8.2消元 --二元一次方程组的解法(加减法1)
- 格式:ppt
- 大小:191.50 KB
- 文档页数:13
8.2消元——二元一次方程组的解法(1)教学内容本节课主要学习8.2用代入法解二元一次方程组教学目标知识技能会用地用代入法解二元一次方程组,初步体会解二元一次方程组的基本思想。
数学思考通过对方程组中未知数特点的观察与分析,明确解二元一次方程组的的基本思路是“消元”,从而促进未知向已知转化,培养观察能力和体会化归思想. 解决问题 通过用代入法解二元一次方程组的训练及选用合理、简捷的方法解方程组培养运算能力。
情感态度通过研究解决问题的方法,培养学生合作交流意识与探究精神。
重难点、关键重点:用代入法解二元一次方程组。
难点:探索如何用代入法将“二元”化为“一元”。
关键:利用代入法解方程组时,灵活运用已学知识。
教学准备教师准备:制作课件,精选习题学生准备:复习有关知识,预习本节课内容教学过程一、 问题引入1. 什么叫二元一次方程组,什么叫二元一次方程组的解?由两个一次方程组成并含有两个未知数的方程组叫做二元一次方程组,二元一次方程组里各个方程的公共解叫做这个方程组的解。
2.篮球联赛中,每场比赛都要分出胜、负.每队胜1场均得2分,负1场均得1分.某队在22场比赛中共得40分,那么这个队胜、负场数分别为多少?师:上节课例“篮球联赛”题可设一个未知数(设胜x 场),可以用一元一次方程2x +(22-x)=40来解.如果设两个未知数(设胜x 场,负y 场),可以列方程组⎩⎨⎧=+=+40222y x y x那么一元一次方程与二元一次方程组有什么关系呢?【活动方略】教师出示问题,学生回答,教师引入新问题.【设计意图】通过问题情境,激发学生学习兴趣,引出解二元一次方程组的学习.二、 探索新知【分析】我们发现,二元一次方程组中第一个方程x +y =22可变形为y =22-x ,再将第二个方程2x +y =40中的y 换为(22-x),二元一次方程组就化为一元一次方程.解这个方程,得x =18,再把x =18代入y =22-x ,得y =4,从而得到这个方程组的解.【归纳】二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先求出一个未知数,然后再设法求另一个未知数.这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想,这种方法叫做代入消元法,简称代入法.【思考】如何用代入法解二元一次方程组?【分析】首先,从方程组中选取一个方程,把其中的某一个未知数用另一个未知数的代数式表示出来.例如,可将⎩⎨⎧②=+①=+.402,22y x y x 中的第一个方程变形为y =22-x ③.接下来就应该将这个代数式代入另一个方程,达到消去一个未知数的目的,得到只含有一个未知数的一元一次方程.例如,将③代入②,得到方程2x +(22-x)=40,再解这个方程,求出一个未知数x =18,最后将x =18代入第一步所得的式子,求出另外一个未知数的值.可以概括为:(课件展示.)(1)求表达式;(2)代入消元;(3)回代求解;(4)写方程组解【范例】例1 用代入法解方程组⎩⎨⎧②=-①=-.1483.3y x y x 师:选择哪个方程呢?为什么?生:我们认为选取①,因为①中未知数x 的系数为1,用含y 的代数式表示x ,比较简便,把①变为x =3+y ③.师:把③代入①可以吗?为什么?生:不可以.因为③与①是同一个方程,应将③代入②,得3(3+y)-8y =14. 师:得到这个方程后,下一步如何解?生:先解出这个方程y =-1,再把y =-1代入③,得x =2.师:能否将y =-1代入①或②?生:可以.师:如何表示方程组的解?生:把两个未知数的解写在一起,就是方程组的解,一般写成⎩⎨⎧by a x ==的形式.师:请同学们完整地解出题目.【活动方略】引导学生比较、分析,归纳二元一次方程组的解法。
8.2 消元——加减消元法解二元一次方程组(教案)一、教材分析“用加减消元法解二元一次方程组”是在学习了“用代入消元法解二元一次方程组”的基础上的进一步学习,同时又是后续学习“解三元一次方程组”的重要基础。
代入法和加减法是解二元一次方程组的两种有效途径,而且是解二元一次方程组的通法,“用加减消元法解二元一次方程组”是对“用代入消元法解二元一次方程组”的有力补充和完善,两者相辅相成,各见长处。
二、教学目标1、知识技能:掌握用加减消元法解二元一次方程组。
2、过程与方法:经历探究加减消元法解二元一次方程组的过程,领会“消元”法所体现的“化未知为已知”的化归思想方法。
3、情感态度与价值观:在探索用加减法解二元一次方程组的过程中享受成功的快乐,感受数学知识的实际用价值,养成良好的学习习惯。
三、教学重点与难点(一)教学重点:用加减法解二元一次方程组。
(二)教学难点:如何运用加减法进行消元。
四、教学方法:本节课采用“探索---发现---比较”的教学法。
五、教学辅助手段教师采用多媒体PPT演示六、教学设计过程(一)温故而知新一〃1. 根据等式性质填空:<1>若a =b ,那么a ±c = . (等式性质1)<2>若a =b ,那么ac = . (等式性质2)<3>思考:若a =b ,c =d ,那么a ±c =b ±d 吗?2.用代入法解方程的关键是什么?3、解二元一次方程组的基本思路是什么?4.请你代入消元法解下面这个方程组:⎩⎨⎧=+=+40222y x y x具体步骤是:由①得 =y . ③,把③代入①得 .从而达到消元的目的。
(即把二元一次方程变成我们较熟悉的一元一次方程)(二)提出问题,阅读课本,得出加减法的定义。
1. 解这个方程组⎩⎨⎧=+=+40222y x y x 除了用代入法,还有别的方法吗? 2. 请大家认真阅读课本99面第二个思考前的内容。