【精品】2017-2018年浙江省绍兴市柯桥区初一上学期数学期末试卷含解析答案
- 格式:doc
- 大小:299.54 KB
- 文档页数:23
绍兴市七年级数学上册期末测试卷及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22 B .70 C .182 D .206 3.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,34.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π5.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或736.下列四个数中最小的数是( )A .﹣1B .0C .2D .﹣(﹣1)7.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠48.估算15在下列哪两个整数之间( ) A .1,2B .2,3C .3,4D .4,59.如图,已知AB ∥CD,点E 、F 分别在直线AB 、CD 上,∠EPF=90°,∠BEP=∠GEP ,则∠1与∠2的数量关系为( )A .∠1=∠2B .∠1=2∠2C .∠1=3∠2D .∠1=4∠210.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==11.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( ) A .①②④ B .①②③C .②③④D .①③④12.下列各数中,比73-小的数是( ) A .3-B .2-C .0D .1-13.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<014.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.如果2|2|(1)0a b ++-=,那么()2020a b +的值是( )A .2019-B .2019C .1-D .1二、填空题16.从一个n 边形的同一个顶点出发,分别连结这个顶点与其余各顶点,若把这个多边形分割为6个三角形,则n 的值是___________.17.下面每个正方形中的五个数之间都有相同的规律,根据这种规律,则第4个正方形中间数字m 为________,第n 个正方形的中间数字为______.(用含n 的代数式表示)…………18.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 19.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.20.|-3|=_________;21.单项式22ab -的系数是________.22.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可).23.若关于x 的方程2x 3a 4+=的解为最大负整数,则a 的值为______.24.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.25.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.26.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.27.如果m ﹣n =5,那么﹣3m +3n ﹣5的值是_____.28.如果A 、B 、C 在同一直线上,线段AB =6厘米,BC =2厘米,则A 、C 两点间的距离是______.29.当12点20分时,钟表上时针和分针所成的角度是___________. 30.已知7635a ∠=︒',则a ∠的补角为______°______′.三、压轴题31.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.32.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.33.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.34.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.35.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.36.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?37.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.38.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P 到达原点O ,动点Q 到达点C ,设运动的时间为t (t >0)秒. (1)求OC 的长;(2)经过t 秒钟,P 、Q 两点之间相距5个单位长度,求t 的值;(3)若动点P 到达B 点后,以原速度立即返回,当P 点运动至原点时,动点Q 是否到达A 点,若到达,求提前到达了多少时间,若未能到达,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案. 【详解】解:A 、5+3×6+1×6×6=59(颗),故本选项错误; B 、1+3×6+2×6×6=91(颗),故本选项正确; C 、2+3×6+1×6×6=56(颗),故本选项错误; D 、1+2×6+3×6×6=121(颗),故本选项错误; 故选:B . 【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.2.D解析:D 【解析】 【分析】根据题意设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +, 根据其相邻数字之间都是奇数,进而得出x 的个位数只能是3或5或7,然后把T 字框中的数字相加把x 代入即可得出答案. 【详解】设T 字框第一行中间数为x ,则其余三数分别为2x -,2x +,10x +2x -,x ,2x +这三个数在同一行∴x 的个位数只能是3或5或7∴T 字框中四个数字之和为()()()2210410x x x x x +-++++=+A .令41022x += 解得3x =,符合要求;B .令41070x += 解得15x =,符合要求;C .令410182x +=解得43x =,符合要求;D .令410206x +=解得49x =,因为47, 49, 51不在同一行,所以不符合要求. 故选D. 【点睛】本题考查的是列代数式,规律型:数字的变化类,一元一次方程的应用,解题关键是把题意理解透彻以及找出其规律即可.3.A解析:A 【解析】 【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项. 【详解】解:单项式2r h π的系数和次数分别是π,3; 故选:A . 【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.4.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34a π=94a π, 故选:D. 【点睛】本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.5.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.6.A解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.7.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.8.C解析:C【解析】【分析】.【详解】∵9<15<16,∴,故选C.【点睛】本题考查了无理数的估算,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.9.B解析:B【解析】【分析】延长EP交CD于点M,由三角形外角的性质可得∠FMP=90°-∠2,再根据平行线的性质可得∠BEP=∠FMP,继而根据平角定义以及∠BEP=∠GEP即可求得答案.【详解】延长EP交CD于点M,∵∠EPF是△FPM的外角,∴∠2+∠FMP=∠EPF=90°,∴∠FMP=90°-∠2,∵AB//CD,∴∠BEP=∠FMP,∴∠BEP=90°-∠2,∵∠1+∠BEP+∠GEP=180°,∠BEP=∠GEP,∴∠1+90°-∠2+90°-∠2=180°,∴∠1=2∠2,故选B.【点睛】本题考查了三角形外角的性质,平行线的性质,平角的定义,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.10.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.11.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.12.A解析:A【解析】【分析】先根据正数都大于0,负数都小于0,可排除C,再根据两个负数,绝对值大的反而小进行判断即可.【详解】解:根据两个负数,绝对值大的反而小可知-3<73 -.故选:A.【点睛】本题考查了有理数的大小比较,其方法如下:(1)负数<0<正数;(2)两个负数,绝对值大的反而小.13.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a、b、c的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a<b<0<c,且|a|>|c|>|b|则A. a+b<0正确,不符合题意;B. a+c<0正确,不符合题意;C.a-b>0错误,符合题意;D. b-c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.14.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.15.D解析:D【解析】【分析】根据非负数的性质可求得a,b的值,然后代入即可得出答案.【详解】解:因为2|2|(1)0a b ++-=,所以a +2=0,b -1=0,所以a =-2,b =1,所以()2020a b +=(-2+1)2020=(-1)2020=1.故选:D.【点睛】本题主要考查了非负数的性质——绝对值和偶次方,根据几个非负数的和为零,则这几个数均为零求出a ,b 的值是解决此题的关键. 二、填空题16.8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点解析:8【解析】【分析】根据从一个n 边形的某个顶点出发,可以引(n-3)条对角线,把n 边形分为(n-2)的三角形作答.【详解】设多边形有n 条边,则n−2=6,解得n=8.故答案为8.【点睛】此题考查多边形的对角线,解题关键在于掌握计算公式.17.【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,n解析:83【解析】【分析】由前三个正方形可知:右上和右下两个数的和等于中间的数,根据这一个规律即可得出m 的值;首先求得第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,由以上规律即可求解.【详解】解:由题知:右上和右下两个数的和等于中间的数,∴第4个正方形中间的数字m=14+15=29;∵第n个的最小数为1+4(n-1)=4n-3,其它三个分别为4n-2,4n-1,4n,∴第n个正方形的中间数字:4n-2+4n-1=8n-3.故答案为:29;8n-3【点睛】本题主要考查的是图形的变化规律,通过观察、分析、归纳发现数字之间的运算规律是解题的关键.18.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;19.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,∴∠B′PE+∠C′PF=∠B′PC′+85°,∴2(∠B′PC′+85°)﹣∠B′PC′=180°,解得∠B′PC′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.20.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.21.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.22.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy-=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入23.2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为,把代入方程得:,解得:,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能解析:2【解析】【分析】求出最大负整数解,再把x=-1代入方程,即可求出答案.【详解】解:最大负整数为1-,把x 1=-代入方程2x 3a 4+=得:23a 4-+=,解得:a 2=,故答案为2.【点睛】本题考查有理数和一元一次方程的解,能得出关于a 的一元一次方程是解此题的关键. 24.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x ,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】 ∵方程3232a x x +=的解为x=6, ∴3a+12=36,解得a=8, ∴原方程可化为24-2x=6x ,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键. 25.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE 是∠COB 的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.26.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.27.-20.【解析】【分析】把所求代数式化成的形式,再整体代入的值进行计算便可.【详解】解:,,故答案为:.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式解析:-20.【解析】【分析】把所求代数式化成3()5m n ---的形式,再整体代入m n -的值进行计算便可.【详解】解:5m n -=,335m n ∴-+-3()5m n =---355=-⨯-155=--20=-,故答案为:20-.【点睛】本题主要考查了求代数式的值,整体代入思想,关键是把所求代数式化成()m n -的代数式形式.28.8cm 或4cm【解析】【分析】分两种情况讨论:①当C 点在AB 之间,②当C 在AB 延长线时,再根据线段的和差关系求解.【详解】①当C 点在AB 之间时,如图所示,AC=AB-BC=6cm-2c解析:8cm 或4cm【解析】【分析】分两种情况讨论:①当C 点在AB 之间,②当C 在AB 延长线时,再根据线段的和差关系求解.【详解】①当C点在AB之间时,如图所示,AC=AB-BC=6cm-2cm=4cm②当C在AB延长线时,如图所示,AC=AB+BC=6cm+2cm=8cm综上所述,A、C两点间的距离是8cm或4cm故答案为:8cm或4cm.【点睛】本题考查线段的和差计算,分情况讨论是解题的关键.29.110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为解析:110°【解析】【分析】12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.【详解】解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,分针转过的角度是:6°×20=120°,所以12时20分钟时分针与时针的夹角120°-10°=110°.故答案为:110°【点睛】本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.30.25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】的补角为故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题解析:25【解析】【分析】根据补角的概念,两个角加起来等于180°,就是互为补角,即可求解.【详解】a ∠的补角为180762313550'='︒-︒︒故答案为103;25.【点睛】此题主要考查补角的求解,熟练掌握,即可解题.三、压轴题31.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON =12×90°+90°=135°;图3中∠MON =12∠AOC +12∠BOD +∠COD =12(∠AOC +∠BOD )+90°=12⨯90°+90°=135°; 故答案为:135,135;(2)∵∠COD =90°,∴∠AOC +∠BOD =180°﹣∠COD =90°,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC +∠NOD =12∠AOC +12∠BOD =12(∠AOC +∠BOD )=45°, ∴∠MON =(∠MOC +∠NOD )+∠COD =45°+90°=135°;(3)同意,设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,∵OM 和ON 是∠AOC 和∠BOD 的角平分线,∴∠MOC =12∠AOC =12(180°﹣x °)=90°﹣12x °, ∠BON =12∠BOD =12(90°﹣x °)=45°﹣12x °, ∴∠MON =∠MOC +∠BOC +∠BON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.32.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+,∴33AOE BOF55t20t3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+=⎪ ⎪⎝⎭⎝⎭,∴∠AOE﹣∠BOF的值是定值,定值为35°;(3)根据题意得∠BOF=(3t+14)°,∴3 314202t t +=+,解得4t=.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.33.(1) a=-24,b=-10,c=10;(2) 点P的对应的数是-443或4;(3) 当Q点开始运动后第6、21秒时,P、Q两点之间的距离为8,理由见解析【解析】【分析】(1)根据绝对值和偶次幂具有非负性可得a+24=0,b+10=0,c-10=0,解可得a、b、c的值;(2)分两种情况讨论可求点P的对应的数;(3)分类讨论:当P点在Q点的右侧,且Q点还没追上P点时;当P在Q点左侧时,且Q点追上P点后;当Q点到达C点后,当P点在Q点左侧时;当Q点到达C点后,当P 点在Q点右侧时,根据两点间的距离是8,可得方程,根据解方程,可得答案.【详解】(1)∵|a+24|+|b+10|+(c-10)2=0,∴a+24=0,b+10=0,c-10=0,解得:a=-24,b=-10,c=10;(2)-10-(-24)=14,①点P在AB之间,AP=14×221+=283,-24+283=-443,点P的对应的数是-443;②点P在AB的延长线上,AP=14×2=28,-24+28=4,点P的对应的数是4;(3)∵AB=14,BC=20,AC=34,∴t P=20÷1=20(s),即点P运动时间0≤t≤20,点Q到点C的时间t1=34÷2=17(s),点C回到终点A时间t2=68÷2=34(s),当P点在Q点的右侧,且Q点还没追上P点时,2t+8=14+t,解得t=6;。
七年级(上)期末数学试卷一、选择题(本大题共10小题,共20.0分)1.如果向东走2m记为,则向西走3m可记为A. B. C. D.2.在,,,,,中,无理数的个数是A. 1B. 2C. 3D. 43.人类的遗传物质是DNA,DNA是一个很长的链,最短的22号染色体也长达个核苷酸用科学记数法表示为A. B. C. D.4.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是A. 垂线段最短B. 经过一点有无数条直线C. 经过两点,有且仅有一条直线D. 两点之间,线段最短5.下列化简正确的是A. B.C. D.6.下列算式中,运算结果为负数的是A. B. C. D.7.如图,甲从A点出发向北偏东方向走到点B,乙从点A出发向南偏西方向走到点C,则的度数是A.B.C.D.8.2018年宁波市中考新增英语口语听力自动化考试,考试需要耳麦,已知甲耳麦比乙耳麦贵20元,某校购买了甲耳麦40个、乙耳麦60个,共花费了6000元,假设甲耳麦每个x元,由题意得A. B.C. D.9.已知a,b,c在数轴上的位置如图所示,化简的结果是A. 0B. 4bC.D.10.某校组织了一次数学测试,试卷的计分规则如下:如果某考生考了82分及以下,他的分数就是实际分数,如果考了82分以上,超过82分的部分按一半计算例如小明同学考了90分,按这个规则得分,全部答对的学生按照这个规则得100分.如果某一个同学按照这个规则的最后分数是93分,他实际考试被扣了分.A. 11B. 14C. 16D. 18二、填空题(本大题共10小题,共30.0分)11.单项式的系数是______,次数是______.12.的立方根是____,9的算术平方根是____.13.近似数万精确到______位.14.用度表示为______.15.已知和是同类项,则的值是______.16.已知a,b为有理数,定义一种运算:,若,则x值为______.17.若a、b互为相反数,m、n互为倒数,则的值为______.18.如图,AB,CD相交于点O,,有以下结论:与互为余角;与互为余角;;与互为补角;与互为补角;其中错误的有______填序号.19.计算机利用的是二进制数,它共有两个数码0、1,将一个十进制数转化为二进制数,只需要把该数写成若干个数的和,依次写出1或0即可.如十进制数,转化为二进制数就是10011,所以19是二进制下的5位数.问:365是二进制下的______位数.20.在1,3,5,,2017,2019,2021这1011数的前面任意添加一个正号或一个负号,其代数和的绝对值最小值是______.三、计算题(本大题共2小题,共12.0分)21.计算:22.解下列方程.四、解答题(本大题共6小题,共38.0分)23.先化简,再求值:,其中.24.如题,平面上四个点A,B,C,D,按要求完成下列问题:连接线段AD,BC;画射线AB与直线CD相交于E点;在直线CD上找一点M,使线段AM最短,并说明理由.25.如图点C在线段AB上,点M、N分别是AC、BC的中点,且满足,.若cm,cm,求线段MN的长;若点C为线段AB上任意一点,其它条件不变,你能猜想MN的长度吗?直接写出你的猜想结果;若点C在线段AB的延长线上,其它条件不变,你能猜想MN的长度吗?请在图中画出图形,写出你的猜想并说明理由.26.观察下列两个等式:,,给出定义如下:我们称使等式成立的一对有理数a,b为“有趣数对”,记为如:数对,都是“有趣数对”.数对,中是“有趣数对”的是______;若是“有趣数对”,求a的值;请再写出一对符合条件的“有趣数对”______;注意:不能与题目中已有的“有趣数对”重复若是“有趣数对”求的值.27.公共自行车的普及给市民的出行带来了方便.现有两个公共自行车投放点A地、B地.要从甲、乙两厂家向A、B两地运送自行车.已知甲厂家可运出20辆自行车,乙厂家可运出60辆自行车;A地需30辆自行车,B地需50辆自行车.甲、乙两厂A B地的自行车的量数为x,则甲厂家运往B地的自行车的量数为______;则乙厂家运往A地的自行车的量数为______;则乙厂家运往B地的自行车的量数为______;当甲、乙两厂家各运往A、B两地多少辆自行车时,总运费等于470元?28.请阅读下列材料,并解答相应的问题:将若干个数组成一个正方形数阵,若任意一行,一列及对角线上的数字之和都相等,则称具有这种性质的数字方阵为“幻方”中国古代称“幻方”为“河图“、“洛书“等,例如,下面是三个三阶幻方,是将数字1,2,3,4,5,6,7,8,9填入到的方格中得到的,其每行、每列、每条对角线上的三个数之和相等.设图1的三阶幻方中间的数字是x,用x的代数式表示幻方中9个数的和为______;请你将下列九个数:、、、、、0、2、4、6分别填入图2方格中,使得每行、每列、每条对角线上的三个数之和都相等;图3是一个三阶幻方,那么标有x的方格中所填的数是______;如图4所示的每一个圆中分别填写了1、2、中的一个数字不同的圆中填写的数字各不相同,使得图中每一个横或斜方向的线段上几个圆内的数之和都相等,现在已知该图中七个圆内的数字,则图中的______,______.答案和解析1.【答案】C【解析】解:若向东走2m记作,则向西走3m记作,故选:C.根据正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2.【答案】B【解析】解:在所列6个数中无理数有、这两个,故选:B.分别根据无理数、有理数的定义即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,等;开方开不尽的数;以及像,等有这样规律的数.3.【答案】A【解析】解:.故选:A.先确定出a和n的值,然后再用科学记数法的性质表示即可.本题主要考查的是科学记数法,熟练掌握用科学记数法表示较大数的方法是解题的关键.4.【答案】D【解析】解:因为两点之间线段最短.故选:D.根据两点之间,线段最短解答即可.本题考查的是线段的性质,掌握两点之间,线段最短是解题的关键.5.【答案】C【解析】解:A、无法计算,故此选项不合题意;B、,故计算错误,不合题意;C、,正确,符合题意;D、,故计算错误,不合题意;故选:C.直接利用合并同类项法则分别计算得出答案.此题主要考查了合并同类项,正确掌握运算法则是解题关键.6.【答案】C【解析】解:,故A错误;B.,故B错误;C.,故C正确;D.,故D错误;故选:C.根据在一个数的前面机上负号就是这个数的相反数,负数的绝对值是它的相反数,负数的奇数次幂是负数,负数的偶数次幂是正数,可得答案.本题考查了正数和负数,小于零的数是负数,化简各数是解题关键.7.【答案】D【解析】解:如图,由题意,可知:,,,,故选:D.等于三个角的和,求出各角的度数,相加即可.本题主要考查方向角,解决此题时,能准确找到方向角是解题的关键.8.【答案】A【解析】【分析】根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.【解答】解:由题意可得,,故选:A.9.【答案】B【解析】解:由数轴上点的位置得:,且,,,,则原式.故选:B.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.此题考查了整式的加减,以及数轴,涉及的知识有:去括号法则,以及合并同类项法则,熟练掌握运算法则是解本题的关键.10.【答案】B【解析】解:由题意可得,这次考试总分为:分,如果某一个同学按照这个规则的最后分数是93分,则这个同学的实际考试被扣了:分,故选:B.根据题意可以得到本次考试的实际满分是多少,从而可以计算出某一个同学按照这个规则的最后分数是93分,他实际考试被扣了多少分,本题得以解决.本题考查有理数的混合运算,解答本题的关键是明确题意,计算出某同学的实际被扣的分数.11.【答案】;4【解析】解:单项式的系数是,次数是4;故答案为:;4.根据单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数可得答案.此题主要考查了单项式,关键是掌握单项式的相关定义.12.【答案】;3【解析】解:的立方根是,9的算术平方根是3,故答案为:、3.根据立方根和算术平方根的定义求解可得.本题主要考查立方根与算术平方根,掌握算术平方根与立方根的定义是解题的关键.13.【答案】千【解析】解:近似数万精确到千位.故答案为千.根据近似数的精确度求解.本题考查了近似数和有效数字:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.14.【答案】【解析】解:,故答案为:根据度分秒的进率为60,再进行换算即可.本题考查了度分秒的换算,从大单位到小单位要乘以进率,而从小单位到达单位要除以进率.15.【答案】0【解析】解:根据题意知,即、,所以,故答案为:0.根据同类项得定义得出m、n的值,继而代入计算可得.本题主要考查同类项,解题的关键是熟练掌握同类项得定义.16.【答案】2【解析】解:由题意得,,,,,故答案为:2.根据新定义列出关于x的方程,解之可得.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的基本步骤:去分母、去括号、移项、合并同类项、系数化为1.17.【答案】0【解析】解:、b互为相反数,m、n互为倒数,,,,故答案为:0.根据a、b互为相反数,m、n互为倒数,可以求得和mn的值,从而可以求得所求式子的值.本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.18.【答案】【解析】解:,CD相交于点O,,与互为余角,正确;与互为余角,正确;,正确;与互为补角,正确;与互为补角,正确;,错误;故答案为:.根据垂线的定义、对顶角、邻补角的性质解答即可.本题主要考查的是垂线的定义、对顶角、邻补角的性质,掌握相关定义是解题的关键.19.【答案】9【解析】解:,,且,最高位应是,则共有位数,故答案为:9.根据题意得,,根据规律可知最高位应是,故可求共由有9位数.考查了有理数的乘方,此题只需分析是几位数,所以只需估计最高位是乘以2的几次方即可分析出共有几位数,此题也可以用除以2取余的方法写出对应的二进制的数.20.【答案】1【解析】解:根据题意,要求出其代数和的绝对值最小值,相邻两位做差,差值都为2,则其中1010个数做差的绝对值最小值为:如果剩余的一个数取或,整个代数和最小,即或所以其代数和的绝对值最小值是:1故答案为:1从题目中可见这是一组奇数的排列,求一共有1011个数的代数和的绝对值,根据奇数做差可求出最小值.此题考查了数字变化类,要根据奇数做差其差值总是2找到突破口,因为奇数的数目是奇数,所以可用剩余的数来减小绝对值.21.【答案】解:原式;原式.【解析】直接利用有理数的混合运算法则计算得出答案;直接利用立方根以及绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.22.【答案】解:去括号得:,移项合并得:,解得:;去分母得:,移项合并得:,解得:.【解析】方程去括号,移项合并,把x系数化为1,即可求出解;方程去分母,去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.23.【答案】解:原式,当时,原式.【解析】原式去括号合并得到最简结果,把m的值代入计算即可求出值.此题考查了整式的加减化简求值,熟练掌握运算法则是解本题的关键.24.【答案】解:如图所示:如图所示:如图所示:理由是垂线段最短.【解析】画线段AD,BC即可;画射线AB与直线CD,交点记为E点;根据垂线段最短作出垂线段即可求解.此题主要考查了直线、射线、线段,以及垂线段,关键是掌握直线、射线、线段的性质.25.【答案】解:、N分别是AC、BC的中点,,,,所以MN的长为5cm.同,.图如右,.理由:由图知.【解析】根据M、N分别是AC、BC的中点,求出MC、CN的长度,;根据的方法求出;作出图形,,,所以.本题主要考查线段中点的定义,线段的中点把线段分成两条相等的线段.26.【答案】【解析】解:,数对是“有趣数对”;,,不是“有趣数对”,故答案为:;是“有趣数对”,,解得:;符合条件的“有趣数对”如;故答案为:;是“有趣数对”,解得:,,.根据“有趣数对”的定义即可得到结论;根据“有趣数对”的定义列方程即可得到结论;根据根据“有趣数对”的定义即可得到结论;根据“有趣数对”的定义列方程即可得到结论.本题考查了一元二次方程的解,正确的理解题意是解题的关键.27.【答案】【解析】解:若设甲厂家运往A地的自行车的量数为x,则甲厂家运往B地的自行车的量数为;则乙厂家运往A地的自行车的量数为;则乙厂家运往B地的自行车的量数为;故答案是:;;.根据题意,得解得则辆辆辆答:甲厂家运往B地的自行车的量数为10辆,则甲厂向B运算自行车的数量是10辆;乙厂家运往A地的自行车的量数为20辆;乙厂家运往B地的自行车的量数为40辆.根据表格中的数据填空;根据总运费是470元列出方程并解答.考查了一元一次方程的应用,解题的关键是找到等量关系,列出方程并解答.28.【答案】9x21 1 19【解析】解:三阶幻方如图所示:用x的代数式表示幻方中9个数的和;故答案为9x;三阶幻方如图所示:故答案为21;如图所示:,;故答案气为1,19;观察数字之间的关系,根据每行、每列、每条对角线上的三个数之和相等;、、、、、0、2、4、6将数从小到大排序,最中间的数填入中心位置,大小匹配填的两侧;三个数之和,2边填16,以此为突破口;设第一行最后一个数是m,则每一个横或斜方向的线段的和是,以此展开推理;本题考查数的特点,抓住每行、每列、每条对角线上的三个数之和相等,数的对称性是解题的关键.。
绍兴市绍兴一初七年级上学期期末数学试题题及答案一、选择题1.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b2.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 3.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒4.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上5.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个6.解方程121123x x +--=时,去分母得( ) A .2(x +1)=3(2x ﹣1)=6 B .3(x +1)﹣2(2x ﹣1)=1 C .3(x +1)﹣2(2x ﹣1)=6D .3(x +1)﹣2×2x ﹣1=67.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式8.下列各数中,绝对值最大的是( ) A .2B .﹣1C .0D .﹣39.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >0 10.如果一个有理数的绝对值是6,那么这个数一定是( )A .6B .6-C .6-或6D .无法确定11.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==12.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1二、填空题13.单项式22ab -的系数是________.14.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.15.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ; 16.若方程11222m x x --=++有增根,则m 的值为____. 17.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 18.已知A ,B ,C 是同一直线上的三个点,点O 为AB 的中点,AC 2BC =,若OC 6=,则线段AB 的长为______.19.对于有理数 a ,b ,规定一种运算:a ⊗b =a 2 -ab .如1⊗2=12-1⨯2 =-1,则计算- 5⊗[3⊗(-2)]=___.20.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.21.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.22.按照下面的程序计算:如果输入x 的值是正整数,输出结果是166,那么满足条件的x 的值为___________. 23.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).24.某校全体同学的综合素质评价的等级统计如图所示,其中评价为C 等级所在扇形的圆心角是____度.三、压轴题25.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小. 26.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小;(2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.27.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.28.如图①,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是段AB的“2倍点”.(1)线段的中点__________这条线段的“2倍点”;(填“是”或“不是”)(2)若AB=15cm,点C是线段AB的“2倍点”.求AC的长;(3)如图②,已知AB=20cm.动点P从点A出发,以2c m/s的速度沿AB向点B匀速移动.点Q从点B出发,以1c m/s的速度沿BA向点A匀速移动.点P、Q同时出发,当其中一点到达终点时,运动停止,设移动的时间为t(s),当t=_____________s时,点Q 恰好是线段AP的“2倍点”.(请直接写出各案)29.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).30.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据各点在数轴上的位置得出a、b两点到原点距离的大小,进而可得出结论.【详解】解:∵由图可知a<0<b,∴ab<0,即-ab>0又∵|a|>|b|,∴a<﹣b.故选:D.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.2.D解析:D【解析】【分析】设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.【详解】解:设分配x名工人生产螺栓,则(26-x)名生产螺母,∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,∴可得2×12x=18(26-x).故选:D.【点睛】本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.3.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).4.A解析:A 【解析】 【分析】根据图形可以发现点的变化规律,从而可以得到点2014P 落在哪条射线上. 【详解】 解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.5.C解析:C 【解析】①∵AD 平分△ABC 的外角∠EAC , ∴∠EAD=∠DAC ,∵∠EAC=∠ACB+∠ABC ,且∠ABC=∠ACB , ∴∠EAD=∠ABC , ∴AD ∥BC , 故①正确. ②由(1)可知AD ∥BC , ∴∠ADB=∠DBC , ∵BD 平分∠ABC , ∴∠ABD=∠DBC , ∴∠ABC=2∠ADB , ∵∠ABC=∠ACB , ∴∠ACB=2∠ADB , 故②正确.③在△ADC 中,∠ADC+∠CAD+∠ACD=180°, ∵CD 平分△ABC 的外角∠ACF , ∴∠ACD=∠DCF , ∵AD ∥BC ,∴∠ADC=∠DCF ,∠ADB=∠DBC ,∠CAD=∠ACB ∴∠ACD=∠ADC ,∠CAD=∠ACB=∠ABC=2∠ABD ,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90° ∴∠ADC=90°−∠ABD , 故③正确;④∵∠BAC+∠ABC=∠ACF , ∴12∠BAC+12∠ABC=12∠ACF , ∵∠BDC+∠DBC=12∠ACF , ∴12∠BAC+12∠ABC=∠BDC+∠DBC , ∵∠DBC=12∠ABC , ∴12∠BAC=∠BDC ,即∠BDC=12∠BAC. 故④错误. 故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.6.C解析:C 【解析】 【分析】方程两边都乘以分母的最小公倍数即可. 【详解】解:方程两边同时乘以6,得:3(1)2(21)6x x +--=, 故选:C . 【点睛】本题主要考查了解一元一次方程的去分母,需要注意,不能漏乘,没有分母的也要乘以分母的最小公倍数.7.B解析:B 【解析】 【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现. 【详解】解:A .为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意; B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意; C .为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8.D解析:D【解析】试题分析:∵|2|=2,|﹣1|=1,|0|=0,|﹣3|=3,∴|﹣3|最大,故选D.考点:D.9.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.10.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.B解析:B【解析】【分析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,下边三角形的数字规律为:1+2,222+, (2)n+,∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.二、填空题13.【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式的系数是,故答案为:.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.解析:12-【解析】【分析】直接利用单项式的系数的概念分析得出即可.【详解】解:单项式22ab-的系数是12-,故答案为:1 2 -.【点睛】此题主要考查了单项式,正确把握相关定义是解题关键.14.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.15.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大16.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4解得:m=2故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键17.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,a2∴=,b3=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.18.4或36【解析】【分析】分点C在线段AB上,若点C在点B右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB的长.【详解】解:,设,,若点C在线段AB上,则,点O为AB的中点,解析:4或36【解析】【分析】分点C 在线段AB 上,若点C 在点B 右侧两种情况讨论,由线段中点的定义和线段和差关系可求AB 的长.【详解】解:AC 2BC =, ∴设BC x =,AC 2x =,若点C 在线段AB 上,则AB AC BC 3x =+=,点O 为AB 的中点,3AO BO x 2∴==,x CO BO BC 6x 12AB 312362∴=-==∴=∴=⨯= 若点C 在点B 右侧,则AB BC x ==,点O 为AB 的中点,x AO BO 2∴==,3CO OB BC x 6x 4AB 42∴=+==∴=∴= 故答案为4或36【点睛】 本题考查两点间的距离,线段中点的定义,利用分类讨论思想解决问题是本题的关键. 19.100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】5[32= 5(32+3×2)= 515=(-5)2-(-5)×15=25+75=100. 故答案解析:100【解析】【分析】原式利用已知的新定义计算即可得到结果【详解】-5⊗[3⊗(-2)]=- 5⊗(32+3×2)= - 5⊗15=(-5)2-(-5)×15=25+75=100.故答案为100.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.3【解析】【分析】先根据题意得出a 的值,再代入原方程求出x 的值即可.【详解】∵方程的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3解析:3【解析】【分析】先根据题意得出a的值,再代入原方程求出x的值即可.【详解】∵方程3232a xx+=的解为x=6,∴3a+12=36,解得a=8,∴原方程可化为24-2x=6x,解得x=3.故答案为3【点睛】本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.21.110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠A解析:110【解析】【分析】由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.【详解】解:∵OE是∠COB的平分线,∠BOE=40°,∴∠BOC=80°,∴∠AOB=∠BOC+∠AOC=80°+30°=110°,故答案为:110°.【点睛】此题主要考查角度的求解,解题的关键是熟知角平分线的性质.22.42或11【解析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求解析:42或11【解析】【分析】由程序图可知,输出结果和x 的关系:输出结果=4x-2,当输出结果是166时,可以求出x 的值,若计算结果小于等于149则将结果4x-2输入重新计算,结果为166,由此求出x 的之即可.【详解】解:当4x-2=166时,解得x=42当4x-2小于149时,将4x-2作为一个整体重新输入即4(4x-2)-2=166,解得x=11故答案为42或11【点睛】本题考查了程序运算题,解决本题的关键是正确理解题意,熟练掌握一元一次方程的解法,考虑问题需全面,即当输出结果小于149时,将4x-2作为一个整体重新输入程序.23.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】解析:72【解析】【分析】用360度乘以C等级的百分比即可得.【详解】观察可知C等级所占的百分比为20%,所以C等级所在扇形的圆心角为:360°×20%=72°,故答案为:72.【点睛】本题考查了扇形统计图,熟知扇形统计图中扇形圆心角度数的求解方法是解题的关键.三、压轴题25.(1)∠MEN=90°;(2)∠MEN=105°;(3)∠FEG=2α﹣180°,∠FEG=180°﹣2α.【解析】【分析】(1)根据角平分线的定义,平角的定义,角的和差定义计算即可.(2)根据∠MEN=∠NEF+∠FEG+∠MEG,求出∠NEF+∠MEG即可解决问题.(3)分两种情形分别讨论求解.【详解】(1)∵EN平分∠AEF,EM平分∠BEF∴∠NEF=12∠AEF,∠MEF=12∠BEF∴∠MEN=∠NEF+∠MEF=12∠AEF+12∠BEF=12(∠AEF+∠BEF)=12∠AEB∵∠AEB=180°∴∠MEN=12×180°=90°(2)∵EN平分∠AEF,EM平分∠BEG∴∠NEF=12∠AEF,∠MEG=12∠BEG∴∠NEF+∠MEG=12∠AEF+12∠BEG=12(∠AEF+∠BEG)=12(∠AEB﹣∠FEG)∵∠AEB=180°,∠FEG=30°∴∠NEF+∠MEG=12(180°﹣30°)=75°∴∠MEN=∠NEF+∠FEG+∠MEG=75°+30°=105°(3)若点G在点F的右侧,∠FEG=2α﹣180°,若点G在点F的左侧侧,∠FEG=180°﹣2α.【点睛】考查了角的计算,翻折变换,角平分线的定义,角的和差定义等知识,解题的关键是学会用分类讨论的思想思考问题.26.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 27.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.28.(1)是;(2)5cm或7.5cm或10cm;(3)10或607.【解析】【分析】(1)根据“2倍点”的定义即可求解;(2)分点C在中点的左边,点C在中点,点C在中点的右边三种情况,进行讨论求解即可;(3)根据题意画出图形,P应在Q的右边,分别表示出AQ、QP、PB,求出t的范围.然后根据(2)分三种情况讨论即可.【详解】 (1)∵整个线段的长是较短线段长度的2倍,∴线段的中点是这条线段的“2倍点”. 故答案为是;(2)∵AB =15cm ,点C 是线段AB 的2倍点,∴AC =1513⨯=5cm 或AC =1512⨯=7.5cm 或AC =1523⨯=10cm . (3)∵点Q 是线段AP 的“2倍点”,∴点Q 在线段AP 上.如图所示:由题意得:AP =2t ,BQ =t ,∴AQ =20-t ,QP =2t -(20-t )=3t -20,PB =20-2t .∵PB =20-2t ≥0,∴t ≤10.∵QP =3t -20≥0,∴t ≥203,∴203≤t ≤10. 分三种情况讨论:①当AQ =13AP 时,20-t =13×2t ,解得:t =12>10,舍去; ②当AQ =12AP 时,20-t =12×2t ,解得:t =10; ③当AQ =23AP 时,20-t =23×2t ,解得:t 607=; 答:t 为10或607时,点 Q 是线段AP 的“2倍点”. 【点睛】本题考查了一元一次方程的解法、线段的和差等知识点,题目需根据“2倍点”的定义分类讨论,理解“2倍点”的定义是解决本题的关键.29.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB ,从而可得到问题的答案;(2)先求得∠AOC 的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON ,∠AOM=90°-∠AON ,然后求得∠AOM 与∠NOC 的差即可;(3)可分为当OM 为∠BOC 的平分线和当OM 的反向延长为∠BOC 的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB =90°.故答案为:90°(2)∠AOM ﹣∠NOC =30°.理由:∵∠AOC :∠BOC =1:2,∠AOC +∠BOC =180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.30.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM+34BN=+34××(n﹣2)=34n﹣(随P点的变化而变化).∴正确的结论是:PM﹣BN的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.31.2+t 6-2t 或2t-6【解析】分析:(1)、先根据非负数的性质求出a 、b 的值,再根据两点间的距离公式即可求得A 、B 两点之间的距离;(2)、设BC 的长为x ,则AC=2x ,根据AB 的长度得出x 的值,从而得出点C 所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA 的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B 处开始向左运动,一直到原点O ,此时OB 的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t >3时,乙球从原点O 处开始向右运动,此时乙球运动的路程-OB 的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t >3,根据甲、乙两小球到原点的距离相等列出关于t 的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC 的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83, ∴C 点表示的数为6-83=103. (3)①2+t;6-2t 或2t-6.②当2+t=6-2t 时,解得t=43, 当2+t=2t-6时, 解得t=8. ∴t=43或8. 点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.32.(1)DE=6;(2) DE=2a ,理由见解析;(3)∠DOE=12∠AOB ,理由见解析 【解析】试题分析:(1)由AC=4cm ,AB=12cm ,即可推出BC=8cm ,然后根据点D 、E 分别是AC 和BC 的中点,即可推出AD=DC=2cm ,BE=EC=4cm ,即可推出DE 的长度,(2)设AC=acm ,然后通过点D 、E 分别是AC 和BC 的中点,即可推出DE=12(AC+BC )=12AB=2a cm ,即可推出结论, (3)分两种情况,OC 在∠AOB 内部和外部结果都是∠DOE=12∠AOB 试题解析:(1))∵AB=12cm ,∴AC=4cm ,∴BC=8cm ,∵点D 、E 分别是AC 和BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm;(2) 设AC=acm ,∵点D 、E 分别是AC 和BC 的中点,∴DE=CD+CE=12(AC+BC)=12AB=6cm,∴不论AC取何值(不超过12cm),DE的长不变;(3)①当OC在∠AOB内部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠NOC=12∠BOC,∠COM=12∠COA.∵∠CON+∠COM=∠MON,∴∠MON=12(∠BOC+∠AOC)=12α;②当OC在∠AOB外部时,如图所示:∵OM平分∠AOC,ON平分∠BOC,∴∠MOC=12(∠AOB+∠BOC),∠CON=12∠BOC.∵∠MON+∠CON=∠MOC,∴∠MON=∠MOC-∠CON=12(AOB+∠BOC)-12∠BOC=12∠AOB=12α.【点睛】本题主要考察角平分线和线段的中点的性质,关键在于认真的进行计算,熟练运用相关的性质定理.。
浙江省绍兴市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列说法不正确的是()A . 倒数是它本身的数是±1B . 相反数是它本身的数是0C . 绝对值是它本身的数是0D . 平方是它本身的数是0和12. (2分) (2018七上·泰州期末) “五一”期间,我市共接待海内外游客约567000人次,将567000用科学计数法表示为()A .B .C .D .3. (2分)(2017·武汉模拟) 如图,水杯的俯视图是()A .B .C .D .4. (2分) (2016七上·南京期末) 下列结论中,不正确的是()A . 两点确定一条直线B . 两点之间的所有连线中,线段最短C . 对顶角相等D . 过一点有且只有一条直线与已知直线平行5. (2分)已知ax=bx,下列结论错误的是()A . a=bB . ax+c=bx+cC . (a﹣b)x=0D .6. (2分)甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的,应从乙队调多少人去甲队.如果设应从乙队调x人到甲队,列出的方程正确的是()A . 272+x=(196﹣x)B . (272﹣x)=196﹣xC . (272+x)=196﹣xD . ×272+x=196﹣x7. (2分)下列结论中,不正确的是()A . 两点确定一条直线B . 两点之间,直线最短C . 等角的余角相等D . 两直线和第三条直线都平行,则这两直线也平行8. (2分) (2019八下·洪洞期末) “已知:正比例函数与反比例函数图象相交于两点,其横坐标分别是 1 和﹣1,求不等式的解集.”对于这道题,某同学是这样解答的:“由图象可知:当或时,,所以不等式的解集是或”.他这种解决问题的思路体现的数学思想方法是()A . 数形结合B . 转化C . 类比D . 分类讨论二、填空题 (共8题;共12分)9. (1分) (2019七上·泰州月考) 比较大小: ________ .10. (1分)(2020·贵港) 计算: 3-7=________。
2017-2018学年浙江省绍兴市越城区七年级(上)期末数学试卷一、选择题(每小题3分,共30分)1. ﹣2018的绝对值是()A. ±2018B. ﹣2018C. ﹣D. 2018【答案】D【解析】﹣2018的绝对值是2018.故选:D.2. 十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A. 8×1012B. 8×1013C. 8×1014D. 0.8×1013【答案】B【解析】80万亿用科学记数法表示为8×1013.故选:B.3. 下列各对数中,互为相反数的是()A. ﹣23与﹣32B. (﹣2)3与﹣23C. (﹣3)2与﹣32D. ﹣与【答案】C【解析】A、1个﹣8,1个﹣9,不是互为相反数,故A错误;B、都等于﹣8,故B错误;C、只有符号不同的两个数互为相反数,故C正确;D、1个﹣,1个,不是互为相反数,故D错误.故选:C.4. 在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为A. 69°B. 111°C. 141°D. 159°【答案】C【解析】试题分析:首先计算出∠3的度数,再计算∠AOB的度数即可.解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.考点:方向角.5. 下列说法中正确的是()A. ﹣|a|一定是负数B. 近似数2.400万精确到千分位C. 0.5与﹣2互为相反数D. 立方根是它本身的数是0和±1【答案】D【解析】A.﹣|a|一定是负数,错误,例如a=0;B.近似数2.400万精确到千分,错误,近似数2.400万精确到十位;C.0.5与﹣2互为相反数,错误,2与﹣2互为相反数;D.正确;故选:D.6. 下列说法正确的是()A. 射线PA和射线AP是同一条射线B. 射线OA的长度是12cmC. 直线ab、cd相交于点MD. 两点确定一条直线【解析】A、射线PA和射线AP是同一条射线,说法错误;B、射线OA的长度是12cm,说法错误;C、直线ab、cd相交于点M,说法错误;D、两点确定一条直线,说法正确.故选:D.7. 已知某三角形的周长为3m﹣n,其中两边的和为m+n﹣4,则此三角形第三边的长为()A. 2m﹣4B. 2m﹣2n﹣4C. 2m﹣2n+4D. 4m﹣2n+4【答案】C【解析】由题意得3m-n- (m+n-4)=2m-2n+4.故选C.8. 一把直尺和一块三角板ABC(含30°、60°角)摆放位置如图所示,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CDE=40°,那么∠BAF的大小为()A. 40°B. 45°C. 50°D. 10°【答案】D【解析】由图可得,∠CDE=40°,∠C=90°,∴∠CED=50°,又∵DE∥AF,∴∠CAF=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,故选:D.点睛:先根据∠CDE=40°,得出∠CED=50°,再根据DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.9. 填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m的值是()A. 38B. 52C. 66D. 74【答案】D【解析】试题分析:先找到前面三个图4个数的规律,即左下数和右上数是第一个数依次加2,第四个数是左下数和右上数的乘积再减去第一个数,所以m=8×10-6=74,故选D.考点:探索一列数的规律.10. 扑克牌游戏中,小明背对小亮,让小亮按下列四个步骤操作:①第一步:分发左、中、右三堆牌,每堆牌不少于三张,且各堆牌的张数相同;②第二步:从左边一堆拿出三张,放入中间一堆;③第三步:从右边一堆拿出两张,放入中间一堆;④第四步:左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆.这时,小明准确说出了中间一堆牌现有的张数,你认为中间一堆的张数是()A. 3B. 5C. 7D. 8【答案】D【解析】解:设第一步时候,每堆牌的数量都是x(x≥2);第二步时候:左边x-3,中间x+3,右边x;第三步时候:左边x-3,中级x+5,右边x-2;第四步开始时候,左边有(x-3)张牌,则从中间拿走(x-3)张,则中间所剩牌数为(x+5)-(x-3)=x+5-x+3=8.所以中间一堆牌此时有8张牌.故选D。
2017-2018学年度第一学期期末测试七年级数学说明:1.考试时间为100分钟,满分120分;2.各题均在答题卷指定位置上作答,否则无效;考试结束时,只交回答题卷.一、选择题(本大题共10小题,每小题3分,共30分)每小题给出的4个选项中,只有一个是正确的,请将所选选项的字母填写在答题卷相应的位置上.1、6-的相反数是()A、6B、6-C、61D、61-2、下面几个有理数中,最小的数是()A、1B、2-C、0 D、5.2-3、计算3)3(-的结果是()A、6B、9C、27D、-274、下列各组代数式中,不是同类项的是()A、yx2-和yx25B、32和2 C、xy2和23xyD、2ax和2a x5、下列等式中正确的是()A、abba-=--)(B、baba+-=+-)(C、12)1(2+=+aa D、xx+=--3)3(6、如图是由6个大小相同的正方形组成的几何体,它的左视图是()7、若ba=,则下列式子不正确的是()A、11+=+ba B、55-=+ba C、ba-=-D、0=-ba8、下列等式中,不是整式的是()A、yx21-B、x73C、11-xD、0A B C D9、若0<a ,下列式子正确的是( )A 、0<-aB 、02>a C 、22a a -= D 、33a a -=10、把弯曲的道路改直,就能缩短两点之间的距离,其中蕴含的数学原理是( )A 、两点确定一条直线B 、两点之间线段最短C 、过一点有无数条直线D 、线段是直线的一部分二、填空题(本大题共6小题,每小题4分,共24分)请将下列各题的正确答案写在答题卷相应的位置上.11、=- 5 . 12、︒20的补角是 . 13、方程0121=+x 的解为 . 14、地球与太阳之间的距离为150 000 000km ,用记数法表示为 km .15、某种商品原价为每件b 元,第一次降价打八折,第二次降价每件又减10元,两次降价后,该商品每件的售价是 元.16、点A ,B ,C 在同一条直线上,6= AB cm ,2=BC cm ,则=AC . 三、解答题(一)(本大题共3小题,每小题6分,共18分) 17、计算:(1)15)7()18(12--+--; (2))3(9)216()3()2(3-÷-+⨯-+-. 18、计算:(1)222243234b a ab b a --++; (2))43()42(b a b a +--.19、已知平面内有A ,B ,C 三个点,按要求完成下列问题. (1)作直线AB ,连结BC 和AC ;(2)用适当的语句表述点C 与直线AB 的关系.四、解答题(二)(本大题共3小题,每小题7分,共21分)20、解方程:42321xx -+=+. 21、x 为何值时,式子65+-x x 的值比31-x 的值大3?BAA22、(1)已知()2210x y +++=,求x ,y 的值; (2)化简:)]921(3121[4322xy y x xy y x -+-.五、解答题(三)(本大题共3小题,每小题9分,共27分)23、某商场计划购进甲,乙两种节能灯共1200只,这两种节能灯的进价和售价如下表:(1)求甲,乙两种节能灯各进货多少时,使进货款恰好为46 000元;(2)应如何进货,使销售完节能灯时,商场获得的利润恰好是进货价的30%,此时利润为多少?24、如图,点O 在直线AB 上,OD 是AOC ∠的平分线,射线OE 在BOC ∠内. (1)图中有多少个小于︒180的角?(2)若OE 平分BOC ∠,求DOE ∠的度数;(3)若BOE COE ∠=∠2,︒=∠108 DOE ,求COE ∠的度数.25、如图,点O 是数轴的原点,点A 是数轴上的一个定点,点A 表示的数为-15,点B 在数轴上,且OA OB 3=,数轴上的两个动点M ,N 分别从点A 和点O 同时出发,向右移动,点M 的运动速度为每秒3个单位,点N 的运动速度为每秒2个单位.(1)求点B 和线段AB 的中点P 对应的有理数;(2)若点B 对应的数为正数,点M 移动到线段AB 的中点P 时,求点N 对应的有理数; (3)求点M ,N 运动多少秒时,点M ,N 与原点的距离相等.N M OAC BE AD2017-2018学年度第一学期期末测试七年级数学答案及评分标准一、选择题:A D D D A A B C B B 二、填空题:11、5 12、︒160 13、2-=x 14、8105.1⨯ 15、108.0-b 16、4cm . 三、解答题:17、解:(1)2222015)7()18(12-=-=--+--; (2)593548)3(9)216()3()2(3-=+--=-÷-+⨯-+-.评分说明:每小题3分.(1)答案正确就给3分;(2)计算3)2(-,)216()3(+⨯-,)3(9-÷-各占1分,答案错误扣1分.18、解:(1)222b ab a -+;(2)b a 8--.评分说明:每小题3分.第(1)小题中,合并同类项每项占1分;第(2)小题中,去括号,每个括号占1分,计算答案占1分.19、(1)作直线AB ,线段BC ,线段AC 各占1分,共3分;(2)点C 在直线AB 外,3分. 20、解:去分母,得)2(12)1(2x x -+=+, 2分 去括号,得x x -+=+21222, 4分 移项,合并,得123=x , 6分 系数化1,得4=x 7分21去分母,得)1(218)5(6->++-x x x , 2分 去括号,得221856->+--x x x , 4分 移项,合并得153->x , 5分 系数化1,得5->x , 6分21、 去分母,得18)1(2)5(6=--+-x x x 2分去括号,得182256=+---x x x 4分 移项,合并得213=x 5分 系数化1,得7=x , 6分 ∴当7=x 时,式子65+-x x 的值比31-x 的值大3. 7分22、(1)∵()2210x y +++=,∴02=+x ,01=+y 2分 ∴2=x ,1-=y ; 3分(2))]921(2121[4322xy y x xy y x -+- ]294121[4322xy y x xy y x -+-= 4分 )441(4322xy y x y x --= 5分 xy y x y x 4414322+-= 6分 xy y x 4212+= 7分 评分说明:(1)中x ,y 答对1个给1分,答对2个给满分,共3分,没写出过程不扣分;(2)去小括号占1分,中括号内合并占1分,去中括号占1分,计算答案占1分,共4分.23、(1)设甲种节能灯购进x 只,乙种节能灯购进)1200(x -只, 1分 依题意得,46000)1200(4525=-+x x , 3分 解得400=x ,8001200=-x , 4分 即甲种节能灯购进400只,乙种节能灯购进800只,进货款恰好为46 000元; 5分 (2)进货款为x x x 2054000)1200(4525-=-+, 销售款为x x x 3072000)1200(6030-=-+利润为x x x 1018000)2054000()3072000(-=---,依题意有x x 3072000%)301)(2054000(-=+-, 7分解得450=x ,7501200=-x , 135001018000=-x ,即甲种节能灯购进450只,乙种节能灯购进750只时,商场获得的利润恰好是进货价的30%,此时利润为13500元. 9分24、(1)9个; 2分 (2)∵OD 平分AOC ∠,OE 平分BOC ∠, ∴AOC COD ∠=∠21,BOC COE ∠=∠21, 3分 ∵︒=∠+∠180BOC AOC , ∴︒=∠+∠=∠+∠=∠+∠90)(212121BOC AOC BOC AOC COE COD , ∴︒=∠+∠=∠90COE COD DOE ; 5分 (3)设x BOE =∠,∵BOE COE ∠=∠2,∴x COE 2=∠ ∴x AOC 3180-︒=∠, ∵OD 平分AOC ∠,∴AOC COD ∠=∠21, ∵︒=∠=∠+∠108DOE COE COD , 7分 ∴︒=+-︒1082)3180(21x x ,︒=36x , 8分 ∴︒=∠72 COE . 9分 25、(1)∵15=OA ,OA OB 3=,∴45=OB , 若点B 在原点的右边,60= AB ,∴点B 对应的有理数为45,线段AB 的中点P 对应的有理数为15, 若点B 在原点的左边,30= AB ,∴点B 对应的有理数为-45;线段AB 的中点P 对应的有理数为-30;(2)当点B 对应的数为正数时,则点M 移动30个单位到达线段AB 的中点P ,点M 移动的时间为10330= 秒,此时点N 移动的距离为20102=⨯,∴点N 对应的有理数为20; (3)设经过x 秒点有ON OM =,若点B 在原点的右边,则1523=-x x ,15=x , 若点B 在原点的左边,则153245-=-x x ,12=x .C BE AD。
2017-2018学年浙江省绍兴市七年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A.B.C.D.【考点】11:正数和负数.【解答】解:∵|+0.8|=0.8,|﹣3.5|=3.5,|﹣0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是﹣0.7.故选:C.2.(3分)光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013km B.9.5×1012km C.95×1011km D.950×1010km【考点】1I:科学记数法—表示较大的数.【解答】解:将9500 000 000 000km用科学记数法表示为:9.5×1012km.故选:B.3.(3分)有理数(﹣1)2,(﹣1)3,﹣12,|﹣1|,﹣(﹣1),﹣1−1中,其中等于1的个数是()A.3个 B.4个 C.5个 D.6个【考点】14:相反数;15:绝对值;1E:有理数的乘方.【解答】解:(﹣1)2=1;(﹣1)3=﹣1;﹣12=﹣1;|﹣1|=1;﹣(﹣1)=1;﹣1−1=1.故选:B.4.(3分)下列各组数中互为相反数的一组是()A.﹣3与√(−3)2B.√(−3)2与﹣13C.﹣3与√−273 D.√273与|﹣3|【考点】14:相反数;24:立方根.【解答】解:∵﹣3与√(−3)2互为相反数,∴选项A正确;∵﹣√(−3)2与3互为相反数,∴选项B不正确;∵﹣3=√−273,∴选项C不正确;∵√273=3,|﹣3|=3,∴√273=|﹣3|,∴选项D不正确.故选:A.5.(3分)若A和B都是3次多项式,则A+B一定是()A.6次多项式B.3次多项式C.次数不高于3次的多项式D.次数不低于3次的多项式【考点】44:整式的加减.【解答】解:∵A和B都是3次多项式,∴A +B 一定3次或2次,或1次或0次的整式, 即A +B 的次数不高于3. 故选:C .6.(3分)方程2x +1=﹣3和方程2﹣a−x3=0的解相同,则a 的值是( )A .8B .4C .3D .5【考点】88:同解方程. 【解答】解:2x +1=﹣3, 解得:x=﹣2, 将x=﹣2代入2﹣a−x 3=0,得:2﹣a+23=0, 解得:a=4. 故选:B .7.(3分)∠1与∠2是内错角,∠1=40°,则( ) A .∠2=40° B .∠2=140°C .∠2=40°或∠2=140°D .∠2的大小不确定 【考点】J6:同位角、内错角、同旁内角.【解答】解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等. 故选:D .8.(3分)如图,直线AB ∥CD ,∠C=44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138° 【考点】JA :平行线的性质.【解答】解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选:B.9.(3分)如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180°;③∠AOB+∠COD=90°;④图中小于平角的角有6个;其中正确的结论有几个()A.1个 B.2个 C.3个 D.4个【考点】IL:余角和补角.【解答】解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠COD+∠BOC=90°,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90°﹣∠AOB+90°+∠AOB=180°,故②正确;∠AOB+∠COD不一定等于90°,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选:C.10.(3分)一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b∥a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n﹣2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A.4n+1 B.4n+2 C.4n+3 D.4n+5【考点】38:规律型:图形的变化类.【解答】解:结合图形,不难发现:每剪一次,绳子多4段,推而广之,则剪n 次时,绳子的段数是(4n+1)段.故选:A.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)如果盈利200元记做+200元,那么亏损80元记做﹣80元.【考点】11:正数和负数.【解答】解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作﹣80元.故答案为﹣80.12.(3分)x的2倍与y的平方和可表示为2x+y2.【考点】32:列代数式.【解答】解:x的2倍与y的平方和可表示为2x+y2,故答案为:2x+y2.13.(3分)若单项式57ax2y n+1与﹣75ax m y4的差仍是单项式,则m﹣2n=﹣4.【考点】35:合并同类项.【解答】解:∵单项式57ax2y n+1与−75ax m y4的差仍是单项式,∴单项式57ax2y n+1与−75ax m y4是同类项,m=2,n+1=4,n=3,m﹣2n=2﹣2×3=﹣4,故答案为:﹣4.14.(3分)已知多项式x2+3x=3,可求得另一个多项式3x2+9x﹣4的值为5.【考点】33:代数式求值.【解答】解:∵x2+3x=3,∴3x2+9x=9.∴3x2+9x﹣4=9﹣4=5.故答案为:5.15.(3分)若|a|=3,|b|=2,且a﹣b<0,则a+b=﹣1或﹣5.【考点】15:绝对值;19:有理数的加法;1A:有理数的减法.【解答】解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a﹣b<0,∴a<b,∴a=﹣3,b=±2,∴a+b=﹣3+2=﹣1,或a+b=﹣3﹣2=﹣5.综上所述,a+b=﹣1或﹣5.故答案为:﹣1或﹣5.16.(3分)如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=65度.【考点】JA:平行线的性质;PB:翻折变换(折叠问题).【解答】解:根据题意得2∠1与130°角相等,即2∠1=130°,解得∠1=65°.故填65.17.(3分)某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积128m2.【考点】Q1:生活中的平移现象.【解答】解:由题意,得草地的实际面积为:(18﹣2)×(10﹣2)=16×8=128(m2).故答案为128.18.(3分)上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是9时32811分.【考点】IG:钟面角.【解答】解:设再次转成直角的时间间隔为x,则(6﹣12)x=90×2,(6﹣12)x=180,∴x=328 11.所以下一次时针与分针成直角的时间为9时32811分,故答案为:9时32811分.三、解答题(本大题共5小题,共46分)19.(12分)计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;(2)12°24′17″×4﹣30°27′8″;(3)4−x2−2x+13=1.【考点】1G:有理数的混合运算;86:解一元一次方程;II:度分秒的换算.【解答】解:(1)原式=﹣9÷9﹣6+4=﹣3;(2)原式=48°96′68″﹣30°27′8″=18°69′60″=19°10′;(3)3(4﹣x)﹣2(2x+1)=612﹣3x﹣4x﹣2=6﹣7x=﹣4x=4 7.20.(8分)先化简,再求值:已知2(3xy﹣x2)﹣3(xy﹣2x2)﹣xy,其中x,y 满足|x+2|+(y﹣3)2=0.【考点】16:非负数的性质:绝对值;1F:非负数的性质:偶次方;45:整式的加减—化简求值.【解答】解:原式=6xy﹣2x2﹣3xy+6x2﹣xy=2xy+4x2,∵|x+2|+(y﹣3)2=0,∴x+2=0且y﹣3=0,解得:x=﹣2、y=3,则原式=2×(﹣2)×3+4×(﹣2)2=﹣12+16=421.(8分)如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.【考点】PC:图形的剪拼.【解答】解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=√5(2)能,如图所示:边长=√10.22.(8分)小明爸爸给小明出了一道题,说明他本月炒股的盈亏情况(单位:元)请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?【考点】11:正数和负数;1E:有理数的乘方.【解答】解:天河:500×23 +2.8×1000﹣1.5×1500﹣1.8×2000=4000+2800﹣2250﹣3600=950(元)答:赚了,赚了950元.23.(10分)【阅读理解】若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为﹣1,点B表示的数为2.表示1的点C到点A 的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.【知识运用】如图②,M、N为数轴上两点,点M所表示的数为﹣2,点N所表示的数为4.(1)数2或10所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为﹣20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?【考点】13:数轴;8A:一元一次方程的应用;ID:两点间的距离.【解答】解:(1)设所求数为x,当优点在M、N之间时,由题意得x﹣(﹣2)=2(4﹣x),解得x=2;当优点在点N右边时,由题意得x﹣(﹣2)=2(x﹣4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40﹣x,AB=40﹣(﹣20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x﹣(﹣20)=2(40﹣x),解得x=20,∴t=(40﹣20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40﹣x=2(x+20),解得x=0,∴t=(40﹣0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.第11页(共11页)。
2017-2018学年浙江省绍兴市七年级(上)期末数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.若足球质量与标准质量相比,超出部分记作正数,不足部分记作负数.则下面4个足球中,质量最接近标准的是()A. B. C. D.2.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A. 0.95×1013kmB. 9.5×1012kmC. 95×1011kmD. 950×1010km3.有理数(−1)2,(−1)3,−12,|−1|,−(−1),−1−1中,其中等于1的个数是()A. 3个B. 4个C. 5个D. 6个4.下列各组数中互为相反数的一组是()A. −3与√(−3)2B. √(−3)2与−13C. −3与√−273 D. √273与|−3|5.若A和B都是3次多项式,则A+B一定是()A. 6次多项式B. 3次多项式C. 次数不高于3次的多项式D. 次数不低于3次的多项式6.方程2x+1=−3和方程2−a−x3=0的解相同,则a的值是()A. 8B. 4C. 3D. 57.∠1与∠2是内错角,∠1=40∘,则()A. ∠2=40∘B. ∠2=140∘C. ∠2=40∘或∠2=140∘D. ∠2的大小不确定8.如图,直线AB//CD,∠C=44∘,∠E为直角,则∠1等于()A. 132∘B. 134∘C. 136∘D. 138∘9.如图,OA⊥OC,OB⊥OD,①∠AOB=∠COD;②∠BOC+∠AOD=180∘;③∠AOB+∠COD=90∘;④图中小于平角的角有6个;其中正确的结论有几个()A. 1个B. 2个C. 3个D. 4个10.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b(b//a)把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a、b之间把绳子再剪(n−2)次(剪刀的方向与a平行),这样一共剪n次时绳子的段数是()A. 4n+1B. 4n+2C. 4n+3D. 4n+5二、填空题(本大题共8小题,共24.0分)11.如果盈利200元记做+200元,那么亏损80元记做______元.12.x的2倍与y的平方和可表示为______.13.若单项式57ax2y n+1与−75ax m y4的差仍是单项式,则m−2n=______.14.已知多项式x2+3x=3,可求得另一个多项式3x2+9x−4的值为______.15.若|a|=3,|b|=2,且a−b<0,则a+b=______.16.如图,一个宽度相等的纸条按如图所示方法折叠一下,则∠1=______度.17.某小区有一块长方形的草地(如图),长18米,宽10米,空白部分为两条宽度均为2米的小路,则草地的实际面积______m2.18.上午9点钟的时候,时针和分针成直角,则下一次时针和分针成直角的时间是______.三、计算题(本大题共2小题,共12.0分)19.计算与解方程:(1)−32+(−3)2+3×(−2)+|−4|;(2)12∘24′17″×4−30∘27′8″;(3)4−x2−2x+13=1.20.先化简,再求值:已知2(3xy−x2)−3(xy−2x2)−xy,其中x,y满足|x+2|+(y−3)2=0.四、解答题(本大题共3小题,共24.0分)21.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.22.(单位:元)股票每股净赚(元)股票招商银行+23500浙江医药−(−2.8)1000晨光文具−1.51500金龙汽车−1452000请你也来计算一下,小明爸爸本月投资炒股到底是赔了还是赚了?赔了或赚了多少元?23.【阅读理解】若A,B,C为数轴上三点,若点C到A的距离是点C到B的距离的2倍,我们就称点C是(A,B)的优点.例如,如图①,点A表示的数为−1,点B表示的数为2.表示1的点C到点A的距离是2,到点B的距离是1,那么点C是(A,B)的优点;又如,表示0的点D到点A 的距离是1,到点B的距离是2,那么点D就不是(A,B)的优点,但点D是(B,A)的优点.【知识运用】如图②,M、N为数轴上两点,点M所表示的数为−2,点N所表示的数为4.(1)数______所表示的点是(M,N)的优点;(2)如图③,A、B为数轴上两点,点A所表示的数为−20,点B所表示的数为40.现有一只电子蚂蚁P从点B出发,以4个单位每秒的速度向左运动,到达点A停止.当t为何值时,P、A和B中恰有一个点为其余两点的优点?答案和解析【答案】1. C2. B3. B4. A5. C6. B7. D8. B9. C10. A11. −8012. 2x+y213. −414. 515. −1或−516. 6517. 12818. 9时328分1119. 解:(1)原式=−9÷9−6+4=−3;(2)原式=48∘96′68″−30∘27′8″=18∘69′60″=19∘10′;(3)3(4−x)−2(2x+1)=612−3x−4x−2=6−7x=−4x=4.720. 解:原式=6xy−2x2−3xy+6x2−xy=2xy+4x2,∵|x+2|+(y−3)2=0,∴x+2=0且y−3=0,解得:x=−2、y=3,则原式=2×(−2)×3+4×(−2)2=−12+16=421. 解:(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:5×1×1=5;边长=√5(2)能,如图所示:边长=√10.22. 解:天河:500×23+2.8×1000−1.5×1500−1.8×2000=4000+2800−2250−3600=950(元)答:赚了,赚了950元.23. 2或10【解析】1. 解:∵|+0.8|=0.8,|−3.5|=3.5,|−0.7|=0.7,|+2.1|=2.1,0.7<0.8<2.1<3.5,∴从轻重的角度看,最接近标准的是−0.7.故选:C.求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.本题考查了绝对值和正数和负数的应用,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.2. 解:将9500 000 000000km用科学记数法表示为:9.5×1012km.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 解:(−1)2=1;(−1)3=−1;−12=−1;|−1|=1;−(−1)=1;=1.−1−1故选:B.依据有理数的乘方法则,绝对值、相反数、有理数的除法法则进行计算即可.本题主要考查的是有理数的乘方,熟练掌握有理数的乘方法则是解题的关键.4. 解:∵−3与√(−3)2互为相反数,∴选项A正确;∵−√(−3)2与3互为相反数,∴选项B不正确;3,∵−3=√−27∴选项C不正确;3=3,|−3|=3,∵√273=|−3|,∴√27∴选项D不正确.故选:A.根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“−”,据此判断即可.此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“−”.5. 解:∵A和B都是3次多项式,∴A+B一定3次或2次,或1次或0次的整式,即A+B的次数不高于3.故选:C.根据合并同类项的法则和已知可以得出A+B的次数是3或2或1或0次,即可得出答案.此题考查了整式的加减,熟练掌握运算法则是解本题的关键.注意:合并同类项时,三次项的系数可能为0.6. 解:2x+1=−3,解得:x=−2,将x=−2代入2−a−x3=0,得:2−a+23=0,解得:a=4.故选:B.先求出2x+1=−3的解,代入2−a−x3=0,可得关于a的方程,解出即可.本题考查了同解方程的知识,解答本题的关键是掌握方程解得定义.7. 解:内错角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,内错角才相等.故选:D.两直线平行时内错角相等,不平行时无法确定内错角的大小关系.特别注意,内错角相等的条件是两直线平行.8. 解:过E作EF//AB,∵AB//CD,∴AB//CD//EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44∘,∠AEC为直角,∴∠FEC=44∘,∠BAE=∠AEF=90∘−44∘=46∘,∴∠1=180∘−∠BAE=180∘−46∘=134∘,故选:B.过E作EF//AB,求出AB//CD//EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.9. 解:∵OA⊥OC,OB⊥OD,∴∠AOC=∠BOD=90∘,∴∠AOB+∠BOC=∠COD+∠BOC=90∘,∴∠AOB=∠COD,故①正确;∠BOC+∠AOD=90∘−∠AOB+90∘+∠AOB=180∘,故②正确;∠AOB+∠COD不一定等于90∘,故③错误;图中小于平角的角有∠AOB,∠AOC,∠AOD,∠BOC,∠BOD,∠COD一共6个,故④正确;综上所述,说法正确的是①②④.故选:C.根据垂直的定义和同角的余角相等分别计算,然后对各小题分析判断即可得解.本题考查了余角和补角,垂直的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.10. 解:结合图形,不难发现:每剪一次,绳子多4段,推而广之,则剪n次时,绳子的段数是(4n+1)段.故选:A.结合图形,发现:当用剪刀像图②那样沿虚线a把绳子剪断时,绳子被剪为5段,即5= 1+4;当用剪刀像图③那样沿虚线b(b//a)把绳子再剪一次时,绳子就被剪为9段,即9=1+4×2;若用剪刀在虚线a、b之间把绳子再剪1次,则绳子就被剪为13段,即13=1+4×3,即每剪一次,绳子多4段,从而推广.此题考查了图形的变化,通过观察找到规律,同时总结出规律,即用代数式表示.11. 解:“正”和“负”相对,把盈利200元记作+200元,则亏损80元记作−80元.故答案为−80.此题主要用正负数来表示具有意义相反的两种量:盈利记为正,则亏损记为负,直接得出结论即可.此题主要考察正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一方为正,则和它意义相反的就为负.12. 解:x的2倍与y的平方和可表示为2x+y2,故答案为:2x+y2.x的2倍即2x,y的平方即为y2,再相加即可得.此题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.13. 解:∵单项式57ax2y n+1与−75ax m y4的差仍是单项式,∴单项式57ax2y n+1与−75ax m y4是同类项,m=2,n+1=4,n=3,m−2n=2−2×3=−4,故答案为:−4.根据差是单项式,可得它们是同类项,在根据同类项,可得m、n的值,根据有理数的减法,可得答案.本题考查了合并同类项,先根据差是单项式,得出它们是同类项,求出m、n的值,再求出答案.14. 解:∵x2+3x=3,∴3x2+9x=9.∴3x2+9x−4=9−4=5.故答案为:5.等式x2+3x=3两边同时乘3得:3x2+9x=9,然后代入计算即可.本题主要考查的是求代数式的值,利用等式的性质得到3x2+9x=9是解题的关键.15. 解:∵|a|=3,|b|=2,∴a=±3,b=±2,∵a−b<0,∴a<b,∴a=−3,b=±2,∴a+b=−3+2=−1,或a+b=−3−2=−5.综上所述,a+b=−1或−5.故答案为:−1或−5.根据绝对值的性质求出a、b的值,再根据有理数的减法确定出a、b的对应情况,然后根据有理数的加法运算法则进行计算即可得解.本题考查了有理数的减法,有理数的加法,绝对值的性质,熟记运算法则并准确判断出a、b的值是解题的关键.16. 解:根据题意得2∠1与130∘角相等,即2∠1=130∘,解得∠1=65∘.故填65.根据两直线平行内错角相等,以及折叠关系列出方程求解则可.本题考查了平行线的性质和折叠的知识,题目比较灵活,难度一般.17. 解:由题意,得草地的实际面积为:(18−2)×(10−2)=16×8=128(m2).故答案为128.将小路两旁部分向中间平移,直到小路消失,发现草地是一个长为(18−2)米、宽为(10−2)米的长方形,根据长方形面积=长×宽列式计算即可.此题考查生活中的平移现象,化曲为直是解决此题的关键思路.18. 解:设再次转成直角的时间间隔为x,则(6−12)x=90×2,(6−12)x=180,∴x=32811.所以下一次时针与分针成直角的时间为9时32811分,故答案为:9时32811分.根据实际问题,时针转动速度为36012×60=12(度/分钟),分钟转动速度为36060=6(度/分钟),设再次转成直角的时间间隔为x,可以列出方程,从而求解下一次时针与分针成直角的时间.本题考查了一元一次方程的应用和钟面角问题,此类题目贴近生活,有利于培养学生应用数学解决生活中实际问题的能力.19. (1)根据有理数的混合计算解答即可;(2)根据度分秒的计算解答即可;(3)根据去分母、去括号、移项,系数化为1解答即可.此题考查度分秒的计算,关键是根据有理数的混合计算、度分秒的计算以及一元一次方程的解法解答.20. 原式合并同类项得到最简结果,利用非负数的性质求出x、y的值,代入计算即可求出值.此题考查了整式的加减−化简求值,熟练掌握运算法则是解本题的关键.21. (1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据题意即可得到结论.本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.22. 首先分别求出招商银行、浙江医药、晨光文具、金龙汽车这4种股票分别赚了多少钱;然后把它们相加,判断出投资者到底是赔了还是赚了,赔了或赚了多少元即可.此题主要考查了有理数的乘方的含义和求法,以及有理数的加减法的运算方法,要熟练掌握.23. 解:(1)设所求数为x,当优点在M、N之间时,由题意得x−(−2)=2(4−x),解得x=2;当优点在点N右边时,由题意得x−(−2)=2(x−4),解得:x=10;故答案为:2或10;(2)设点P表示的数为x,则PA=x+20,PB=40−x,AB=40−(−20)=60,分三种情况:①P为(A,B)的优点.由题意,得PA=2PB,即x−(−20)=2(40−x),解得x=20,∴t=(40−20)÷4=5(秒);②P为(B,A)的优点.由题意,得PB=2PA,即40−x=2(x+20),解得x=0,∴t=(40−0)÷4=10(秒);③B为(A,P)的优点.由题意,得AB=2PA,即60=2(x+20)解得x=10,此时,点P为AB的中点,即A也为(B,P)的优点,∴t=30÷4=7.5(秒);综上可知,当t为5秒、10秒或7.5秒时,P、A和B中恰有一个点为其余两点的优点.(1)设所求数为x,根据优点的定义分优点在M、N之间和优点在点N右边,列出方程解方程即可;(2)根据优点的定义可知分两种情况:①P为(A,B)的优点;②P为(B,A)的优点;③B为(A,P)的优点.设点P表示的数为x,根据优点的定义列出方程,进而得出t的值.本题考查了一元一次方程的应用及数轴,解题关键是要读懂题目的意思,理解优点的定义,找出合适的等量关系列出方程,再求解.。
2017-2018学年浙江省绍兴市柯桥区七年级(上)期末数学试卷一、选择题(本题共10个小题,每小题2分,共20分)1.(2分)下列各数中,比﹣2小的数是()A.﹣ B.﹣ C.﹣ D.﹣12.(2分)在柯桥区2017年政府报告中提到,区政府大力推进“五水共治”、”五气合治“,五年来共投入资金24100000000元,将24100000000用科学记数法表示为()A.2.41×1011B.2.41×1010C.24.1×1010D.0.241×10113.(2分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b4.(2分)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.(2分)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170° D.150°6.(2分)若a<<b,且a、b是两个连续整数,则a+b的值是()A.2 B.3 C.4 D.57.(2分)若点B在线段AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC的中点,则线段PQ的长为()A.3cm B.5cm C.6cm D.8cm8.(2分)若方程组的解是,则方程组的解是()A.B.C.D.9.(2分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)10.(2分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()A.4 B.3 C.0 D.﹣2二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)写出一个比5小的无理数:.12.(3分)度、分、秒换算:27.24°=°′″.13.(3分)请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是.14.(3分)课本上有这样一个问题:如图,从A地到B地有3条路可走,为了尽快到达,人们通常选择其中的直路,这个问题与线段的一个基本事实相关,这个基本事实是.15.(3分)如图,点C是线段AB上一点,点D是线段AC的中点,若AC=6cm,BD=12cm,则BC=cm.16.(3分)已知关于x的方程3a﹣x=+3的解是4,则a2﹣2a=.17.(3分)已知x2+3x=1,求代数式3x2+9x﹣2的值为.18.(3分)对于有理数x、y,定义一种新运算“※”:x※y=ax+by+c,其中a,b,c为常数,已知3※5=15,4※7=28,那么2※3=.19.(3分)将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°,∠HAF=35°,则∠CAD=.20.(3分)在图(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图(1)能变为图(2),则图(2)中A格内的数是三、解答题(本大题共7小题,共50分)21.(9分)计算:(1)(﹣0.5)+(﹣)﹣(+1)(2)2+(﹣3)2×(﹣)(3)﹣+|﹣2|﹣(﹣1)201822.(5分)先化简再求值:3x2+x+3(x2﹣x)﹣(6x2+x),其中x=﹣6.23.(6分)解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)24.(5分)如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段的长度是点P到直线BC的距离.25.(7分)(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=°,∠AOC=°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度数.26.(7分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;27.(11分)柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?2017-2018学年浙江省绍兴市柯桥区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题2分,共20分)1.(2分)下列各数中,比﹣2小的数是()A.﹣ B.﹣ C.﹣ D.﹣1【解答】解:根据两个负数,绝对值大的反而小可知﹣2.5<﹣2.故选:C.2.(2分)在柯桥区2017年政府报告中提到,区政府大力推进“五水共治”、”五气合治“,五年来共投入资金24100000000元,将24100000000用科学记数法表示为()A.2.41×1011B.2.41×1010C.24.1×1010D.0.241×1011【解答】解:241 0000 0000=2.41×1010,故选:B.3.(2分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b【解答】解:A、2x和3y不是同类项,不能合并.故本选项错误;B、5x和3x是同类项,可以合并,但结果为2x,故本选项错误;C、7y2和5y2是同类项,可以合并,但结果为2y,故本选项错误;D、9a2b和4ba2是同类项,可以合并,结果为5a2b,故本选项正确.故选:D.4.(2分)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c【解答】解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.(2分)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170° D.150°【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.6.(2分)若a<<b,且a、b是两个连续整数,则a+b的值是()A.2 B.3 C.4 D.5【解答】解:∵4<5<9,∴2<<3,由a<<b,且a、b是两个连续的整数,得到a=2,b=3,则a+b=5,故选:D.7.(2分)若点B在线段AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC的中点,则线段PQ的长为()A.3cm B.5cm C.6cm D.8cm【解答】解:由分析得:PQ=PB+BQ=(AB+BC),AB=6cm,BC=10cm,所以PQ=8cm,8.(2分)若方程组的解是,则方程组的解是()A.B.C.D.【解答】解:由题意得:,解得.故选:A.9.(2分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选:D.10.(2分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()A.4 B.3 C.0 D.﹣2【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,a+b+c=b+c+(﹣2),解得a=﹣2,所以,数据从左到右依次为4、﹣2、b、4、﹣2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、﹣2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣2.故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)写出一个比5小的无理数:.【解答】解:∵2<25,∴<=5.故答案为.12.(3分)度、分、秒换算:27.24°=27°14′24″.【解答】解:27.24°=27° 14′24″,故答案为:27,14,24.13.(3分)请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是2a3b.【解答】解:根据题意,满足这些条件的代数式可以是2a3b(答案不唯一),故答案为:2a3b14.(3分)课本上有这样一个问题:如图,从A地到B地有3条路可走,为了尽快到达,人们通常选择其中的直路,这个问题与线段的一个基本事实相关,这个基本事实是两点之间,线段最短.【解答】解:这个基本事实是:两点之间,线段最短.故答案为:两点之间,线段最短.15.(3分)如图,点C是线段AB上一点,点D是线段AC的中点,若AC=6cm,BD=12cm,则BC=9cm.【解答】解:∵D是线段AC的中点,AC=6cm,∴CD=AC=3cm,∴BC=BD﹣CD=12﹣3=9cm,故答案为:9.16.(3分)已知关于x的方程3a﹣x=+3的解是4,则a2﹣2a=3.【解答】解:将x=4代入方程,得:3a﹣4=2+3,解得:a=3,则a2﹣2a=32﹣2×3=9﹣6=3,故答案为:317.(3分)已知x2+3x=1,求代数式3x2+9x﹣2的值为1.【解答】解:3x2+9x﹣2=3(x2+3x)﹣2=3×1﹣2=1.故答案为:1.18.(3分)对于有理数x、y,定义一种新运算“※”:x※y=ax+by+c,其中a,b,c为常数,已知3※5=15,4※7=28,那么2※3=2.【解答】解:由3※5=15,4※7=28可得:,解得:,则2※3=2a+3b+c=2(13﹣2b)+3b+b﹣24=26﹣4b+3b+b﹣24=2,故答案为:2.19.(3分)将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°,∠HAF=35°,则∠CAD=15°.【解答】解:∵△ABC、△EAF、△DAH是等边三角形,∴∠BAC=60°,∠EAF=60°,∠DAH=60°,∵∠BAE=10°,∠HAF=35°,∴∠EAC=50°,∠FAD=25°,∴∠FAC=10°,∴∠CAD=∠FAD﹣∠FAC=15°,故答案为:15°.20.(3分)在图(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图(1)能变为图(2),则图(2)中A格内的数是4【解答】解:如图,将相邻两格用阴影区分出来.由于每次变换都是一个阴影格和相邻的无阴影格中的数据同时加1或减2,所以变换过程中,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.图(1)中对应的阴影格的数字之和为:0+5+2+7+8+5+0+6=33,图(1)中对应的无阴影格的数字之和为:1+4+3+6+4+5+2+4=29,图(2)中对应的阴影格的数字之和为:1+A+1=2+A,图(2)中对应的无阴影格的数字之和为:1+1=2,由上述分析可知:33﹣29=2+A﹣2,则可得A=4.故答案为:4.三、解答题(本大题共7小题,共50分)21.(9分)计算:(1)(﹣0.5)+(﹣)﹣(+1)(2)2+(﹣3)2×(﹣)(3)﹣+|﹣2|﹣(﹣1)2018【解答】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣)=2﹣=;(3)原式=﹣2﹣5+2﹣1=﹣6.22.(5分)先化简再求值:3x2+x+3(x2﹣x)﹣(6x2+x),其中x=﹣6.【解答】解:原式=3x2+x+3x2﹣4x﹣6x2﹣x=﹣4x,当x=﹣6时,原式=﹣4×(﹣6)=24.23.(6分)解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.24.(5分)如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段PH的长度是点P到直线BC的距离.【解答】解:(1)过点P画BC的垂线,垂足为H,如图所示;(2)过点P画AB的垂线,交BC于Q,如图所示;(3)线段PH的长度是点P到直线BC的距离.故答案为PH.25.(7分)(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=30°,∠AOC=30°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度数.【解答】解:(1)①∵∠COD都是直角,∴∠COD=90°,∵∠BOC=60°,∴∠BOD=30°,∵∠AOB是直角,∴∠AOB=90°,∵∠BOC=60°,∴∠AOC=30°,故答案为:30;30;②相等,∵∠AOB和∠COD都是直角,∴∠AOB=∠COD,∴∠AOB﹣∠COB=∠COD﹣∠BOC,即∠BOD=∠AOC;(2)设∠AOC=x°,则∠BOC=(100﹣x)°,∵∠COD=110°,∴∠BOD=110°﹣(100﹣x)°=x°+10°,∵∠AOD=∠BOC+70°,∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,解得:x=30,∴∠AOC=30°.26.(7分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;【解答】解:(1)设经过t秒时间P、Q两点相遇,解得t=30,所以经过30秒时间P、Q两点相遇.(2)∵AB=60cm,PA=3PB,∴PA=45cm,OP=65cm.∴点P、Q的运动时间为65秒,∵AB=60cm,AB=20cm,∴QB=20cm或40cm,∴点Q是速度为=cm/秒或=cm/秒.27.(11分)柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?【解答】解:(1)设需要甲车x辆,乙车y辆,根据题意得:,解得:.答:需要甲车6辆,乙车8辆.(2)设需要甲车a辆,乙车b辆,丙车(14﹣a﹣b)辆,根据题意得:5a+8b+10(140﹣a﹣b)=94,整理得:5a+2b=46,当b=3时,a=8,c=3;当b=8时,a=6,c=0.第一种:400×8+500×3+600×3=6500(元);第二种:400×6+500×8=6400(元).答:选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.。
绍兴市人教版七年级上册数学期末试卷及答案.doc一、选择题1.近年来,国家重视精准扶贫,收效显著.据统计约有65 000 000人脱贫,把65 000 000用科学记数法表示,正确的是( )A .0.65×108B .6.5×107C .6.5×108D .65×1062.4 =( )A .1B .2C .3D .43.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( ) A .30分钟 B .35分钟 C .42011分钟 D .36011分钟 4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( )A .()121826x x =-B .()181226x x =-C .()2181226x x ⨯=-D .()2121826x x ⨯=-5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒6.下列日常现象:①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;③体育课上,老师测量某个同学的跳远成绩;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.其中,可以用“两点确定一条直线”来解释的现象是( )A .①④B .②③C .③D .④7.观察下列算式,用你所发现的规律得出22015的末位数字是( )21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….A .2B .4C .6D .88.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D.为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式9.如图是由下列哪个立体图形展开得到的?()A.圆柱B.三棱锥C.三棱柱D.四棱柱10.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm,根据题意,可得方程为()A.2(x+10)=10×4+6×2 B.2(x+10)=10×3+6×2C.2x+10=10×4+6×2 D.2(x+10)=10×2+6×211.下列各数中,绝对值最大的是()A.2 B.﹣1 C.0 D.﹣312.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A.亏了10元钱B.赚了10钱C.赚了20元钱D.亏了20元钱二、填空题13.若x=2是关于x的方程5x+a=3(x+3)的解,则a的值是_____.14.若关于x的多项式2261x bx ax x-++-+的值与x的取值无关,则-a b的值是________15.在数轴上,点A,B表示的数分别是8-,10.点P以每秒2个单位长度从A出发沿数轴向右运动,同时点Q以每秒3个单位长度从点B出发沿数轴在B,A之间往返运动,设运动时间为t秒.当点P,Q之间的距离为6个单位长度时,t的值为__________.16.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,17.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____. 18.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.19.将520000用科学记数法表示为_____.20.﹣225ab π是_____次单项式,系数是_____. 21.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.22.我国高速公路发展迅速,据报道,到目前为止,全国高速公路总里程约为118000千米,用科学记数法表示为_____千米.23.方程x +5=12(x +3)的解是________. 24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.快车以200km/h 的速度由甲地开往乙地再返回甲地,慢车以75km/h 的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km ,则(1)甲乙两地相距多少千米?(2)从出发开始,经过多长时间两车相遇?(3)几小时后两车相距100千米?26.计算:(1)84(3)-÷⨯- (2)220192(3)(1)-+---27.(1)求出下列各数:①2的算术平方根;②﹣2716(2)将(1)中求出的每个数准确地表示在数轴上,将这些数按从小到大的顺序排列,并28.用尺规作图按下列语句画图:(1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .29.已知,若2(1)20a b ++-=,关于x 的方程2x+c=1的解为-1.求代数式22282(4)abc a b ab a b ---的值.30.如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,(1)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣c |;(2)若这五个点满足每相邻两个点之间的距离都相等,且|a |=|e |,|b |=3,直接写出b ﹣e 的值.四、压轴题31.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值.32.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
2018学年第一学期期末教学质量检测参考答案初一数学一、仔细选一选(每小题3分,共30分)二、细心填一填:(每小题3分,共18分)11、 0 12、_52__°_25__′__12__″ 13、 -2 14、 100 15、 3 16、 16 三、认真解一解:(8小题,共52分) 17、(1)原式=-9+4+18=13 (3分) (2)原式=-1-6-9=-16 (3分) 18、x=-3 (5分)19、化简得9x 2+6y 2+1 (3分)当31-=x ,2-=y 时, 结果=26 (2分) 20、(1) (2.4x+2.8 ) (3分)(2)当x=9时,2.4x+2.8=24.4元<25元,所以小华由学校乘出租车到博物馆钱够了.(3分) 21、(1)723513+=-x x 解得x=-8, (2分) 再将x=-8代入()a a x a -+=-283,解得a=-4 (2分) (2)a=-4,b=4,c=±1,()2018c b a -+=(0±1)2018=1 (2分)22、(1)∠DOM ,∠FOM ,∠CON (2分) (2)∵FO ⊥BO ∴∠AOF=90°∴∠AOC+∠DOF=90° (1分) ∵OM 平分∠DOF ∴∠DOF=2∠DOM ∵∠AOC:∠FOM=5:2∴∠AOC=50°,∠DOM=20° (1分) ∵∠B0D=∠AOC=50°∴∠BOM=∠B0D +∠M0D =50°+20°=70° (1分) ∴∠A0N=∠BOM=70° (1分)23、(1)(100×5-32+27-25+32+38)×2=1080(人) (3分) (2)设卖出女装x 套,男装(50-x )套 15x+30(50-x)=1080 解得x=28所以卖出女装28套,男装22套 (3分) 这天营业额=120×28+180×22=7320元 (2分) 24、(1)B 点表示的数是30,AC=120 (2分) (2)①BP= 30-3t (1分)②当P 点是A ,B 两个点的中点时,30-3t=15, t=5 (2分) 当B 点是A ,P 两个点的中点时,3t-30=30, t=20 (2分)③2次相遇 (1分)第一次相遇时P 点表示的数为-15 第二次相遇时P 点表示的数为4348 (2分)。
2017—2018学年度第一学期期末教学质量检测七年级数学科试题参考答案及评分标准说明:1.参考答案与评分标准给出了一种解法供参考,如果考生的解法与参考答案不同可比照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.2-1-c-n-j-y3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题3分,共30分。
1.A 2.A 3.C 4.B 5.D6.B 7.C 8.C 9.A 10.D二、填空题:本大题共6小题,每小题4分,共24分。
11.1.18×105 12.11 13.= -714.39 15.75 16.18cm三、解答题(一):本大题共3小题,每小题6分,共18分。
17.解:原式=3-2×25 ………………(3分)=3-50 ……………(5分)=-47 …………(6分)18.解:原式=10-1+a-1+a+a2+1+a-a2-a3…………………(2分)=9+3a-a3…………………(4分)1 8=3108……………(6分)19.解:∵m2-mn=7,mn-n2=-2 ……………………(2分)∴m2-n2= m2-mn+mn-n2 =5 …………………(4分)m2-2mn+n2= m2-mn-(mn –n2)=7+2=9 ……………(6分)四、解答题(二):本大题共3小题,每小题7分,共21分。
20.解: 2x+2-4=8+2-x ……(3分)∴2x+x=8+2+4-2 …………(4分)∴3x=12 …………(6分)∴x =4 ………………(7分)21.解:设这种服装每件成本是x 元,依题意得……………(1分)∴(1+40%)×0.8x - x=12 ……………………(3分) ∴1.12x - x=120.12x =12 ………………(5分)=100………………(6分)答:设这种服装每件成本是100元 …………………(7分)22.解:设∠AOB 的度数是x 0 ……………(1分)x+36………………(3分)x+36 ……(4分) 32x=144+36 32x=180 ……(5分) =120 ……(6分)答:∠AOB 的度数是1200 ……………… (7分)五、解答题(三):本大题共3小题,每小题9分,共27分。
绍兴市七年级上学期期末数学试题题及答案一、选择题1.当x 取2时,代数式(1)2x x -的值是( ) A .0B .1C .2D .3 2.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13B .﹣(﹣1)2和12C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)33.如图,数轴的单位长度为1,点A 、B 表示的数互为相反数,若数轴上有一点C 到点B的距离为2个单位,则点C 表示的数是( )A .-1或2B .-1或5C .1或2D .1或54.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28 B .30 C .32 D .345.如图,已知直线//a b ,点,A B 分别在直线,a b 上,连结AB .点D 是直线,a b 之间的一个动点,作//CD AB 交直线b 于点C,连结AD .若70ABC ︒∠=,则下列选项中D ∠不可能取到的度数为()A .60°B .80°C .150°D .170°6.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°7.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( )A .6cmB .3cmC .3cm 或6cmD .4cm8.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.下列式子中,是一元一次方程的是( )A .3x+1=4xB .x+2>1C .x 2-9=0D .2x -3y=010.若a<b,则下列式子一定成立的是( )A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( )A .2或2.5B .2或10C .2.5D .212.下列图形中,哪一个是正方体的展开图( )A .B .C .D .二、填空题13.若|x |=3,|y |=2,则|x +y |=_____.14.定义-种新运算:22a b b ab ⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.15.学校组织七年级部分学生参加社会实践活动,已知在甲处参加社会实践的有27人,在乙处参加社会实践的有19人,现学校再另派20人分赴两处,使在甲处参加社会实践的人数是乙处参加社会实践人数的2倍,设应派往甲处x 人,则可列方程______.16.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.17.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.18.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.19.8点30分时刻,钟表上时针与分针所组成的角为_____度.20.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为AM AB 、的中点,则PQ 的长为____________.21.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___.22.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.23.已知7635a ∠=︒',则a ∠的补角为______°______′.24.比较大小:﹣8_____﹣9(填“>”、“=”或“<“).三、压轴题25.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.26.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.27.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等.6 a b x -1 -2 ... (1)可求得 x =______,第 2021 个格子中的数为______;(2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.28.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数.(2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.29.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,则点P 到点Q 的d 追随值为d[PQ]=3.问题解决:(1)点M ,N 都在数轴上,点M 表示的数是1,且点N 到点M 的d 追随值d[MN]=a(a≥0),则点N 表示的数是_____(用含a 的代数式表示);(2)如图,点C 表示的数是1,在数轴上有两个动点A ,B 都沿着正方向同时移动,其中A点的速度为每秒3个单位,B 点的速度为每秒1个单位,点A 从点C 出发,点B 表示的数是b ,设运动时间为t(t>0).①当b=4时,问t 为何值时,点A 到点B 的d 追随值d[AB]=2;②若0<t≤3时,点A 到点B 的d 追随值d[AB]≤6,求b 的取值范围.30.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=20,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数______;点P表示的数______(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P、Q 同时出发,问点P运动多少秒时追上Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.31.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).32.如图所示,已知数轴上A,B两点对应的数分别为-2,4,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,B的距离相等,求点P对应的数x的值.(2)数轴上是否存在点P,使点P到点A,B的距离之和为8?若存在,请求出x的值;若不存在,说明理由.(3)点A,B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以5个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间.当点A与点B重合时,点P经过的总路程是多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】把x 等于2代入代数式即可得出答案.【详解】解:根据题意可得:把2x =代入(1)2x x -中得: (1)21==122x x -⨯, 故答案为:B.【点睛】本题考查的是代入求值问题,解题关键就是把x 的值代入进去即可.2.A解析:A【解析】【分析】根据乘方和绝对值的性质对各个选项进行判断即可.【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等.故选A.3.D解析:D【解析】【分析】如图,根据点A 、B 表示的数互为相反数可确定原点,即可得出点B 表示的数,根据两点间的距离公式即可得答案.【详解】如图,设点C 表示的数为m ,∵点A、B表示的数互为相反数,∴AB的中点O为原点,∴点B表示的数为3,∵点C到点B的距离为2个单位,=2,∴3m∴3-m=±2,解得:m=1或m=5,∴m的值为1或5,故选:D.【点睛】本题考查了数轴,熟练掌握数轴上两点间的距离公式是解题关键.4.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.5.A解析:A【解析】【分析】延长CD交直线a于E.由∠ADC=∠AED+∠DAE,判断出∠ADC>70°即可解决问题.【详解】解:延长CD交直线a于E.∵a∥b,∴∠AED=∠DCF,∵AB∥CD,∴∠DCF=∠ABC=70°,∴∠AED=70°∵∠ADC=∠AED+∠DAE,∴∠ADC>70°,故选A.【点睛】本题考查平行线的性质,三角形的外角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.6.B解析:B【解析】过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.解:过E作EF∥AB,∵AB∥CD,∴AB∥CD∥EF,∴∠C=∠FEC,∠BAE=∠FEA,∵∠C=44°,∠AEC为直角,∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,∴∠1=180°﹣∠BAE=180°﹣46°=134°,故选B.“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.7.D解析:D【解析】【分析】根据线段的和与差,可得MB的长,根据线段中点的定义,即可得出答案.【详解】当点C在AB的延长线上时,如图1,则MB=MC-BC,∵M是AC的中点,N是BC的中点,AB=8cm,∴MC=11()22AC AB BC=+,BN=12BC,∴MN=MB+BN,=MC-BC+BN,=1()2AB BC-BC+12BC,=12 AB,=4,同理,当点C在线段AB上时,如图2,则MN=MC+NC=12AC+12BC=12AB=4,,故选:D.【点睛】本题考查了线段的和与差,线段中点的定义,掌握线段中点的定义是解题的关键.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.A解析:A【解析】A. 3x+1=4x是一元一次方程,故本选项正确;B. x+2>1是一元一次不等式,故本选项错误;C. x2−9=0是一元二次方程,故本选项错误;D. 2x−3y=0是二元一次方程,故本选项错误。
七年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.-2的倒数是()A. 2B.C.D.2.据统计,绍兴市2018年财政收入为554.06亿元,近似数554.06亿精确到()A. 百分位B. 百万位C. 千万位D. 亿位3.多项式-2a3b+3a2-4的项数和次数分别为()A. 3,3B. 4,3C. 3,4D. 3,64.将一元一次方程去分母后,得()A. B. C. D.5.不小于-的最小整数是()A. B. C. D.6.已知一个角的余角比这个角的补角的一半小25°,那么这个角的度数为()A. B. C. D.7.如图,边长为(m+3)的正方形纸片剪去一个边长为m的正方形之后,余下部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则此长方形的周长是()A. B. C. D.8.有m辆客车及n个人,若每辆客车乘40人,则还有25人不能上车;若每辆客车乘45人,则还有5人不能上车.有下列四个等式:①40m+25=45m+5;②;③;④40m+25=45m-5.其中正确的是()A. ①③B. ①②C. ②④D. ③④9.已知线段AB=10cm,直线AB上有一点C,且BC=4cm,M是线段AC的中点,则AM的长()A. 7cmB. 3cmC. 3cm或7cmD. 7cm或9cm10.探索规律:右边是用棋子摆成的“H”字,第一个图形用了7个棋子,第二个图形用了12个棋子,按这样的规律摆下去,摆成第20个“H”字需要棋子()A. 97B. 102C. 107D. 112二、填空题(本大题共6小题,共18.0分)11.如果一个数的平方根等于它本身,那么这个数是______.12.52.42°=______°______′______″.13.若单项式3a3b n与-5a m+1b4所得的和仍是单项式,则m-n的值为______.14.对于有理数a,b,规定一种运算:a⊗b=a2-ab.如1⊗2=12-1×2=-1,则计算-5⊗[3⊗(-2)]=______.15.小马在解关于x的一元一次方程=3x时,误将-2x看成了+2x,得到的解为x=6,请你帮小马算一算,方程正确的解为x=______.16.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆.要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为______个.三、计算题(本大题共4小题,共24.0分)17.计算(1)(2)-14-18.解方程:1+=x-19.先化简,再求值:2(4y2-xy)-(3x2-2xy+2y2)-(-12x2-1),其中x=-,y=-2.20.小聪暑假的某天到阿姨开的服装店进行社会实践调查.如果该店每天营业时间是9:00~19:00,小聪每隔一小时记录该店的客流量(每一时段以100人为标准.超出记为正,不足记为负),如表所示,()请你帮小聪估算一下,该服装店一天营业个小时的客流量是多少?(单位:人);(2)该服装店在某天内男女装共卖出50套,据统计,每15名女顾客中有一人购买一套女装,每30名男顾客中有一人购买一套男装,若每套女装的售价为120元,每套男装的售价为180元,那么此店这天的营业额大约为多少元?四、解答题(本大题共4小题,共28.0分)21.光明中学组织学生到距离学校9千米的博物馆参观,学生小华因有事未能上包车,于是准备在学校门口直接乘出租车去博物馆,出租车的收费标准如下:x的代数式表示);(2)如果小华同学身上仅有25元钱,由学校乘出租车到博物馆钱够不够?请说明理由.22.已知方程x+7与关于x的方程3a-8=2(x+a)-a的解相同(1)求a的值;(2)若a、b在数轴上对应的点在原点的两侧,且到原点的距离相等,c是倒数等于本身的数,求(a+b-c)2018的值.23.如图,直线AB、CD、MN相交于O,FO⊥BO,OM平分∠DOF.(1)请直接写出图中所有与∠AON互余的角;(2)若∠AOC:∠FOM=5:2,求∠MOD与∠AON的度数.24.已知,如图,A、B、C分别为数轴上的三点,A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,C点在B点左侧,C点到A点距离是B点到A点距离的4倍.(1)求出数轴上B点对应的数及AC的距离.(2)点P从A点出发,以3单位/秒的速度向终点C运动,运动时间为t秒.①当P点在AB之间运动时,则BP=______.(用含t的代数式表示)②P点自A点向C点运动过程中,何时P,A,B三点中其中一个点是另外两个点的中点?求出相应的时间t.③当P点运动到B点时,另一点Q以5单位/秒的速度从A点出发,也向C点运动,点Q到达C点后立即原速返回到A点,那么Q点在往返过程中与P点相遇几次?直接写出相遇时P点在数轴上对应的数答案和解析1.【答案】D【解析】解:∵-2×()=1,∴-2的倒数是-.故选:D.根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.2.【答案】B【解析】解:近似数554.06亿精确到百万位,故选:B.根据题目中的数据可以得到精确到哪一位,本题得以解决.本题考查近似数和有效数字,解答本题的关键近似数和有效数字的含义,注意题目中数据的单位.3.【答案】C【解析】解:多项式-2a3b+3a2-4的项数和次数分别为:3,4.故选:C.利用几个单项式的和叫做多项式,每个单项式叫做多项式的项,多项式中次数最高的项的次数叫做多项式的次数,分别判断即可.此题主要考查了多项式,正确把握多项式的次数确定方法是解题关键.4.【答案】C【解析】解:去分母得:2x-(x-2)=4,故选:C.方程两边乘以4去分母得到结果,即可作出判断.此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.5.【答案】B【解析】解:∵2<<3,∴-3<-<-2,∴不小于-的最小整数是-2.故选:B.根据2<<3,可得-的范围,从而求解.考查了估算无理数的大小,解题关键是确定无理数的整数部分.“夹逼法”是估算的一般方法,也是常用方法.6.【答案】D【解析】解:设这个角的度数为x度,根据题意,得:90-x=(180-x)-25解得 x=50.答:这个角的度数为50°.故选:D.设这个角的度数为x度,则余角是(90-x)度,补角是(180-x)度,根据个角的余角比这个角的补角的一半还少25°即可列方程求解.此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解.7.【答案】C【解析】解:由面积的和差,得长方形的面积为(m+3)2-m2=(m+3+m)(m+3-m)=3(2m+3).由长方形的宽为3,可得长方形的长是(2m+3).长方形的周长是2[(2m+3)+3]=4m+12.故选:C.根据面积的和差,可得长方形的面积,根据长方形的面积公式,可得长方形的长,根据长方形的周长公式,可得答案.本题考查了平方差公式的几何背景,利用了面积的和差.8.【答案】B【解析】解:根据人数不变,列出方程:40m+25=45m+5;根据客车数不变,列出方程:=.故选:B.根据人数不变和客车数不变,分别列出关于m或n的一元一次方程,此题得解.本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.9.【答案】C【解析】解:①如图1所示,当点C在点A与B之间时,∵线段AB=10cm,BC=4cm,∴AC=10-4=6cm.∵M是线段AC的中点,∴AM=AC=3cm,②当点C在点B的右侧时,∵BC=4cm,∴AC=14cmM是线段AC的中点,∴AM=AC=7cm,综上所述,线段AM的长为3cm或7cm.故选:C.应考虑到A、B、C三点之间的位置关系的多种可能,即点C在点B的右侧或点C在点B的左侧两种情况进行分类讨论.本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.10.【答案】B【解析】解:图形①用棋子的个数=2×(2×1+1)+1;图形②用棋子的个数=2×(2×2+1)+2;图形③用棋子的个数=2×(2×3+1)+3;…摆成第20个“H”字需要棋子的个数=2×(2×20+1)+20=102个.故选:B.仔细观察图形的变化规律,找到题目变化的通项公式,然后代入求值即可.考查了图形的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.11.【答案】0【解析】解:一个数的平方根等于它本身,那么这个数是0,故答案为:0.根据一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根可得答案.此题主要考查了平方根,关键是掌握0的平方根是0.12.【答案】52 25 12【解析】解:52.42°=52°25′12″故答案为:52,25,12.先把0.42°化成分,得出25.2′,再把0.2′化成秒,即可得出答案.本题考查了度分秒之间的换算,注意:1°=60′,1′=60″.13.【答案】-2【解析】解:∵单项式3a3b n与-5a m+1b4所得的和仍是单项式,∴单项式3a3b n与-5a m+1b4是同类项,∴m+1=3,解得m=2,n=4,∴m-n=2-4=-2.故答案为:-2.首先可判断单项式3a3b n与-5a m+1b4是同类项,再由同类项的定义可得m、n的值,代入求解即可.本题考查了合并同类项的知识,解答本题的关键是掌握同类项中的两个相同.14.【答案】100【解析】解:根据题中的新定义得:3⊗(-2)=9+6=15,则原式=-5⊗15=25+75=100,故答案为:100原式利用题中的新定义计算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.【答案】3【解析】解:当x=6时,=3×6,解得:a=8,∴原方程是=3x,解得:x=3.故答案为:3.先把x=6代入=3x,求出a,然后再把a的值代入=3x中求x的解.本题考查了解一元一次方程,明确题目的意思,认真审题才能作答,本题难度稍大.16.【答案】16【解析】解:设要求分后这4堆苹果相同的个数为x,则要求分后,第一堆为x个,第二堆x-2个,第三堆x+3个,第四堆2x个,根据题意得,x+x-2+x+3+2x=37,∴x=8,∴要求分后第一堆为x=4个,第二堆x-2=6个,第三堆x+3=11个,第四堆2x=16个,∴最多的是第四堆,有16个,故答案为16.设要求分后这4堆苹果相同的个数为x,则要求分前第一堆为x个,第二堆x-2个,第三堆x+3个,第四堆2x个,利用四堆苹果的总数量为37个,建立方程求解,即可得出结论.此题主要考查了一元一次方程的应用,审清题意,设出要求分后这4堆苹果相同的个数为x是解本题的关键.17.【答案】解:(1)原式=-9+4+18=13;(2)原式=-1-×10-9=-1-6-9=-16.【解析】(1)原式利用乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【答案】解:去分母得:4+(1+3x)=4x-2(x-1),去括号,得4+1+3x=4x-2x+2,移项,得3x-4x+2x=2-4-1,合并同类项,得x=-3.【解析】去分母、去括号、移项、合并同类项即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.19.【答案】解:原式=8y2-2xy-3x2+2xy-2y2+12x2+1=6y2+9x2+1当x=,y=-2时,原式=6×4+9×+1=26.【解析】根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.20.【答案】解:(1)根据题意得:(100×5-32+27-25+32+38)×2=1080,则该服装店一天营业10个小时的客流量是1080人;(2)设卖出女装x套,男装(50-x)套,根据题意得:15x+30(50-x)=1080,解得:x=28,∴50-28=22,则这天营业额为120×28+180×22=7320元.【解析】(1)根据题意列出算式,计算即可求出值;(2)设卖出女装x套,男装(50-x)套,根据题意列出方程,求出方程的解得到x 的值,即可确定出所求.此题考查了正数与负数,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)由题意得,所付车费为:2.4(x-3)+10=2.4x+2.8(x≥3);(2)将x=9代入得:2.4×9+2.8=24.4(元),∵25>24.4,∴25元钱够到达博物馆.【解析】(1)根据3千米以内收费10元,超过3千米,每增加1千米收费2.4元,列代数式即可;(2)求出到达博物馆所需的钱数,然后判断25元钱是否能够到达博物馆.本题考查了列代数式和代数式求值,关键是读懂题意,根据题意列出代数式.22.【答案】解:(1)x+7,2(3x-1)=15x+70,6x-2=15x+70,9x=-72,x=-8,把x=-8代入3a-8=2(x+a)-a中得:3a-8=2(-8+a)-a,(2)由题意得:b=4,c=±1,∴(a+b-c)2018=(0±1)2018=1.【解析】(1)先求出方程x+7的解,再代入方程3a-8=2(x+a)-a,即可求a的值(2)根据已知条件可得b和c的值,最后代入求值即可解答.本题考查了同解方程,数轴和有理数的乘方运算的知识,解答本题的关键是理解方程解得含义.23.【答案】解:(1)∵FO⊥BO,∴∠BOF=∠AOF=90°,∴∠AON+∠FOM=90°,∵OM平分∠DOF,∴∠DOM=∠FOM,∵∠DOM=∠CON,∴与∠AON互余的角有:∠CON、∠DOM、∠MOF;(2)∵∠AOF=∠AON+∠FOM=90°,∵∠AOC:∠FOM=5:2,∴∠AOC=50°,∠DOM=20°,∵∠BOD=∠AOC=50°,∴∠BOM=∠BOD+∠MOD=50°+20°=70°,∴∠AON=∠BOM=70°.【解析】(1)根据垂线的性质可得∠BOF=∠AOF=90°,由角平分线和对顶角相等可得与∠AON互余的角有:∠CON、∠DOM、∠MOF;(2)先根据已知可得∠AOC=50°,∠DOM=20°,计算∠BOM的度数,所以可得∠AON的度数.本题考查了垂线的定义,角的平分线的定义,互余以及对顶角相等,正确理解角平分线的定义是关键.24.【答案】30-3t【解析】解:(1)∵A点对应的数为60,B点在A点的左侧,并且与A点的距离为30,∴B点对应的数为60-30=30;∵C点到A点距离是B点到A点距离的4倍,∴AC=4AB=4×30=120;(2)①当P点在AB之间运动时,∵AP=3t,∴BP=AB-AP=30-3t.故答案为30-3t;②当P点是A、B两个点的中点时,AP=AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ-BP=AB,∴5x-3x=30,解得x=15,此时P点在数轴上对应的数是:60-5×15=-15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x-24)+3x=90,解得x=,此时P点在数轴上对应的数是:30-3×=-48.综上,相遇时P点在数轴上对应的数为-15或-48.(1)根据A点对应的数为60,B点在A点的左侧,AB=30求出B点对应的数;根据AC=4AB求出AC的距离;(2)①当P点在AB之间运动时,根据路程=速度×时间求出AP=3t,根据BP=AB-AP求解;②分P点是A、B两个点的中点;B点是A、P两个点的中点两种情况讨论即可;③根据P、Q两点的运动速度与方向可知Q点在往返过程中与P点相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.根据AQ-BP=AB列出方程;第二次相遇是点Q到达C 点后返回到A点的途中.根据CQ+BP=BC列出方程,进而求出P点在数轴上对应的数.本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.。
绍兴市七年级上学期期末数学试题题及答案 一、选择题 1.如图,将线段AB 延长至点C ,使12BC AB =,D 为线段AC 的中点,若BD =2,则线段AB 的长为( )A .4B .6C .8D .12 2.将方程3532x x --=去分母得( ) A .3352x x --= B .3352x x -+=C .6352x x -+=D .6352x x --= 3.下列分式中,与2x y x y---的值相等的是() A .2x y y x +- B .2x y x y +- C .2x y x y -- D .2x y y x-+ 4.已知线段 AB =10cm ,直线 AB 上有一点 C ,且 BC =4cm ,M 是线段 AC 的中点,则 AM 的长( )A .7cmB .3cmC .3cm 或 7cmD .7cm 或 9cm5.﹣2020的倒数是( )A .﹣2020B .﹣12020C .2020D .120206.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式7.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .8.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( )A .∠AOC=∠BOCB .∠AOB=2∠BOCC .∠AOC=12∠AOBD .∠AOC+∠BOC=∠AOB9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠4 10.“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,用数学知识解释其道理应是( )A .两点确定一条直线B .两点之间,线段最短C .直线可以向两边延长D .两点之间线段的长度,叫做这两点之间的距离11.下列图形中,哪一个是正方体的展开图( )A .B .C .D .12.据统计,全球每年约有50万人因患重症登格热需住院治疗,其中很大一部分是儿童患者,数据“50万”用科学记数法表示为( )A .45010⨯B .5510⨯C .6510⨯D .510⨯二、填空题13.已知方程22x a ax +=+的解为3x =,则a 的值为__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.若代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m 的值是__.16.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.17.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.18.若12x y =⎧⎨=⎩是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________. 19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.21.如图,将1~6这6个整数分别填入如图的圆圈中,使得每边上的三个数之和相等,则符合条件的x 为_____.22.已知线段AB=8cm ,在直线AB 上画线段BC ,使它等于3cm ,则线段AC=______cm .23.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.24.一个由小立方块搭成的几何体,从正面、左面、上面看到的形状图如图所示, 这个几何体是由_________个小立方块搭成的 .三、解答题 25.计算:(1)23(1)27|2|--+-(2)2311(6)()232-⨯--26.(1)已知∠AOB =25°42′,则∠AOB 的余角为 ,∠AOB 的补角为 ; (2)已知∠AOB =α,∠BOC =β,OM 平分∠AOB ,ON 平分∠BOC ,用含α,β的代数式表示∠MON 的大小;(3)如图,若线段OA 与OB 分别为同一钟表上某一时刻的时针与分针,且∠AOB =25°,则经过多少时间后,△AOB 的面积第一次达到最大值.27.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 28.用尺规作图按下列语句画图:(1)画射线BC ,连接AC ,AB ;(2)反向延长线段AB 至点D ,使得DA =AB .29.已知,数轴上点A 、C 对应的数分别为a 、c ,且满足()2020710a c ++-=,点B 对应点的数为-3.(1)a =______,c =______;(2)若动点P 、Q 分别从A 、B 同时出发向右运动,点P 的速度为3个单位长度/秒;点Q 的速度为1个单位长度/秒,求经过多长时间P 、Q 两点的距离为43; (3)在(2)的条件下,若点Q 运动到点C 立刻原速返回,到达点B 后停止运动,点P 运动至点C 处又以原速返回,到达点A 后又折返向C 运动,当点Q 停止运动点P 随之停止运动.求在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数.30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.四、压轴题31.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.32.如图,在数轴上点A表示数a,点B表示数b,AB表示A点和B点之间的距离,且a,b满足|a+2|+(b+3a)2=0.(1)求A,B两点之间的距离;(2)若在线段AB上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一小球甲从点A处以1个单位/秒的速度向左运动,同时,另一个小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略小球的大小,可看做一个点)以原来的速度向相反的方向运动.设运动时间为t秒.①甲球到原点的距离为_____,乙球到原点的距离为_________;(用含t的代数式表示)②求甲乙两小球到原点距离相等时经历的时间.33.已知数轴上三点A,O,B表示的数分别为6,0,-4,动点P从A出发,以每秒6个单位的速度沿数轴向左匀速运动.(1)当点P到点A的距离与点P到点B的距离相等时,点P在数轴上表示的数是______;(2)另一动点R从B出发,以每秒4个单位的速度沿数轴向左匀速运动,若点P、R同时出发,问点P运动多少时间追上点R?(3)若M为AP的中点,N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若发生变化,请你说明理由;若不变,请你画出图形,并求出线段MN的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据题意设BC x =,则可列出:()223x x +⨯=,解出x 值为BC 长,进而得出AB 的长即可.【详解】解:根据题意可得:设BC x =,则可列出:()223x x +⨯=解得:4x =, 12BC AB =, 28AB x ∴==.故答案为:C.【点睛】 本题考查的是线段的中点问题,解题关键在于对线段间的倍数关系的理解,以及通过等量关系列出方程即可.2.C解析:C【解析】【分析】方程两边都乘以2,再去括号即可得解.【详解】3532x x --= 方程两边都乘以2得:6-(3x-5)=2x ,去括号得:6-3x+5=2x ,故选:C.【点睛】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项.3.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.解:原式=22x y x y x y y x++-=--, 故选:A .【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 4.C解析:C【解析】【分析】应考虑到A 、B 、C 三点之间的位置关系的多种可能,即点C 在点A 与B 之间或点C 在点B 的右侧两种情况进行分类讨论.【详解】①如图1所示,当点C 在点A 与B 之间时,∵线段AB=10cm ,BC=4cm ,∴AC=10-4=6cm .∵M 是线段AC 的中点,∴AM=12AC=3cm , ②如图2,当点C 在点B 的右侧时,∵BC=4cm ,∴AC=14cmM 是线段AC 的中点,∴AM=12AC=7cm . 综上所述,线段AM 的长为3cm 或7cm .故选C .【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.5.B解析:B【解析】【分析】根据倒数的概念即可解答.【详解】解:根据倒数的概念可得,﹣2020的倒数是12020-,【点睛】本题考查了倒数的概念,熟练掌握是解题的关键.6.B解析:B【解析】【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.【详解】解:A.为了解一沓钞票中有没有假钞,采用全面调查的方式,故不符合题意;B.为了解全区七年级学生节约用水的情况,采用抽样调查的方式,故符合题意;C.为了解某省中学生爱好足球的情况,采用抽样调查的方式,故不符合题意;D.为了解某市市民每天丢弃塑料袋数量的情况,采用抽样调查的方式,故不符合题意;故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.8.D解析:D【解析】A. ∵∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;C. ∵∠AOC=12∠AOB,∴∠AOB=2∠AOC=∠AOC+∠BOC,∴∠AOC=∠BOC,∴OC平分∠AOB,即OC是∠AOB的角平分线,正确,故本选项错误;D. ∵∠AOC+∠BOC=∠AOB,∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.故选D.点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或∠BOC)=12∠AOB.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.A解析:A【解析】【分析】根据题目可知:两棵树的连线确定了一条直线,可将两棵树看做两个点,再运用直线的公理可得出答案.【详解】解:“植树时只要定出两棵树的位置,就能确定这一行树所在的直线”,这种做法运用到的数学知识是“两点确定一条直线”.故答案为:A.【点睛】本题考查的知识点是直线公理的实际运用,易于理解掌握.11.D解析:D【解析】【分析】根据由平面图形的折叠及立体图形的表面展开图的特点解题.【详解】解:A 、能围成正方体的4个侧面,但.上、下底面不能围成,故不是正方体的展开图;B 、C 、四个面连在了起不能折成正方体,故不是正方体的展开图;D 、是“141"型,所以D 是正方体的表面展开图.故答案是D.【点睛】本题考查正方体的表面展开图及空间想象能力,熟练掌握正方体的展开图是解决本题的关键.12.B解析:B【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将50万用科学记数法表示为5510⨯,故B 选项是正确答案.【点睛】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数,表示时正确确定a 的值以及n 的值是解决本题的关键.二、填空题13.2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a 的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 15.2【解析】解:mx2+5y2﹣2x2+3=(m ﹣2)x2+5y2+3,∵代数式mx2+5y2﹣2x2+3的值与字母x 的取值无关,则m ﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类解析:2【解析】解:mx 2+5y 2﹣2x 2+3=(m ﹣2)x 2+5y 2+3,∵代数式mx 2+5y 2﹣2x 2+3的值与字母x 的取值无关,则m﹣2=0,解得m=2.故答案为2.点睛:本题主要考查合并同类项的法则.即系数相加作为系数,字母和字母的指数不变.与字母x的取值无关,即含字母x的系数为0.16.【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】根据题意可得:∠AOB=(90解析:141【解析】【分析】根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.【详解】根据题意可得:∠AOB=(90-54)+90+15=141°.故答案为141°.【点睛】此题主要考查角度的计算与方位,熟练掌握,即可解题.17.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.18.3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把代入方程组得:,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【解析:3【解析】【分析】把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】解:把12xy=⎧⎨=⎩代入方程组得:2722a bb a+=⎧⎨+=⎩,①+②得:3(a+b)=9,则a+b=3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.21.2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键解析:2【解析】【分析】直接利用有理数的加法运算法则得出符合题意的答案.【详解】解:如图所示:x的值为2.故答案为:2.【点睛】此题主要考查了有理数的加法,正确掌握相关运算法则是解题关键.22.5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+解析:5或11【解析】【分析】由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.【详解】由于C点的位置不确定,故要分两种情况讨论:当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于11cm或5cm.23.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.24.5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.解析:5【解析】【分析】【详解】根据题意可得:小立方块搭成的几何体如下图所示,所以这个几何体是由5个小立方块搭成的.考点:几何体的三视图.三、解答题25.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.26.(1)64°18′,154°18′;(2)∠MON =2β+a ;(3)15011分 【解析】【分析】(1)依据余角和补角的定义即可求出∠AOB 的余角和补角;(2)依据角平分线的定义表示出∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,最后再依据∠MON 与这些角的关系求解即可;(3)当OA ⊥OB 时面积最大,此时∠AOB =90°,根据角的和差关系可得求出三角形OBC 面积第一次达到最大的时间.【详解】解:(1)∵∠AOB =25°42',∴∠AOB 的余角=90°﹣25°42'=64°18′,∠AOB 的补角=180°﹣25°42'=154°18′;故答案为:64°18′,154°18′;(2)①如图1:∵∠AOB=α,∠BOC=β∴∠AOC=∠AOB+∠BOC=90°+30°=120°∵OM平分∠AOB,ON平分∠BOC,∴∠AOM=∠BOM=12∠AOB=12α,∠CON=∠BON=12∠COB=12β,∴∠MON=∠BOM+∠CON=2β+a;②如图2,∠MON=∠BOM﹣∠BON=a2β-;③如图3,∠MON =∠BON ﹣∠BOM =2βα-. ∴∠MON 为2β+a 或a 2β-或2βα-. (3)当OA ⊥OB 时,△AOB 的面积第一次达到最大值,此时∠AOB =90°,设经过x 分钟后,△AOB 的面积第一次达到最大值,根据题意得:6x+25﹣60x ×30=90, 解得x =15011. 【点睛】 此题考查了是角平分线的定义、角的和差、余角和补角的定义、三角形的面积以及角的计算以及钟面角,熟练掌握相关知识是解题的关键,解题时注意:分针60分钟转一圈,每分钟转动的角度为:360°÷60=6°;时针12小时转一圈,每分钟转动的角度为:360°÷12÷60=0.5°.27.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式12199=-+⨯ 11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.28.(1)见详解;(2)见详解.【解析】【分析】(1)根据尺规作图过程画射线BC ,连接AC ,AB 即可;(2)根据尺规作图过程反向延长线段AB 至点D ,使得DA =AB 即可.【详解】解:如图所示:(1)(1)射线BC ,连接AC ,AB 即为所求作的图形;(2)如图所示即为所求作的图形.【点睛】本题考查了作图−−复杂作图、直线、射线、线段,解决本题的关键是根据语句准确画图.29.(1)-7,1.(2)经过43秒或83秒P ,Q 两点的距离为43.(3)在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【解析】【分析】(1)由绝对值和偶次方的非负性列方程组可解;(2)设经过t 秒两点的距离为43,根据题意列绝对值方程求解即可; (3)分类讨论:点P 未运动到点C 时;点P 运动到点C 返回时;当点P 返回到点A 时.分别求出不同阶段的运动时间,进而求出相关点所表示的数即可.【详解】(1)由非负数的性质可得:7010a c +=⎧⎨-=⎩, ∴7a =-,1c =,故答案为:-7,1;(2)设经过t 秒两点的距离为43, 由题意得:41433t t ⨯+-=, 解得43t =或83, 答:经过43秒或83秒P ,Q 两点的距离为43; (3)点P 未运动到点C 时,设经过x 秒P ,Q 相遇, 由题意得:34x x =+,∴2x =,表示的数为:7321-+⨯=-,点P 运动到点C 返回时,设经过y 秒P ,Q 相過,由题意得:()34217y y ++=--⎡⎤⎣⎦,∴3y =,表示的数是:()331710⨯----=⎡⎤⎣⎦,当点P 返回到点A 时,用时163秒,此时点Q 所在位置表示的数是13-, 设再经过z 秒相遇,由题意得:()1373z z +=---, ∴53z =, 表示的数是:57323-+⨯=-, 答:在整个运动过程中,两点P ,Q 同时到达的点在数轴上表示的数分别是-1,0,-2.【点睛】本题综合考查了绝对值和偶次方的非负性、利用方程来解决动点问题与行程问题,本题难度较大.30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .【解析】【分析】(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;(3)根据余角的性质,即可判定.【详解】(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522COD AOD AOC ∠=∠=∠=⨯︒=︒, ∵90DOE ∠=︒.∴902565COE DOE COD ∠=∠-∠=︒-︒=︒, 180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;(2)平分∵OD 平分AOC ∠, ∴12COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒∴∠DOC+∠COE=∠AOD+∠BOE=90°∴∠COE=∠BOE∴OE 平分BOC ∠;(3)由题意,得∠DOE=∠DOC+∠COE=90°∠AOD+∠BOE=90°,∠AOD=∠DOC∴与COD ∠互余的角有:COE ∠、∠BOE【点睛】此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.四、压轴题31.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.32.2+t6-2t或2t-6【解析】分析:(1)、先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B 两点之间的距离;(2)、设BC的长为x,则AC=2x,根据AB的长度得出x的值,从而得出点C所表示的数;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0<t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.详解:(1)、由题意知a=-2,b=6,故AB=8.(2)、设BC的长为x,则AC=2x, ∵BC+AC=AB,∴x+2x=8,解得x=83,∴C点表示的数为6-8 3=103.(3)①2+t;6-2t或2t-6.②当2+t=6-2t时,解得t=43,当2+t=2t-6时,解得t=8.∴t=43或8.点睛:本题考查了非负数的性质,方程的解法,数轴,两点间的距离,有一定难度,运用分类讨论思想、方程思想及数形结合思想是解题的关键.33.(1)1;(2)点P运动5秒时,追上点R;(3)线段MN的长度不发生变化,其长度为5.【解析】试题分析:(1)由已知条件得到AB=10,由PA=PB,于是得到结论;(2)设点P运动x秒时,在点C处追上点R,于是得到AC=6x BC=4x,AB=10,根据AC-BC=AB,列方程即可得到结论;(3)线段MN的长度不发生变化,理由如下分两种情况:①当点P在A、B之间运动时②当点P运动到点B左侧时,求得线段MN的长度不发生变化.试题解析:解:(1)(1)∵A,B表示的数分别为6,-4,∴AB=10,∵PA=PB,∴点P表示的数是1,(2)设点P运动x秒时,在点C处追上点R(如图)则:AC=6x BC=4x AB=10∵AC-BC=AB∴ 6x-4x=10解得,x=5∴点P运动5秒时,追上点R.(3)线段MN的长度不发生变化,理由如下:分两种情况:点P在A、B之间运动时:MN=MP+NP=AP+BP=(AP+BP)=AB=5点P运动到点B左侧时:MN=MP-NP=AP-BP=(AP-BP)=AB=5综上所述,线段MN的长度不发生变化,其长度为5.点睛:此题主要考查了一元一次方程的应用、数轴,以及线段的计算,解决问题的关键是根据题意正确画出图形,要考虑全面各种情况,不要漏解.。
期末测试(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分) 1.-2的绝对值是(C )A .-2B .-12C .2D .122.(湖州中考)当x =1时,代数式4-3x 的值是(A )A .1B .2C .3D .43.(诸暨期末)在实数3,0,0.2,π2,4,3.141 592 6中,无理数的个数是(B )A .1B .2C .3D .44.(湖州模拟)支付宝与“滴滴打车”联合推出优惠,“滴滴打车”一夜之间红遍大江南北,据统计,2016年“滴滴打车”账户流水总金额达到4 730 000 000亿元,用科学记数法表示为(B )A .4.73×108B .4.73×109C .4.73×1010D .4.73×10115.(丽水青田期末)下列计算正确的是(D )A .3a +a =3a 2B .2a +3b =5abC .-3ab -2ab =abD .-3ab +2ab =-ab6.(绍兴上虞区期末)如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条这样的墨线,能解释这一实际应用的数学知识是(A )A .两点确定一条直线B .垂线段最短C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .两点之间,线段最短第6题图 第7题图7.如图,点O 在直线AB 上,射线OC 平分∠DOB ,若∠COB =35°,则∠AOD 等于(C )A .35°B .70°C .110°D .145°8.(台州椒江区期末)2016年11月13日,第二届台州国际马拉松在市体育馆开跑,此次比赛分全程马拉松,半程马拉松和迷你马拉松,比赛启动网上报名,规模设计为10 000人,其中全程马拉松1 500名,迷你马拉松设5 000人,与去年第一届马拉松相比,半程马拉松的名额增加了40%,设第一届报名参加半程马拉松的有x 人,则可得方程(D )A .x +40%=3 500B .40%x =3 500C .x ÷(1+40%)=3 500D .x (1+40%)=3 5009.如图,面积为5的正方形ABCD 的顶点A 在数轴上,且表示的数为1,若AD =AE ,则数轴上点E 所表示的数为(B )A .- 5B .1- 5C .-1-52D .32- 510.(绍兴柯桥区期末)将1,2,3,4,…,50这50个自然数,任意分成25组,每组两个数,将每组的两个数中的任意一个数记作a ,另一个数记作b ,代入代数式12(|a -b |+a +b )中进行计算,求出其结果.25组分别代入可求出25个结果,则这25个值的和最大值是(C )A .325B .650C .950D .1 275二、填空题(每小题4分,共24分) 11.-125的立方根是-5. 12.70°的余角为20°.13.单项式-4x 2y 3的系数是-4,次数是5.14.若a 、b 互为相反数,m 、n 互为倒数,则2 017a +2 016b +mnb 的值为0.15.对任意四个有理数a ,b ,c ,d ,定义:⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,已知⎪⎪⎪⎪⎪⎪2x -4x 1=18,则x =3.16.已知一列数:1,-2,3,-4,5,-6,7,…,将这列数排成如下形式:第1行 1 第2行 -2 3 第3行 -4 5 -6 第4行 7 -8 9 -10 第5行 11 -12 13 -14 15 …按照上述规律排下去,那么第10行从左边开始数的第5个数是-50.三、解答题(共66分) 17.(10分)计算:(1)(23-59-712)×(-36); (2)-22+23×116-3-27. 解:原式=17. 解:原式=1.18.(10分)解方程:(1)5x +3(2-x )=8; (2)x -32-4x +15=1.解:x =1. 解:x =-9.19.(8分)(绍兴上虞区期末)先化简,再求值:2(3x 2-x +4)-3(2x 2-2x +3),其中x =-1.解:原式=6x 2-2x +8-(6x 2-6x +9) =6x 2-2x +8-6x 2+6x -9 =4x -1.当x =-1时,原式=4x -1=4×(-1)-1=-5.20.(8分)如图所示,点A 、B 、C 分别代表三个村庄,根据下列条件画图.(1)画射线AC ,画线段AB ;(2)若线段AB 是连结A 村和B 村的一条公路,现C 村庄也要修一条公路与A 、B 两村庄之间的公路连通,为了减少修路开支,C 村庄应该如何修路?请在同一图上用三角板画出示意图,并说明画图理由.解:(1)如图所示.(2)如图所示,由垂线段最短,作出CD ⊥AB 即可.21.(8分)(西湖区期末)如图,O 在直线AC 上,OD 是∠AOB 的平分线,OE 在∠BOC 内.(1)若OE 是∠BOC 的平分线,则有OD ⊥OE ,试说明理由; (2)若∠BOE =12∠EOC ,∠DOE =72°,求∠EOC 的度数.解:(1)∵OD 是∠AOB 的平分线,OE 是∠BOC 的平分线, ∴∠BOD =12∠AOB ,∠BOE =12∠BOC .∴∠DOE =12(∠AOB +∠BOC )=12∠AOC =90°,即OD ⊥OE .(2)设∠EOB =x ,则∠EOC =2x ,则∠BOD =12(180°-3x ),∵∠BOE +∠BOD =∠DOE ,∴x +12(180°-3x )=72°,解得x =36°.故∠EOC =2x =72°.22.(10分)某班计划买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍,乒乓球拍每副定价100元,乒乓球每盒定价25元.经洽谈后,甲店每买一副球拍赠一盒乒乓球,乙店全部按定价的9折优惠.该班需球拍5副,乒乓球若干盒(不少于5盒).问:(1)用代数式分别表示购买乒乓球x 盒时,甲、乙两家商店的付款金额; (2)当购买乒乓球多少盒时,两种优惠办法付款一样? 解:(1)设该班购买乒乓球x 盒,则 甲:100×5+(x -5)×25=25x +375, 乙:0.9×100×5+0.9x ×25=22.5x +450. (2)25x +375=22.5x +450,解得x =30.∴当购买乒乓球30盒时,两种优惠办法付款一样.23.(12分)如图,已知数轴上A 、B 两点对应的数分别为-4和2,点P 为数轴上一动点,其对应的数为x .(1)若点P 到点A 、点B 的距离相等,写出点P 对应的数;(2)数轴上是否存在点P ,使点P 到点A 、点B 的距离之和为10?若存在,求出x 的值;若不存在,请说明理由;(3)若点A 、点B 和点P (点P 在原点)同时向右运动,它们的速度分别为2、1、1个长度单位/分,问:多少分钟后P 点到点A 、点B 的距离相等?解:(1)∵A 、B 两点对应的数分别为-4和2,∴AB =6. ∵点P 到点A 、点B 的距离相等,∴P 到点A 、点B 的距离为3.∴点P 对应的数是-1. (2)存在.设P 表示的数为x ,①当P在A点左侧时,P A+PB=10,即-4-x+2-x=10,解得x=-6.②当P在B点右侧时,P A+PB=10,即x-2+x-(-4)=10,解得x=4.(3)∵点B和点P的速度分别为1、1个长度单位/分,∴无论运动多少分钟,PB始终距离为2.设运动t分钟后P点到点A、点B的距离相等,则t-(2t-4)=2,解得t=2.∴2分钟后P点到点A、点B的距离相等.。
浙江省绍兴市七年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、仔细选一选 (共12题;共24分)1. (2分) (2019七上·南浔期中) 某种零件,标明要求是φ20 (φ表示直径,单位:毫米),则以下零件的直径合格的是()A . 19.50mmB . 20.2mmC . 19.95mmD . 20.05mm2. (2分) (2018七上·南召期中) 的相反数是()A .B .C .D .3. (2分) (2020七上·青岛期末) 某小组为了解本校学生的身高情况,分别做了四种抽样调查的方案,你认为方案比较合理的是()A . 分别从每个年级随机调查3名学生的身高情况B . 随机调查本校八年级50名学生的身高情况C . 随机调查本校各年级10%的学生的身高情况D . 调查邻近学校200名学生的身高情况4. (2分)下列变形不是根据等式性质的是()A .B . 若﹣a=x,则x+a=0C . 若x﹣3=2﹣2x,则x+2x=2+3D . 若﹣x=1,则x=﹣25. (2分)(2018·遵义模拟) 下列运算正确的是()A . a+2a2=3a3B . a2•a3=a6C . (a3)2=a5D . a6÷a2=a46. (2分)三角形的两边长分别为3cm和5cm,下列长度的四条线段中能作为第三边的是()A . 2cmB . 4cmC . 8cmD . 10cm7. (2分)方程|2x﹣1|=2的解是()A . x=B . x=-C . x=-或x=﹣D . x=﹣8. (2分)如果一个多边形的内角和等于720°,则这个多边形是()A . 四边形B . 五边形C . 六边形D . 七边形9. (2分)下列4个图形中,能用∠1、∠AOB、∠O三种方法表示同一角的图形是()A .B .C .D .10. (2分) (2017七下·东城期末) 在大课间活动中,同学们积极参加体育锻炼.小丽在全校随机抽取一部分同学就“一分钟跳绳”进行测试,并以测试数据为样本绘制如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图,若“一分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学生,根据图中提供的信息,下列说法不正确的是()A . 第四小组有10人B . 第五小组对应圆心角的度数为45°C . 本次抽样调查的样本容量为50D . 该校“一分钟跳绳”成绩优秀的人数约为480人11. (2分) (2019七上·南通月考) 京广高铁全线通车.一列往返于北京和广州的火车,沿途要经过石家庄、郑州、武汉、长沙四站,铁路部门要为这趟列车准备印制()种车票.A . 6B . 12C . 15D . 3012. (2分)某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费),超过3km以后,每增加1km,加收2.4元(不足1km按1km计).某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程的最大值是()A . 11B . 8C . 7D . 5二、认真填一填 (共4题;共4分)13. (1分) (2016七上·长泰期中) 现在网购已成为人们的一种消费方式,在2015年的“双11”促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为________元.14. (1分) (2019八上·台安月考) 如图,△ABC≌△DBE,A、D、C在一条直线上,且∠A=60°,∠C=35°,则∠DBC=________°.15. (1分) (2019七上·昌平期中) 如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值是________.16. (1分) (2017七上·鄞州月考) 计算:36÷4×(-)= ________.三、细心算一算 (共3题;共30分)17. (15分) (2016七上·老河口期中) 计算:(1) 3 +(﹣2 )+5 +(﹣8 )(2)(﹣)÷(3)﹣24÷(﹣2)3﹣|﹣|÷(﹣)+[1﹣(﹣3)2].18. (5分) (2019七上·翁牛特旗期中) 已知关于x,y的多项式中不含项,求k的值.19. (10分)解方程:(1) 8﹣2x=2(2x+1)(2)﹣ =0.5.四、用心想一想 (共4题;共40分)20. (10分) (2019八下·大名期中) 某校八年级640名学生在“计算机应用”培训前、后各参加了一次水平相同的测试,并以同一标准分成“不合格”、“合格”、“优秀”3个等级,为了解培训效果,用抽样调查的方式从中抽取32名学生的2次测试等级,并绘制成条形统计图:(1)这32名学生经过培训,测试等级“不合格”的百分比比培训前减少了多少?(2)估计该校八年级学生中,培训前、后等级为“合格”与“优秀”的学生各有多少名?21. (10分) (2019七下·越城期末) 如图为一台灯示意图,其中灯头连接杆DE始终和桌面FG平行,灯脚AB始终和桌面FG垂直,(1)当∠EDC=∠DCB=120°时,求∠CBA;(2)连杆BC、CD可以绕着B、C和D进行旋转,灯头E始终在D左侧,设∠EDC,∠DCB,∠CBA的度数分别为α,β,γ,请画出示意图,并直接写出示意图中α,β,γ之间的数量关系.22. (5分) (2020七上·溧水期末) 小明去买纸杯蛋糕,售货员阿姨说:“一个纸杯蛋糕12元,如果你明天来多买一个,可以参加打九折活动,总费用比今天便宜24元.”问:小明今天计划买多少个纸杯蛋糕?若设小明今天计划买纸杯蛋糕的总价为x元,请你根据题意完善表格中的信息,并列方程解答.单价数量总价今天12x明天23. (15分) (2017七上·简阳期末) 已知:b是最大的负整数,且a,b,c满足|a+b|+(4﹣c)2016=0,试回答问题:(1)请直接写出a,b,c的值;(2)若a,b,c所对应的点分别为A,B,C,点P为一动点,其对应的数为x,点P在0到1之间运动时(即0≤x≤1),请化简式子:|x+1|﹣|1﹣x|+2|x﹣4|;(3)在(1)、(2)的条件下,点A,B,C开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和C分别以每秒3个单位长度和8个单位长度的速度向右运动,假设t秒后,若点B与点C之间的距离表示为BC,点A与B之间的距离表示为AB.请问:AB﹣BC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.参考答案一、仔细选一选 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、认真填一填 (共4题;共4分)13-1、14-1、15-1、16-1、三、细心算一算 (共3题;共30分)17-1、17-2、17-3、18-1、19-1、19-2、四、用心想一想 (共4题;共40分) 20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、。
2017-2018学年浙江省绍兴市柯桥区七年级(上)期末数学试卷一、选择题(本题共10个小题,每小题2分,共20分)1.(2分)下列各数中,比﹣2小的数是()A.﹣ B.﹣ C.﹣ D.﹣12.(2分)在柯桥区2017年政府报告中提到,区政府大力推进“五水共治”、”五气合治“,五年来共投入资金24100000000元,将24100000000用科学记数法表示为()A.2.41×1011B.2.41×1010C.24.1×1010D.0.241×10113.(2分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b4.(2分)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c5.(2分)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170° D.150°6.(2分)若a<<b,且a、b是两个连续整数,则a+b的值是()A.2 B.3 C.4 D.57.(2分)若点B在线段AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC的中点,则线段PQ的长为()A.3cm B.5cm C.6cm D.8cm8.(2分)若方程组的解是,则方程组的解是()A.B.C.D.9.(2分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)10.(2分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()A.4 B.3 C.0 D.﹣2二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)写出一个比5小的无理数:.12.(3分)度、分、秒换算:27.24°=°′″.13.(3分)请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是.14.(3分)课本上有这样一个问题:如图,从A地到B地有3条路可走,为了尽快到达,人们通常选择其中的直路,这个问题与线段的一个基本事实相关,这个基本事实是.15.(3分)如图,点C是线段AB上一点,点D是线段AC的中点,若AC=6cm,BD=12cm,则BC=cm.16.(3分)已知关于x的方程3a﹣x=+3的解是4,则a2﹣2a=.17.(3分)已知x2+3x=1,求代数式3x2+9x﹣2的值为.18.(3分)对于有理数x、y,定义一种新运算“※”:x※y=ax+by+c,其中a,b,c为常数,已知3※5=15,4※7=28,那么2※3=.19.(3分)将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°,∠HAF=35°,则∠CAD=.20.(3分)在图(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图(1)能变为图(2),则图(2)中A格内的数是三、解答题(本大题共7小题,共50分)21.(9分)计算:(1)(﹣0.5)+(﹣)﹣(+1)(2)2+(﹣3)2×(﹣)(3)﹣+|﹣2|﹣(﹣1)201822.(5分)先化简再求值:3x2+x+3(x2﹣x)﹣(6x2+x),其中x=﹣6.23.(6分)解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)24.(5分)如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段的长度是点P到直线BC的距离.25.(7分)(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=°,∠AOC=°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度数.26.(7分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;27.(11分)柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?2017-2018学年浙江省绍兴市柯桥区七年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10个小题,每小题2分,共20分)1.(2分)下列各数中,比﹣2小的数是()A.﹣ B.﹣ C.﹣ D.﹣1【解答】解:根据两个负数,绝对值大的反而小可知﹣2.5<﹣2.故选:C.2.(2分)在柯桥区2017年政府报告中提到,区政府大力推进“五水共治”、”五气合治“,五年来共投入资金24100000000元,将24100000000用科学记数法表示为()A.2.41×1011B.2.41×1010C.24.1×1010D.0.241×1011【解答】解:241 0000 0000=2.41×1010,故选:B.3.(2分)下列各式的计算结果正确的是()A.2x+3y=5xy B.5x﹣3x=2x2C.7y2﹣5y2=2 D.9a2b﹣4ba2=5a2b【解答】解:A、2x和3y不是同类项,不能合并.故本选项错误;B、5x和3x是同类项,可以合并,但结果为2x,故本选项错误;C、7y2和5y2是同类项,可以合并,但结果为2y,故本选项错误;D、9a2b和4ba2是同类项,可以合并,结果为5a2b,故本选项正确.故选:D.4.(2分)﹣[a﹣(b﹣c)]去括号正确的是()A.﹣a﹣b+c B.﹣a+b﹣c C.﹣a﹣b﹣c D.﹣a+b+c【解答】解:﹣[a﹣(b﹣c)]=﹣(a﹣b+c)=﹣a+b﹣c,故选:B.5.(2分)将一副直角三角尺如图放置,若∠AOD=20°,则∠BOC的大小为()A.140°B.160°C.170° D.150°【解答】解:∵将一副直角三角尺如图放置,∠AOD=20°,∴∠COA=90°﹣20°=70°,∴∠BOC=90°+70°=160°.故选:B.6.(2分)若a<<b,且a、b是两个连续整数,则a+b的值是()A.2 B.3 C.4 D.5【解答】解:∵4<5<9,∴2<<3,由a<<b,且a、b是两个连续的整数,得到a=2,b=3,则a+b=5,故选:D.7.(2分)若点B在线段AC上,AB=6cm,BC=10cm,P、Q分别是AB、BC的中点,则线段PQ的长为()A.3cm B.5cm C.6cm D.8cm【解答】解:由分析得:PQ=PB+BQ=(AB+BC),AB=6cm,BC=10cm,所以PQ=8cm,故选D.8.(2分)若方程组的解是,则方程组的解是()A.B.C.D.【解答】解:由题意得:,解得.故选:A.9.(2分)由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克.设3月份鸡的价格为m元/千克,则()A.m=24(1﹣a%﹣b%)B.m=24(1﹣a%)b% C.m=24﹣a%﹣b% D.m=24(1﹣a%)(1﹣b%)【解答】解:∵今年2月份鸡的价格比1月份下降a%,1月份鸡的价格为24元/千克,∴2月份鸡的价格为24(1﹣a%),∵3月份比2月份下降b%,∴三月份鸡的价格为24(1﹣a%)(1﹣b%),故选:D.10.(2分)如下表,从左到右在每个小格子中都填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等,则第2018个格子中的数为()A.4 B.3 C.0 D.﹣2【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴4+a+b=a+b+c,解得c=4,a+b+c=b+c+(﹣2),解得a=﹣2,所以,数据从左到右依次为4、﹣2、b、4、﹣2、b,第9个数与第三个数相同,即b=3,所以,每3个数“4、﹣2、3”为一个循环组依次循环,∵2018÷3=672…2,∴第2018个格子中的整数与第2个格子中的数相同,为﹣2.故选:D.二、填空题(本大题共10小题,每小题3分,共30分)11.(3分)写出一个比5小的无理数:.【解答】解:∵2<25,∴<=5.故答案为.12.(3分)度、分、秒换算:27.24°=27°14′24″.【解答】解:27.24°=27° 14′24″,故答案为:27,14,24.13.(3分)请你写出一个同时符合下列条件的代数式,(1)同时含有字母a,b;(2)是一个4次单项式;(3)它的系数是一个正数,你写出的一个代数式是2a3b.【解答】解:根据题意,满足这些条件的代数式可以是2a3b(答案不唯一),故答案为:2a3b14.(3分)课本上有这样一个问题:如图,从A地到B地有3条路可走,为了尽快到达,人们通常选择其中的直路,这个问题与线段的一个基本事实相关,这个基本事实是两点之间,线段最短.【解答】解:这个基本事实是:两点之间,线段最短.故答案为:两点之间,线段最短.15.(3分)如图,点C是线段AB上一点,点D是线段AC的中点,若AC=6cm,BD=12cm,则BC=9cm.【解答】解:∵D是线段AC的中点,AC=6cm,∴CD=AC=3cm,∴BC=BD﹣CD=12﹣3=9cm,故答案为:9.16.(3分)已知关于x的方程3a﹣x=+3的解是4,则a2﹣2a=3.【解答】解:将x=4代入方程,得:3a﹣4=2+3,解得:a=3,则a2﹣2a=32﹣2×3=9﹣6=3,故答案为:317.(3分)已知x2+3x=1,求代数式3x2+9x﹣2的值为1.【解答】解:3x2+9x﹣2=3(x2+3x)﹣2=3×1﹣2=1.故答案为:1.18.(3分)对于有理数x、y,定义一种新运算“※”:x※y=ax+by+c,其中a,b,c为常数,已知3※5=15,4※7=28,那么2※3=2.【解答】解:由3※5=15,4※7=28可得:,解得:,则2※3=2a+3b+c=2(13﹣2b)+3b+b﹣24=26﹣4b+3b+b﹣24=2,故答案为:2.19.(3分)将三个相同的等边三角形(三个内角都是60°)的一个顶点重合放置,若∠BAE=10°,∠HAF=35°,则∠CAD=15°.【解答】解:∵△ABC、△EAF、△DAH是等边三角形,∴∠BAC=60°,∠EAF=60°,∠DAH=60°,∵∠BAE=10°,∠HAF=35°,∴∠EAC=50°,∠FAD=25°,∴∠FAC=10°,∴∠CAD=∠FAD﹣∠FAC=15°,故答案为:15°.20.(3分)在图(1)中,对任意相邻的上下或左右两格中的数字同时加1或减2,这算作一次操作,经过若干次操作后,图(1)能变为图(2),则图(2)中A格内的数是4【解答】解:如图,将相邻两格用阴影区分出来.由于每次变换都是一个阴影格和相邻的无阴影格中的数据同时加1或减2,所以变换过程中,所有阴影格中的数字之和与所有无阴影格中的数字之和的差不变.图(1)中对应的阴影格的数字之和为:0+5+2+7+8+5+0+6=33,图(1)中对应的无阴影格的数字之和为:1+4+3+6+4+5+2+4=29,图(2)中对应的阴影格的数字之和为:1+A+1=2+A,图(2)中对应的无阴影格的数字之和为:1+1=2,由上述分析可知:33﹣29=2+A﹣2,则可得A=4.故答案为:4.三、解答题(本大题共7小题,共50分)21.(9分)计算:(1)(﹣0.5)+(﹣)﹣(+1)(2)2+(﹣3)2×(﹣)(3)﹣+|﹣2|﹣(﹣1)2018【解答】解:(1)原式=﹣0.5﹣1.5﹣1=﹣3;(2)原式=2+9×(﹣)=2﹣=;(3)原式=﹣2﹣5+2﹣1=﹣6.22.(5分)先化简再求值:3x2+x+3(x2﹣x)﹣(6x2+x),其中x=﹣6.【解答】解:原式=3x2+x+3x2﹣4x﹣6x2﹣x=﹣4x,当x=﹣6时,原式=﹣4×(﹣6)=24.23.(6分)解下列方程或方程组:(1)3(2x﹣1)=2(1﹣x)﹣1(2)【解答】解:(1)3(2x﹣1)=2(1﹣x)﹣1,6x﹣3=2﹣2x﹣1,x=,(2),整理得:,②﹣①得:﹣x=1,x=﹣1,把x=﹣1代入①中得:y=5,∴方程组的解为:.24.(5分)如图,点P是线段AB上的一点,请在图中完成下列操作.(1)过点P画BC的垂线,垂足为H;(2)过点P画AB的垂线,交BC于Q;(3)线段PH的长度是点P到直线BC的距离.【解答】解:(1)过点P画BC的垂线,垂足为H,如图所示;(2)过点P画AB的垂线,交BC于Q,如图所示;(3)线段PH的长度是点P到直线BC的距离.故答案为PH.25.(7分)(1)如图1,∠AOB和∠COD都是直角,①若∠BOC=60°,则∠BOD=30°,∠AOC=30°;②改变∠BOC的大小,则∠BOD与∠AOC相等吗?为什么?(2)如图2,∠AOB=100°,∠COD=110°,若∠AOD=∠BOC+70°,求∠AOC的度数.【解答】解:(1)①∵∠COD都是直角,∴∠COD=90°,∵∠BOC=60°,∴∠BOD=30°,∵∠AOB是直角,∴∠AOB=90°,∵∠BOC=60°,∴∠AOC=30°,故答案为:30;30;②相等,∵∠AOB和∠COD都是直角,∴∠AOB=∠COD,∴∠AOB﹣∠COB=∠COD﹣∠BOC,即∠BOD=∠AOC;(2)设∠AOC=x°,则∠BOC=(100﹣x)°,∵∠COD=110°,∴∠BOD=110°﹣(100﹣x)°=x°+10°,∵∠AOD=∠BOC+70°,∴∠AOD=∠AOB+∠BOD=100°+10°+x°=100°﹣x°+70°,解得:x=30,∴∠AOC=30°.26.(7分)如图,射线OM上有三点A、B、C,满足OA=20cm,AB=60cm,BC=10cm,点P从点O出发,沿OM方向以1cm/秒的速度匀速运动,点Q从点C出发在线段CO上向点O匀速运动,两点同时出发,当点Q运动到点O时,点P、Q停止运动.(1)若点Q运动速度为2cm/秒,经过多长时间P、Q两点相遇?(2)当P在线段AB上且PA=3PB时,点Q运动到的位置恰好是线段AB的三等分点,求点Q的运动速度;【解答】解:(1)设经过t秒时间P、Q两点相遇,则t+2t=90,解得t=30,所以经过30秒时间P、Q两点相遇.(2)∵AB=60cm,PA=3PB,∴PA=45cm,OP=65cm.∴点P、Q的运动时间为65秒,∵AB=60cm,AB=20cm,∴QB=20cm或40cm,∴点Q是速度为=cm/秒或=cm/秒.27.(11分)柯桥区某企业因为发展需要,从外地调运来一批94吨的原材料,现有甲、乙、丙三种车型共选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载)(1)若全部物资都用甲、乙两种车型来运送,需运费6400元,问分别需甲、乙两种车型各几辆?(2)为了节省运费,该地政府打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为14辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?【解答】解:(1)设需要甲车x辆,乙车y辆,根据题意得:,解得:.答:需要甲车6辆,乙车8辆.(2)设需要甲车a辆,乙车b辆,丙车(14﹣a﹣b)辆,根据题意得:5a+8b+10(140﹣a﹣b)=94,整理得:5a+2b=46,∴a=,当b=3时,a=8,c=3;当b=8时,a=6,c=0.第一种:400×8+500×3+600×3=6500(元);第二种:400×6+500×8=6400(元).答:选甲车8辆、乙车3辆、丙车3辆,此时运费为6500元;选甲车6辆、乙车8辆,此时运费为6400元.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。