面内所有向量的一组基底,且AB→=a +2b ,BC→=-5a +6b ,CD →=7a -2b ,则A ,B ,C ,D 四点中一定共线的三点是A ,B ,D .解析:BD →=BC →+CD →=(-5a +6b )+(7a -2b )=2a +4b =2(a +2b )=2AB→,所以A ,B ,D 三点共线. 9.在△ABC 中,AB→=a ,BC →=b ,AD 为边BC 的中线,G 为△ABC 的重心,则用a ,b 表示向量AG →=23a +13b .解析:依题意得,AG →=23AD →=23×12(AB →+AC →)=13AB →+13(BC →+AB →)=23AB →+13BC →=23a +13b .三、解答题10.设M ,N ,P 是△ABC 三边上的点,它们使BM →=13BC →,CN →=13CA →,AP →=13AB →,若AB →=c ,AC →=b ,试用c ,b 作基底,将MN →,NP →,PM→表示出来.解:如图,MN →=CN →-CM → =-13AC →-23CB →=-13AC →-23(AB →-AC →) =13AC →-23AB → =13b -23c .NP →=AP →-AN →=13AB →-23AC →=13c -23b . PM →=-MP →=-(MN →+NP →)=23c -13b -13c +23b =13c +13b .11.如图,已知M 为△ABC 的边BC 上一点,且满足AM →=34AB →+14AC →,求△ABM 与△ABC 的面积之比.解:∵AM →=34AB →+14AC →,∴AM →=34(MB →-MA →)+14(MC →-MA →), ∴34MB →+14MC →=0,∴MC →=3BM →, ∴S △ABM S △ABC =|BM→||BC →|=14. ——能力提升类——12.已知A ,B ,C 是平面上不共线的三点,O 是△ABC 的重心,动点P 满足OP →=13(12OA →+12OB →+2OC→),则点P 一定为( B ) A .AB 边中线的中点B .AB 边中线的三等分点(非重心)C .△ABC 的重心D .AB 边的中点解析:∵O 是△ABC 的重心,∴OA →+OB →+OC →=0,∴OP →=13(-12OC →+2OC →)=12OC →,∴点P 是线段OC 的中点,即AB 边中线的三等分点(非重心).故选B.13.已知平行四边形ABCD 中,E 为CD 的中点,AP →=yAD →,AQ →=xAB →,其中x ,y ∈R ,且均不为0.若PQ →∥BE →,则x y =12.解析:∵PQ →=AQ →-AP →=xAB →-yAD →,由PQ →∥BE →,可设PQ →=λBE →,即xAB →-yAD →=λ(CE →-CB →)=λ(-12AB →+AD →)=-λ2AB →+λAD →,∴⎩⎨⎧x =-12λ,y =-λ,则x y =12.14.已知非零向量a ,b ,c 满足a +b +c =0,向量a ,b 的夹角为120°,且|b |=2|a |,则向量b 与c 的夹角为150°.解析:由题意画出图形如图,因为a ,b 的夹角为120°,所以∠CAB =60°,又|b |=2|a |,所以∠ACB =90°,所以∠ABC =30°,即b 与c 的夹角为150°.15.如图所示,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,AD 与EF 相交于点G ,已知CD =2DB ,AF =4FB ,AG =mAD ,AE =tAC .(1)试用AB→,AC →表示AD →; (2)若m =12,求t 的值.解:(1)因为BD →=13BC →=13(AC →-AB →)=13AC →-13AB →,所以AD →=AB →+ BD →=AB →+⎝⎛⎭⎪⎫13AC →-13AB →=23AB →+13AC →.(2)依题意知,AF →=45AB →,AE →=tAC →, AG →=12AD →=13AB →+16AC →, 所以FG →=AG →-AF →=16AC →-715AB →, FE →=AE →-AF →=tAC →-45AB →. 因为E ,F ,G 三点共线, 所以FG→=λFE →, 所以16=tλ,-715=-45λ, 解得t =27.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
第二章第一节平面向量的实际背景及基本概念1.丰富多彩的背景,引人入胜的内容.教材首先从力、位移等量讲清向量的实际背景以及研究向量的必要性,接着介绍了平面向量的有关知识.学生将了解向量丰富的实际背景,理解平面向量及其运算的意义,能用向量语言与方法表述和解决数学、物理中的一些问题,发展运算能力和解决实际问题的能力.平面向量基本定理是平面向量正交分解及坐标表示的基础,从学生熟知的功的概念出发,引出了平面向量数量积的概念及其几何意义,接着介绍了向量数量积的性质、运算律及坐标表示.向量数量积把向量的长度和三角函数联系了起来,这样为解决有关的几何问题提供了方便,特别能有效地解决线段的垂直问题.最后介绍了平面向量的应用.2.教学的最佳契机,全新的思维视角.向量具有几何形式和代数形式的“双重身份”,这一概念是由物理学和工程技术抽象出来的.反过来,向量的理论和方法,又成为解决物理学和工程技术的重要工具,向量之所以有用,关键是它具有一套良好的运算性质,通过向量可把空间图形的性质转化为向量的运算,这样通过向量就能较容易地研究空间的直线和平面的各种有关问题.这一章的内容虽然概念多,但大都有其物理上的来源,虽然抽象,却与图形有着密切的联系,向量应用的优越性也是非常明显的.全新的思维视角,恰当的教与学,使得向量不仅生动有趣,而且是培养学生创新精神与能力的极佳契机.3.本章充分体现出新教材特点.以学生已有的物理知识和几何内容为背景,直观介绍向量的内容,注重向量运算与数的运算的对比,特别注意知识的发生过程.对概念、法则、公式、定理等的处理主要通过观察、比较、分析、综合、抽象、概括得出结论.这一章中的一些例题,教科书不是先给出解法,而是先进行分析,探索出解题思路,再给出解法.解题后有的还总结出解决该题时运用的数学思想和数学方法,有的还让学生进一步考虑相关的问题.对知识的处理,都尽量设计成让学生自己观察、比较、猜想、分析、归纳、类比、想象、抽象、概括的形式,从而培养学生的思维能力.向量的坐标实际上是把点与数联系起来,进而可把曲线与方程联系起来,这样就可用代数方程研究几何问题,同时也可以用几何的观点处理某些代数问题.4作者:赵勇,永安三中教师,本教学设计获福建省教学设计大赛三等奖整体设计教学理念新的课程标准要求我们创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、合作交流和创新等过程,获得知识、能力、情感的全面发展.本节课将充分体现以“学生为本”的教学观念,实现课程理念、教学方式和学生学习方式的转变.教学目标1.通过力的分析等实例,了解向量的实际背景;理解向量的概念.2.理解向量的几何表示;掌握零向量、单位向量、平行向量等概念;3.理解相等向量和共线向量等概念,并会辨认图形中的相等向量或作出与某一已知向量的相等向量.教学重点、难点1.通过学生自主探究,并在教师的引导下,使学生理解向量的概念、相等向量的概念、向量的几何表示等是本节课的重点.2.难点是学生对向量的概念和共线向量的概念的理解.学情和教材分析《向量》是高中数学新教材必修四第二章第1节.向量是近代数学中重要和基本的概念之一,有深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移)、相似、垂直、勾股定理就可转化为向量的加(减)法、数乘向量、数量积运算,从而把图形的基本性质转化为向量的运算体系.向量是沟通代数、几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.所以,向量是高考必考的重点内容,又因为其抽象性,它还是学生在学习中的一个难学内容.本节内容是向量一章的第一节课,因此,是十分关键、重要的一节课.教学准备多媒体课件教学过程导入新课位置是几何学研究的重要内容之一,几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.如图1,如何由点A确定点B的位置?图1一种常用的方法是,以A为参照点,用B点A点之间的方位和距离确定B点的位置.如,B点在A点东偏南45°,30千米处.这样,在A点与B点之间,我们可以用有向线段AB表示B点相对于A点的位置.有向线段AB就是A点与B点之间的位移.位移简明地表示了位置之间的相对关系.像位移这种既有大小又有方向的量,加以抽象,就是我们本章要研究的向量.推进新课新知探究本章引言中,我们知道,位移是既有大小,又有方向的量,你还能举出一些这样的量吗?图2请大家阅读课本2.1.1向量的物理背景与概念;2.1.2向量的几何表示.并回答下面问题: (1)什么是向量?向量和数量有何不同? (2)向量如何表示?(3)什么是零向量和单位向量? (4)什么是平行向量?待学生阅读完后,老师总结并展示课件: 1.什么是向量?向量和数量有何不同?(数量:只有大小,没有方向的量) 在质量、重力、速度、加速度、身高、面积、体积这些量中,哪些是数量?哪些是向量? 数量有:质量、身高、面积、体积 向量有:重力、速度、加速度提问:角度,海拔,温度是向量吗? 2.向量如何表示?(1)几何表示——向量常用有向线段表示:有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.图3 注:以A 为起点,B 为终点的有向线段记为AB →,线段AB 的长度记作|AB →|(读为模); (2)也可以表示为a ,b ,c ,…,大小记作:|a|、|b|、|c |、…说明一:我们所说的向量,与起点无关,用有向线段表示向量时,起点可以取任意位置.所以数学中的向量也叫自由向量.如图4:它们都表示同一个向量.图4练习:向量AB →和BA →是同一个向量吗?为什么? 不是,方向不同.探究:向量就是有向线段吗?有向线段就是向量吗? 说明二:有向线段与向量的区别: 有向线段:有固定起点、大小、方向.向量:可选任意点作为向量的起点、有大小、有方向.图5有向线段AB →、CD →是不同的.图6向量AB →、CD →是同一个向量. 3.什么是零向量和单位向量?零向量:长度为0的向量,记为0; 单位向量:长度为1的向量.注:零向量,单位向量都是只限制大小,不确定方向的. 向量之间的关系: 4.什么是平行向量?方向相同或相反的非零向量叫平行向量. 注:1.若是两个平行向量,则记为a ∥b .2.我们规定,零向量与任一向量平行,即对任意向量a ,都有0∥a . 练习:判断下列各组向量是否平行?图7向量的平行与线段的平行有什么区别? 练习:已知下列命题:(1)向量AB →和向量BA →长度相等;(2)方向不同的两个向量一定不平行;(3)向量就是有向线段;(4)向量0=0;(5)向量AB →大于向量CD →.其中正确命题的个数是( )A .0B .1C .2D .3 答案:B例1试根据图8中的比例尺以及三地的位置,在图中分别用向量表示A 地至B 、C 两地的位移,并求出A 地至B 、C 两地的实际距离(精确到1 km).图8请同学们阅读课本2.1.3相等向量与共线向量,并回答问题:什么是相等向量和共线向量?待学生回答后,老师总结并展示课件: 5.什么是相等向量和共线向量?长度相等且方向相同的向量叫相等向量.a =b =c A 1B 1→=A 2B 2→=A 3B 3→=A 4B 4→图9注:1.若向量a ,b 相等,则记为a =b ;2.任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.平行向量也叫共线向量.注:任一组平行向量都可以平移到同一直线上. 练习:判断下列命题是否正确:(1)两个向量相等,则它们的起点相同,终点相同;(2)若|a|=|b |,则a =b ;(3)若AB →=DC →,则四边形ABCD 是平行四边形;(4)平行四边形ABCD 中,一定有AB →=DC →;(5)若m =n ,n =k ,则m =k ;(6)若a ∥b ,b ∥c ,则a ∥c .其中不正确命题的个数是( )A .2B .3C .4D .5 答案:C练习:下列说法正确的是( ) A .若|a|>|b|,则a>b B .若|a |=0,则a =0C .若|a|=|b|,则a =b 或a =-bD .若a ∥b ,则a =bE .若a =b ,则|a|=|b |F .若a ≠b ,则a 与b 不是共线向量G .若a =0,则-a =0 答案:EG例2如图10,设O 是正六边形ABCDEF 的中心,分别写出图中与OA →、OB →、OC →相等的向量.图10解:OA →=CB →=DO →, OB →=DC →=EO →, OC →=AB →=ED →=FO →.练习:如图11,EF 是△ABC 的中位线,AD 是BC 边上的中线,在以A 、B 、C 、D 、E 、F 为端点的有向线段表示的向量中请分别写出:图11(1)与向量CD →共线的向量有________个,分别是________________________________;(2)与向量DF →的模一定相等的向量有________个,分别是______________________;(3)与向量DE →相等的向量有________个,分别是__________.答案:(1)7 DC →、DB →、BD →、FE →、EF →、CB →、BC → (2)5 FD →、EB →、BE →、EA →、AE →(3)2 CF →、FA →课堂小结 通过本节课的学习,要求大家能够理解向量的概念;掌握向量的几何表示;理解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.作业习题2.1A 组2,5设计思路1.首先先对本节课教材内容进行分析2.教材内容的安排和处理根据我所教学生的特点,我对教材进行了如下处理,先由物理中的位置关系导入新课,然后提出问题,并要求学生带着问题去阅读课本,最后由老师总结,并对概念进行概念辨析,以加大学生的思维的深度,拓宽了学生的视野,实现本节课难点的突破,整堂课充分发挥学生的主导作用.3.教法“问题是数学的灵魂,也是学好数学的必然手段”,本节课总体上以问题串的形式,设计为七问五练.着重抓四个知识点,突出学生的“主导地位”.并通过多媒体课件的演示,直观展示向量的有关内容,激发学生的兴趣.4.学法指导以问题为载体,通过提问、阅读、归纳,练习的过程,掌握思考、讨论、交流的学习方法,并体验探究和发现的乐趣.。
相等向量与共线向量【学习目标】1. 理解平行向量,相等向量,共线向量的含义,能在图形中辨认相等向量和共线向量。
2. 从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素及向量可以平移的特点.【重点、难点】重点:理解平行向量,相等向量,共线向量的含义,能在图形中辨认相等向量和共线向量。
难点:从“平行向量→相等向量→共线向量”的逐步认识,充分揭示向量的两个要素及向量可以平移的特点.自主学习案【问题导学】1.向量可以用表示向量的有向线段的起点与终点字母来表示,如图所示,向量AB:起点A,终点B。
有向线段的长度表示向量的,向量的大小也叫向量的(或);有向线段的方向表示向量的。
2.方向或的向量叫平行向量,如向量ba,平行,通常记作,规定0与任一向量。
3.任意一组平行向量都能到同一条直线上,因此,平行向量也叫共线向量。
4.长度且方向的向量叫相等向量,若向量ba,相等,记作。
【预习自测】1.下列说法不正确的是()A.方向相同或相反的非零向量是平行向量。
B. 长度相等且方向相同的向量叫做相等向量C. 有公共起点的向量叫做共线向量。
D. 零向量与任一向量共线2.已知边长为3的等边三角形ABC,求BC边上的中线向量=合作探究案【课内探究】例1.判断下列命题的真假:(1)向量AB的长度和向量BA的长度相等. (2)向量a与b平行,则b与a方向相同.(3)向量a与b平行,则b与a方向相反.(4)两个有共同起点而长度相等的向量,它们的终点必相同.(5)若a与b平行同向,且a>b,则a>b(6)由于0方向不确定,故0不能与任意向量平行。
(7)如果a=b,则a与b长度相等。
(8) 如果a =b ,则与a 与b 的方向相同。
(9) 若a =b ,则a 与b 的方向相反。
(10)若a =b ,则与a 与b 的方向没有关系。
(11)已知b a ,为两个单位向量,则b a =例2.给出下列命题:(1)若b a //,c b //则c a //。
2.3平面向量的基本定理及坐标表示2.3.1平面向量基本定理[目标] 1.了解平面向量基本定理产生的过程和基底的含义,理解平面向量基本定理. 2.理解两个向量夹角的定义,两向量垂直的定义. 3.掌握平面向量基本定理并能熟练应用.[重点] 平面向量基本定理与向量夹角.[难点] 平面向量基本定理的应用.知识点一平面向量基本定理[填一填](1)定理:如果e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2.(2)我们把不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底.[答一答]1.基底有什么特点?平面内基底唯一吗?提示:基底中的两向量e1,e2不共线,这是基底的最大特点.平面内的基底并不是唯一的,任意不共线的两个向量都可以作为基底.2.若向量a,b不共线,且c=2a-b,d=3a-2b,试判断c,d能否作为基底.提示:设存在实数λ使得c=λd,则2a-b=λ(3a-2b),即(2-3λ)a+(2λ-1)b=0.由于a,b不共线,从而2-3λ=2λ-1=0,这样的λ是不存在的,从而c,d不共线,故c,d能作为基底.知识点二向量的夹角[填一填](1)已知两个非零向量a和b,作=a,=b,则∠AOB=θ(0°≤θ≤180°)叫做向量a与b的夹角.(2)向量夹角θ的范围是0°≤θ≤180°;当a与b同向时,夹角θ=0°;当a与b反向时,夹角θ=180°.(3)如果向量a与b的夹角是90°,我们说a与b垂直,记作a⊥b.[答一答]3.零向量与向量a的夹角是多少呢?提示:向量的夹角是针对非零向量定义的,零向量与向量a 的夹角没有意义.4.等边三角形ABC中,向量与的夹角是60°吗?提示:不是,求两个向量的夹角时,两个向量的起点必须相同,所以等边三角形ABC中,向量与的夹角是120°而不是60°.类型一基底的概念[例1](1)设e1,e2是平面内所有向量的一组基底,则下列四组向量中,不能作为基底的是()A.e1+e2和e1-e2B.3e1-4e2和6e1-8e2C.e1+2e2和2e1+e2D.e1和e1+e2(2)设e1,e2是平面内一组基底,且a=e1+2e2,b=-e1+e2,则向量e1+e2可以表示为另一组基底a,b的线性组合,即e1+e2=________.[解析](1)在B中,因为6e1-8e2=2(3e1-4e2),所以(3e1-4e2)∥(6e1-8e2).所以3e1-4e2和6e1-8e2不能作为基底,其它三个选项中的两组向量都不平行,故都可以作为一组基底.(2)因为a=e1+2e2①,b=-e1+e2②,显然a与b不共线,①+②得a+b=3e2,所以e2=代入②得e1=e2-b=-b=a-b,故有e1+e2=a-b+a+b=a-b.[答案](1)B(2)a-b根据平面向量基底的定义知,此类问题可转化为判断两个向量是否共线的问题,若不共线,则它们可以作为一组基底;若共线,则它们不能作为一组基底.[变式训练1]设e1,e2是不共线的两个向量,给出下列四组向量:①e1与e1+e2;②e1-2e2与e2-2e1;③e1-2e2与4e2-2e1;④e1+e2与e1-e2.其中,不能作为平面内所有向量的一组基底的是③.解析:①中,设e1+e2=λe1,则无解.所以e1+e2与e1不共线,故e1与e1+e2可作为一组基底;同理,可得②④中的两个向量不共线,可作为一组基底;③中的两个向量共线,不可作为一组基底.类型二用基底表示向量[例2]如图所示,在△OAB中,=a,=b,M、N分别是边OA、OB上的点,且=a,=b,设与交于点P,用向量a、b表示.[分析]利用“表示方法的唯一性”确定参数,进而确定λ1,λ2.[解]∵=+,=+,设=m,=n,则=+m=a+m(b-a)=(1-m)a+m b,=+n=(1-n)b+n a.∵a与b不共线,∴∴n=.∴=a+b.将两个不共线的向量作为基底表示其他向量,基本方法有两种:一种是运用向量的线性运算法则对待求向量不断转化,直至用基底表示为止;另一种是列向量方程组,利用基底表示向量的唯一性求解.[变式训练2]如图,已知梯形ABCD中,AB∥CD,AB=2CD,E,F分别是DC,AB的中点,设=a,=b,试用a,b表示,,.解:因为DC∥AB,AB=2DC,E,F分别是DC,AB的中点,所以==a,===b.=++=--+=-×b-a+b=b-a.类型三向量的夹角问题[例3]已知|a|=|b|=2,且a与b的夹角为60°,设a+b与a 的夹角为α,a-b与a的夹角是β.求α+β.[解]如图,作=a,=b,且∠AOB=60°,以OA、OB为邻边作▱OACB,则=a+b,=-=a-b,==a.因为|a|=|b|=2,所以△OAB为正三角形,所以∠OAB=60°=∠ABC,即a-b与a的夹角β=60°.因为|a|=|b|,所以平行四边形OACB为菱形,所以OC⊥AB.所以∠COA=90°-60°=30°,即a+b与a的夹角α=30°,∴α+β=90°.求两个向量的夹角关键是利用平移的方法使两个向量起点重合,作两个向量的夹角,按照“一作二证三算”的步骤求出.[变式训练3]在等边三角形ABC中,向量与向量的夹角为120°;E为BC的中点,则向量与的夹角为90°.解析:∵△ABC为等边三角形,∴∠ABC=60°,如图,延长边AB至点D,使BD=AB,∴=,∴∠DBC为向量与的夹角,且∠DBC=120°,又E为BC的中点,∴AE⊥BC.∴与的夹角为90°.1.下列说法中,正确说法的个数是(C)①在△ABC中,,可以作为基底;②能够表示一个平面内所有向量的基底是唯一的;③零向量不能作为基底.A.0B.1 C.2D.3解析:①③正确,②错误.2.已知平行四边形ABCD中,∠DAB=60°,则向量与的夹角是(C)A.30°B.60°C.120°D.150°解析:由图知向量与的夹角为∠BCD=60°的补角120°.3.已知向量e1,e2不共线,实数x,y满足(3x-4y)e1+(2x-3y)e2=6e1+3e2,则x-y=3.解析:∵e1,e2不共线,∴,解得∴x-y=3.4.如图所示,向量,,的长度分别是2,,1.∠AOB=120°,∠AOC=150°,则=-+-.解析:不妨设=m+n,则m<0,n<0.如图,构建▱OA′C′B′,其中=-,且=+,则∠A′OC′=30°,∠B′OC′=90°,于是||tan60°=||,||·sin60°=||,所以||=,||=,从而m=-,n=-.5.在平行四边形ABCD中,M为DC的中点,N为BC的中点,设=b,=d,=m,=n.(1)以b,d为基底,表示;(2)以m,n为基底,表示.解:如图所示.(1)=-=(+)-(+)=-=b-d.(2)∵m=+=d+,①n=+=+d,②∴由①②消去d,得=n-m.——本课须掌握的两大问题1.平面向量基本定理的作用(1)平面向量基本定理是建立在向量加法和数乘运算基础上的向量分解原理,同时又是下一节学习向量坐标表示的理论依据,是一个承前启后的重要知识点.(2)根据平面向量基本定理,任何一组基底都可以表示任意向量.用基底表示向量,实质上主要是利用三角形法则或平行四边形法则,进行向量的加减法运算.要注意适当选择向量所在的三角形或平行四边形,利用已知向量表示未知向量,或找到已知向量与未知向量的关系,用方程的观点求出未知向量.2.两向量夹角的实质和求解(1)明确两向量夹角的定义,实质是从同一起点出发的两个非零向量构成的不大于平角的角,结合平面几何知识加以解决.(2)求两个向量的夹角关键是利用平移的方法使两个向量起点重合,作出两个向量的夹角,按照“一作二证三算”的步骤求出.。
第二章 平面向量2.3 平面向量的基本定理及坐标表示2.3.1 平面向量基本定理 [A 组 学业达标]1.若k 1a +k 2b =0,则k 1=k 2=0,那么下面关于向量a ,b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 垂直D .a 与b 中至少有一个为0解析:由平面向量基本定理可知,当a ,b 不共线时,k 1=k 2=0. 答案:B2.如图所示,平面内的两条相交直线OP 1和OP 2将该平面分割成四个部分Ⅰ,Ⅱ,Ⅲ,Ⅳ(不包括边界).若OP →=aOP 1→+bOP 2→,且点P 落在第Ⅲ部分,则实数a ,b 满足 ( )A .a >0,b >0B .a >0,b <0C .a <0,b >0D .a <0,b <0解析:取第Ⅲ部分内一点画图易得a >0,b <0. 答案:B3.如果e 1,e 2是平面α内两个不共线的向量,那么在下列各命题中不正确的有( )①λe 1+μe 2(λ,μ∈R )可以表示平面α内的所有向量;②对于平面α内的任一向量a ,使a =λe 1+μe 2的实数λ,μ有无数多对;③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使λ1e 1+μ1e 2=λ(λ2e 1+μ2e 2);④若实数λ,μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④D .②解析:由平面向量基本定理可知,①④是正确的;对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是唯一的;对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2 =0时,这样的λ有无数个.故选B. 答案:B4.在△ABC 中,点D 在BC 边上,且BD →=2DC →,设AB →=a ,AC →=b ,则AD →可用基底a ,b 表示为 ( )A.12(a +b ) B.23a +13b C.13a +23b D.13(a +b ) 解析:∵BD →=2DC →,∴BD →=23BC →.∴AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →=13a +23b .答案:C5.设向量m =2a -3b ,n =4a -2b ,p =3a +2b ,试用m ,n 表示p ,p =________.解析:设p =x m +y n ,则3a +2b =x (2a -3b )+y (4a -2b )=(2x +4y )a +(-3x -2y )b ,得⎩⎪⎨⎪⎧2x +4y =3,-3x -2y =2,解得⎩⎨⎧x =-74,y =138.所以p =-74m +138n .答案:-74m +138n6.已知向量e 1,e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y =________.解析:∵e 1,e 2不共线,∴⎩⎪⎨⎪⎧3x -4y =6,2x -3y =3,解得⎩⎪⎨⎪⎧x =6,y =3,∴x -y =3.答案:37.设D ,E 分别是△ABC 的边AB ,BC 上的点,AD =12AB ,BE =23BC .若DE →=λ1AB →+λ2AC →(λ1,λ2为实数),则λ1+λ2=________.解析:易知DE →=12AB →+23BC →=12AB →+23(AC →-AB →)=-16AB →+23AC →,所以λ1+λ2=12.答案:128.在梯形ABCD 中,AB ∥CD ,M ,N 分别是DA ,BC 的中点,且DC AB=k (k ≠1).设AD →=e 1,AB →=e 2,选择基底{e 1,e 2},试写出下列向量在此基底下的分解式:DC →,BC →,MN →. 解析:如图,∵AB →=e 2,且DC AB=k ,∴DC →=kAB →=k e 2.又∵AB →+BC →+CD →+DA →=0,∴BC →=-AB →-CD →-DA →=-AB →+DC →+AD →=-e 2+k e 2+e 1=e 1+(k -1)e 2. ∵MN →+NB →+BA →+AM →=0,∴MN →=-NB →-BA →-AM →=BN →+AB →-AM →=12BC →+e 2-12AD →=12[e 1+(k -1)e 2]+e 2-12e 1=k +12e 2. 9.在△ABC 中,点M 是BC 的中点,点N 在AC 上且AN →=2NC →,AM 交BN 于P 点,求AP与AM 的比值.解析:设BM →=a ,CN →=b ,则AM →=AC →+CM →=-a -3b ,BN →=2a +b . ∵A ,P ,M 和B ,P ,N 分别共线, ∴存在实数λ,μ使AP →=λAM →=-λa -3λb , BP →=μBN →=2μa +μb .∴BA →=BP →-AP →=(λ+2μ)a +(3λ+μ)b . 又∵BA →=BC →+CA →=2a +3b ,由平面向量基本定理得⎩⎪⎨⎪⎧λ+2μ=2,3λ+μ=3,解得⎩⎨⎧λ=45,μ=35,则AP →=45AM →.∴AP 与AM 的比值为45.[B 组 能力提升]10.若OP 1→=a ,OP 2→=b ,P 1P →=λPP 2→(λ≠-1),则OP →=( )A .a +λbB .λa +bC .λa +(1+λ)bD.a +λb 1+λ解析:∵P 1P →=λPP 2→,∴OP →-OP 1→=λ(OP 2→-OP →),(1+λ)OP →=λOP 2→+OP 1→,∴OP →=a +λb1+λ.答案:D11.如图,在△ABC 中,D ,E 分别为AB ,AC 的中点,CD 与BE 交于点F ,设AB →=a ,AC →=b ,AF →=m a +n b ,则m +n =( )A .1 B.43 C.23D.56解析:AF →=mAB →+nAC →=mAB →+2nAE →, 由B ,F ,E 三点共线,得m +2n =1,① AF →=mAB →+nAC →=2mAD →+nAC →, 由C ,F ,D 三点共线,得2m +n =1,② ①+②得3(m +n )=2,m +n =23.答案:C12.设G 为△ABC 的重心,O 为坐标原点,OA →=a ,OB →=b ,OC →=c ,试用a ,b ,c 表示OG →,则OG →=________.解析:OG →=OC →+CG →=OC →+13(CA →+CB →)=OC →+13(OA →-OC →+OB →-OC →)=13(a +b +c ).答案:13(a +b +c )13.在平行四边形ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________.(用e 1,e 2表示)解析:如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2.答案:-23e 1+512e 214.已知△ABC 内一点P 满足AP →=λAB →+μAC →,若△P AB 的面积与△ABC 的面积之比为1∶3,△P AC 的面积与△ABC 的面积之比为1∶4,求实数λ,μ的值.解析:如图,过点P 作PM ∥AC ,PN ∥AB ,则AP →=AM →+AN →,所以AM →=λAB →,AN →=μAC →.作PG ⊥AC 于点G ,BH ⊥AC 于点H . 因为S △P AC S △ABC =14,所以PG BH =14.又因为△PNG ∽△BAH ,所以PG BH =PN AB =14,即AM AB =14,所以λ=14,同理μ=13. 15.如图,已知三点O ,A ,B 不共线,且OC →=2OA →,OD →=3OB →,设OA →=a ,OB →=b .(1)试用a ,b 表示向量OE →;(2)设线段AB ,OE ,CD 的中点分别为L ,M ,N ,试证明:L ,M ,N 三点共线.解析:(1)∵B ,E ,C 三点共线, ∴OE →=xOC →+(1-x )OB →=2x a +(1-x )b .①同理,∵A ,E ,D 三点共线,∴OE →=y a +3(1-y )b .②比较①②,得⎩⎪⎨⎪⎧2x =y ,1-x =3(1-y ),解得x =25,y =45,∴OE →=45a +35b .(2)证明:∵OL →=a +b 2,OM →=12OE →=4a +3b 10,ON →=12(OC →+OD →)=2a +3b 2,∴MN →=ON →-OM→=6a +12b 10,ML →=OL →-OM →=a +2b10, ∴MN →=6ML →,又MN →与ML →有公共点M , ∴L ,M ,N 三点共线.。