概率统计总练习题(6)
- 格式:ppt
- 大小:459.50 KB
- 文档页数:33
九年级数学概率统计练习题及答案一、选择题1. 下列各项中,属于概率的是:A. 李明抽到红球的可能性是10%B. 今天下雨的可能性是80%C. 买彩票中奖的可能性是1/1000000D. 扔一次骰子掷出的点数是4的可能性是1/62. 某班级有30个学生,其中有18个男生和12个女生。
从班级中随机选取一个学生,男生和女生被选到的概率相等。
那么,被选到的学生是男生的概率是多少?A. 2/3B. 1/3C. 3/5D. 1/23. 一副扑克牌中有52张牌,其中红心牌有13张。
从扑克牌中随机抽一张牌,抽到红心牌的概率是多少?A. 1/4B. 1/2C. 1/13D. 1/52二、填空题1. 从数字1、2、3、4、5中任意抽取一个数,抽到奇数的概率是_________。
2. 一组数据:10、12、14、16、18中,大于15的数的概率是_________。
3. 一枚硬币抛掷,正面向上的概率是_________。
三、计算题1. 某班级有40个学生,其中有18个男生和22个女生。
从班级中随机选取两个学生,分别计算:a) 选出的两个学生都是男生的概率是多少?b) 选出的两个学生一个是男生一个是女生的概率是多少?2. 一副扑克牌中有52张牌,其中黑色牌有26张。
从扑克牌中随机抽取两张牌,并将它们放回,再抽取一张牌。
计算:a) 三次抽取都是黑色牌的概率是多少?b) 三次抽取中至少有一张黑色牌的概率是多少?四、解答题1. 一组数据:5、7、9、11、13,从中随机抽取一个数。
计算抽取奇数的概率。
答案解析:一、选择题1. D2. A3. A二、填空题1. 3/52. 3/53. 1/2三、计算题1.a) 18/40 × 17/39 = 9/20 × 17/39 = 153/780b) 18/40 × 22/39 + 22/40 × 18/39 = 396/780 = 2/5 2.a) 26/52 × 26/52 × 26/52 = 27/64b) 1 - (26/52 × 26/52 × 26/52) = 37/64四、解答题1. 3/5通过以上习题,希望能够帮助同学们加深对数学概率统计的理解和掌握。
考研数学三(概率统计)-试卷6(总分64, 做题时间90分钟)1. 选择题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。
1.设随机变量X和Y都服从标准正态分布,则SSS_SINGLE_SELA X+Y服从正态分布BX 2 +Y 2服从χ 2分布CX 2和Y 2都服从χ 2分布DX 2/Y 2服从F分布2.设总体X服从参数为λ(λ>0)的泊松分布,X1,X2,…,Xn(n≥2)为来自该总体的简单随机样本。
则对于统计量SSS_SINGLE_SELAET1>ET2,DT1>DT2BET1>ET2,DT1<DT2CET1<ET1,DT1>DT2DET1<ET2,DT1<DT23.设X1,X2,X3,X4为来自总体N(1,σ 2)(σ>0)的简单随机样本,则统计量的分布为SSS_SINGLE_SELA N(0,1)B t(1)Cχ 2 (1)D F(1,1)4.设X1,X2,X3为来自正态总体N(0,σ 2 )的简单随机样本,则统计量服从的分布为SSS_SINGLE_SELA F(1,1)B F(2,1)C t(1)D t(2)5.设总体X~B(m,θ),X1,X2,…,Xn为来自该总体的简单随机样本,为样本均值,则SSS_SINGLE_SELA (m—1)nθ(1一θ)B m(n一1)θ(1一θ)C (m一1)(n一1)θ(1一0)D nmθ(1一θ)6.设n个随机变量X1,X2,…,Xn独立同分布,DX1=σ 2,则SSS_SINGLE_SELA S是σ的无偏估计量B S是σ的最大似然估计量C S是σ的相合估计量(即一致估计量)D S与相互独立7.设一批零件的长度服从正态分布N(μ,σ 2 ),其中μ,σ 2均未知。
现从中随机抽取16个零件,测得样本均值=20(cm),样本标准差s=1(cm),则μ的置信度为0.90的置信区间是SSS_SINGLE_SELABCD2. 填空题1.设总体X ~N(0,2 2 ),而X 1 ,X 2 ,…,X 15 是来自总体X 的简单随机样本,则随机变量服从________分布,参数为________。
第6章 参数估计选择题1.设n X X X ,...,,21是来自正态总体X 的简单随机样本,X 的分布函数F(x;θ)中含未知参数,则(A )用矩估计法和最大似然估计法求出的θ的估计量相同 (B) 用矩估计法和最大似然估计法求出的θ的估计量不同 (C )用矩估计法和最大似然估计法求出的θ的估计量不一定相同 (D) 用最大似然估计法求出的θ的估计量是唯一的2.设n X X X ,...,,21是来自正态总体X 的简单随机样本,EX=μ,DX=σ2,其中μ,σ2均为未知参数,X =1ˆμ,12ˆX =μ,下面结论哪个是错误的。
(A )X =1ˆμ是μ的无偏估计 (B) 12ˆX =μ是μ的无偏估计 (C )X =1ˆμ比12ˆX =μ 有效 (D) ∑=-ni i X n 12)(1μ是σ2的最大似然估计量 3.设n X X X ,...,,21是来自正态分布总体N(μ,σ2)的简单随机样本,其中数学期望μ已知,则总体方差σ2的最大似然估计量是(A ) ∑=--n i i X X n 12)(11 (B) ∑=-ni i X X n 12)(1 (C ) ∑=--n i i X n 12)(11μ (D) ∑=-n i i X n 12)(1μ 4.已知总体X 在区间[0,θ]上均匀分布,其中θ是未知参数,设n X X X ,...,,21是来自X 的简单随机样本,X 是样本均值,},...,max {1)(n n X X X = 是最大观测值,则下列选项错误的是 (A ))(n X 是θ的最大似然估计量 (B) )(n X 是θ的无偏估计量 (C )X 2是θ的矩估计量 (D) X 2是θ的无偏估计量5. 设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),m X X X ,...,,21和n Y Y Y ,...,,21分别是来自总体X和Y 的简单随机样本,样本方差分别为2X S 与2Y S ,则σ2的无偏估计量是(A )22YX S S + (B) 22)1()1(Y X S n S m -+-(C )222-++n m S S Y X (D) 2)1()1(22-+-+-n m S n S m Y X6. 设X 是从总体X 中取出的简单随机样本n X X X ,...,,21的样本均值,则X 是μ的矩估计,如果(A )X~N(μ,σ2) (B) X 服从参数为μ的指数分布 (C )P (X=m )=μ(1-μ)m-1,m=1,2,… (D) X 服从[0,μ]上的均匀分布 填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,...,,21是取自总体X 的简单随机样本,其均值、方差分别为X ,S 2,如果2)32(ˆS a X a -+=λ为λ的无偏估计,则a= 。
概率统计练习题答案一、选择题1.答案:B2.答案:C3.答案:A4.答案:D5.答案:C6.答案:A7.答案:B8.答案:D9.答案:C10.答案:B11.答案:A12.答案:C13.答案:B14.答案:D15.答案:A二、填空题1.答案:0.252.答案:0.93.答案:0.154.答案:25.答案:0.046.答案:137.答案:0.3338.答案:0.849.答案:0.62510.答案:0.8三、解答题1.答案:设事件A为随机抽取的球为红球,事件B为随机抽取的球为蓝球。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.6,P(B) = 0.4,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.4 = 0.6。
所以,答案为0.6。
2.答案:设事件A为选手射中靶心,事件B为选手准确报告靶心位置。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2) +P(A|B3)P(B3)。
已知P(A|B1) = 0.8,P(A|B2) = 0.6,P(A|B3) = 0.4,P(B1) = 0.3,P(B2) = 0.4,P(B3) = 0.3,代入公式可得P(A) = 0.8*0.3 + 0.6*0.4 + 0.4*0.3 = 0.62。
所以,答案为0.62。
3.答案:设事件A为选手拿到奖品,事件B为选手答对问题。
根据条件概率公式,P(A|B) = P(AB)/P(B)。
已知P(A) = 0.4,P(B) = 0.6,P(AB) = 0.24,代入公式可得P(A|B) = 0.24/0.6 = 0.4。
所以,答案为0.4。
4.答案:设事件A为抽取的学生是男生,事件B为抽取的学生是高中生。
根据全概率公式,P(A) = P(A|B1)P(B1) + P(A|B2)P(B2)。
已知P(A|B1) = 0.6,P(A|B2) = 0.4,P(B1) = 0.7,P(B2) = 0.3,代入公式可得P(A) = 0.6*0.7 + 0.4*0.3 = 0.54。
概率统计练习题一、选择题1. 某事件A的概率为0.3,事件B的概率为0.5,且事件A和B互斥,那么事件A和B至少有一个发生的概率是多少?A. 0.2B. 0.5C. 0.8D. 0.32. 某工厂生产的产品中,有5%的产品是次品。
如果随机抽取100件产品,那么至少有5件次品的概率是多少?A. 0.95B. 0.99C. 0.05D. 0.013. 抛一枚均匀硬币两次,求出现至少一次正面的概率。
A. 0.25B. 0.5C. 0.75D. 1.04. 某机器发生故障的概率为0.01,如果该机器连续工作10天,那么至少发生一次故障的概率是多少?A. 0.01B. 0.1C. 0.62D. 0.995. 某次考试的及格率为70%,如果一个班级有30名学生,那么这个班级至少有20名学生及格的概率是多少?A. 0.95B. 0.5C. 0.05D. 0.01二、填空题6. 假设一个随机变量X服从二项分布,参数为n=10,p=0.4,那么P(X=3)的值是____________。
7. 某地区居民的平均寿命为75岁,标准差为10岁。
根据正态分布的性质,该地区寿命超过85岁的居民占总人口的百分比大约是____________。
8. 假设随机变量Y服从泊松分布,参数为λ=5,那么P(Y=3)的值是____________。
9. 某工厂生产的产品中,次品率是0.03。
如果随机抽取100件产品,那么恰好有3件次品的概率是____________。
10. 某公司有100名员工,其中60%是男性。
如果随机选取10名员工,那么至少有7名男性的概率是____________。
三、简答题11. 请简述什么是大数定律,并给出一个实际生活中的例子。
12. 请解释什么是中心极限定理,并说明为什么它在统计学中非常重要。
13. 描述什么是条件概率,并给出一个条件概率的计算例子。
14. 解释什么是统计推断,并简述其在数据分析中的作用。
15. 什么是假设检验?请简述其基本步骤。
第6章 参数估计选择题1.设n X X X ,...,,21是来自正态总体X 的简单随机样本,X 的分布函数F(x;θ)中含未知参数,则(A )用矩估计法和最大似然估计法求出的θ的估计量相同 (B) 用矩估计法和最大似然估计法求出的θ的估计量不同 (C )用矩估计法和最大似然估计法求出的θ的估计量不一定相同 (D) 用最大似然估计法求出的θ的估计量是唯一的2.设n X X X ,...,,21是来自正态总体X 的简单随机样本,EX=μ,DX=σ2,其中μ,σ2均为未知参数,X =1ˆμ,12ˆX =μ,下面结论哪个是错误的。
(A )X =1ˆμ是μ的无偏估计 (B) 12ˆX =μ是μ的无偏估计 (C )X =1ˆμ比12ˆX =μ 有效 (D) ∑=-ni i X n 12)(1μ是σ2的最大似然估计量 3.设n X X X ,...,,21是来自正态分布总体N(μ,σ2)的简单随机样本,其中数学期望μ已知,则总体方差σ2 的最大似然估计量是(A ) ∑=--n i i X X n 12)(11 (B) ∑=-ni i X X n 12)(1 (C ) ∑=--n i i X n 12)(11μ (D) ∑=-n i i X n 12)(1μ 4.已知总体X 在区间[0,θ]上均匀分布,其中θ是未知参数,设n X X X ,...,,21是来自X 的简单随机样本,X 是样本均值,},...,max {1)(n n X X X = 是最大观测值,则下列选项错误的是 (A ))(n X 是θ的最大似然估计量 (B) )(n X 是θ的无偏估计量 (C )X 2是θ的矩估计量 (D) X 2是θ的无偏估计量5. 设总体X~N(μ1,σ2),总体Y~N(μ2,σ2),m X X X ,...,,21和n Y Y Y ,...,,21分别是来自总体X和Y 的简单随机样本,样本方差分别为2X S 与2Y S ,则σ2 的无偏估计量是 (A )22YX S S + (B) 22)1()1(Y X S n S m -+-(C )222-++n m S S YX (D) 2)1()1(22-+-+-n m S n S m Y X6. 设X 是从总体X 中取出的简单随机样本n X X X ,...,,21的样本均值,则X 是μ的矩估计,如果(A )X~N(μ,σ2) (B) X 服从参数为μ的指数分布 (C )P (X=m )=μ(1-μ)m-1,m=1,2,… (D) X 服从[0,μ]上的均匀分布 填空题1.假设总体X 服从参数为λ的泊松分布,n X X X ,...,,21是取自总体X 的简单随机样本,其均值、方差分别为X ,S 2 ,如果2)32(ˆS a X a -+=λ为λ的无偏估计,则a= 。
概率统计自测题(六)一、填空题1.电灯泡使用寿命在1000h 以上的概率为0.2,则3个灯泡在使用1000h 后,最多只有1个坏了的概率为2.设随机变量X 服从泊松分布,且}2{}1{===x P X P ,则==}1{X P3.设随机变量X 与都服从正态分布,且Y ),0(2σN 31}0,0{=≥≤Y X P ,则 =<>}0,0{Y X P4.一射手对同一目标独立地进行4次射击,每次射击的命中率相同,如果至少命中一次的概率为,用81/80X 表示该射手命中目标的次数,则数学期望= )(2X E5.随机变量X 的数学期望100)(=X E ,方差10)(=X D ,则由切比雪夫不等式 ≥<<}12080{X P6.设总体,为取自总体的一个样本,)2,(~2µN X n X X X ,,,21L X 为样本均值,要使1.0)(2≤−µX E 成立,则样本容量 ≥n7.设总体,是来自总体),(~2σµN X n X X X ,,,21L X 的一个样本,参数都是未知的,则2,σµµ的矩估计量为 的矩估计量为 2σ8.假设检验中,显著性水平α表示9.随机变量ξ服从指数分布,参数 时,。
72)(2=ξE =λ二、考虑一元二次方程,其中分别是将一骰子接连掷两次先后出现的点数,求该方程有实根的概率和有重根的概率.02=++C Bx x C B ,p q 三、设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别惟3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份.(1) 求先抽到的一份是女生表的概率;(2) 已知后抽到的一份是男生表,求先抽到的一份是女生表的概率.四、设二维随机变量的密度函数为 ),(Y X ⎪⎩⎪⎨⎧≤≤≤≤+=其它,020,20),sin(),(ππy x y x A y x p试求: (1)常数A ;(2);(3)DX EX ,XY Y X ρ ),,cov( 。
第一章练习题1. 如图,设1、2、3、4、5、6表示开关,用B表示“电路接通”i A表示“第i个开关闭合”请用i A表示事件B解:2.一大型超市声称,进入商店的小偷有60%可以被电视监测器发现,有40%被保安人员发现,有20%被监测器和保安人员同时发现,试求小偷被发现的概率.解:3. 周昂,李虎和张文丽是同班学生.如果他们到校先后次序的模式的出现的可能性是一样的,那么周昂比张文丽先到校的概率是多少?解:4.甲、乙两城市都位于长江下游,根据一百余年来,气象的记录,知道甲、乙两城市一年中雨天占的比例分别为20%和18%,两地同时下雨的比例为12%,问(1) 乙市为雨天时,甲市为雨天的概率是多少?(2) 甲市为雨天时,乙市为雨天的概率是多少?(3) 甲、乙两城市至少有一个为雨天的概率是多少?解:5.某种动物由出生活到20岁的概率为0.8,活到25岁的概率为0.4,问现年20岁的这种动物活到25岁的概率是多少?解:6.发报台分别以0.6和0.8发出信号”*”和”+”,由于通信受到干扰,当发出信号为”*”时,收报台分别以概率0.8和0.2收到信号”*”和”+”.又若发出信号为”+”时,收报台分别以概率0.9和0.1收到信号”+”和”*”,求当收报台收到信号”*”时,发报台确实发出信号”*”的概率.解:7.某工厂由甲、乙、丙三个车间生产同一种产品,每个车间的产量分别占全厂的25%,35%,40%,各车间产品的次品率分别为5%,4%,2%,求全厂产品的次品率.解:8.某高校甲系二年级1、2、3班的学生人数分别为16、25、25人,其中参加义务献血的人数分别为12、15、20人,从这三个班中随机抽取一个,再从该班的学生名单中任意抽取2人.(1)求第一次抽取的是已献血的人的概率;(2)如果已知第二次抽到的是未参加献血的,求第一次抽到的是已献血的学生的概率.解:9.美国总统常常从经济顾问委员会寻求各种建议.假设有三个持有不同经济理论的顾问(Perlstadt,Kramer,和Oppenheim).总统正在考虑采取一项关于工资和价格控制的新政策,并关注这项政策对失业率的影响.每位顾问就这种影响给总统一个个人预测,他根据以前与这些顾问一起工作的经验,总统已经形成了关于每位顾问有正确的经济理论的可能性的一个先验估计,分别为P(Perlstadt正确)=1/6P(Kramer正确)=1/3P(Oppenheim正确)=1/2假设总统采纳了所提出的政策,一年后,失业率上升了,总统应如何调整他对其顾问的理论正确性的估计.解:10.甲、乙、丙三人向同一架飞机射击.设甲、乙、丙击中的概率分别为0.4,0.5,0.7,又设只有一人击中,飞机坠毁的概率为0.2;若二人击中,飞机坠毁的概率为0.6;若三人击中,飞机必坠毁.求飞机坠毁的概率.解:11.如果)()(C B P C A P ≥,)()(C B P C A P ≥,则()().P A P B ≥证明:12.选择题(1).设C B A ,,三事件两两独立,则C B A ,,相互独立的充分必要条件是( )(A) A 与BC 独立; (B) AB 与C A 独立; (C) AB 与AC 独立; (D) B A 与C A 独立. (2).设当事件A 和B 同时发生时,事件C 必发生,则下述结论正确的是( )(A) 1)()()(-+≤B P A P C P ; (B) 1)()()(-+≥B P A P C P ; (C) )()(AB P C P =; (D) )()(B A P C P =.(3).设事件A 和B 满足B A ⊂,0)(>B P ,则下列选项必然成立的是( )(A) )()(B A P A P <; (B) )()(B A P A P ≤; (C) )()(B A P A P >; (D) )()(B A P A P ≥.(4).n 张奖券中有m 张可以中奖,现有k 个人每人购买一站张,其中至少有一个人中奖的概率为( )(A)knk mn m C C C 11--; (B)k nC m; (C) k nk m n C C --1; (D)∑=ki k ni mC C 1.(5).一批产品的一、二、三等品各占60%、30%、10%,从中任意取出一件,结果不是三等品,则该产品为一等品的概率为( )(A)21; (B) 41; (C) 31; (D) 32.第二章练习题1.一袋中有3个白球5个红球,从中任取2个球,求其中红球个数X的概率函数.解:2.自动生产线在调整以后出现废品的概率为p,生产过程中出现废品时立即重新调整,求两次调整之间生产的合格品数X的分布.解:3.一张考卷上有5道题目,同时每道题列出4个选择答案,其中有一个答案是正确的.某学生凭猜测能答对至少4道题的概率是多少?解:4.分析病史资料表明,因患感冒而最终死亡(相互独立)比例占0.2%.试求,目前正在患感冒的1000个病人中:(1)最终恰有4个人死亡的概率;(3)最终死亡人数不超过2个人的概率.解:5.某公司经理拟将一提案交董事会代表批准,规定如提案获多数代表赞成则通过.经理估计各代表对此提案投赞成票的概率是0.6,且各代表投票情况独立.为以较大概率通过提案,试问经理请三名懂事代表好还是五名好?解:6.一电话交换台每分钟收到呼唤次数服从参数为4的泊松分布,求(1)每分钟恰有8次呼唤的概率;(2)每分钟呼唤次数大于10次的概率.解:7.设某射手有5发子弹,连续向一目标射击,直到击中或子弹用完为止.已知其每次击中的概率为0.8,设X为射击的次数.求(1)X的概率分布;(2)未用完子弹的概率;(3)用完子弹且击中目标的概率;(4)已知用完子弹的条件下,其射中目标的概率.解:8.设随机变量X 的概率密度为:∞<<∞-=-x ce x f x)(,求:(1)常数c ;(2)X 的值落)1,1(-在内的概率; (3)X 的分布函数.解:9.设若)4,3(~N X ,(1)求}3{},2{},104{},52{>>≤<-≤<X P X P X P X P ; (2)确定c ,使得}{}{c X P c X P ≤=>.解:10.设)2,1(~U X ,求23+=X Y 的分布. 解:10.研究了英格兰在1875—1951年内,在矿山发生导致10人以上死亡的事故的频繁程度,得知相继两次事故之间的时间T (以日计)服从指数分布,其概率密度为: 002411)(241≤>⎪⎩⎪⎨⎧=-t t et f t,求分布函数)(t F ,并求概率}10050{<<T P . 解:11.选择题:(1).如果随机变量X 服从指数分布,则随机变量)2,min(X Y =的分布函数( ). (A) 是连续函数; (B) 至少有两个间断点; (C) 是阶梯函数; (D) 恰好有一个间断点.(2).设)1,1(~N X ,概率密度函数为)(x ϕ,下述选项正确的是( ).(A) 5.0)0()0(=≤=≥X P X P ; (B) 5.0)1()1(=≥=≤X P X P ;(C) )()(x x -=ϕϕ,),(+∞-∞∈x ; (D) )(1)(x F x F --=,),(+∞-∞∈x . (3).设!/)(k e a k X P k λλ-==),4,2,0( =k ,是随机变量X 的概率分布,则λ,a 一定满足( ).(A)0>λ; (B) 0>a ; (C) 0>λa ; (D) 0>λ且0>a . (4).设随机变量X 的密度函数为)1(1)(2x x f +=π,则X Y 2=的概率密度函数为( ).(A))41(12x +π; (B))4(22x +π; (C))1(22x +π; (D))4(12x +π.(5) .设随机变量),(~211σμN X ,随机变量),(~222σμN Y ,且1{1}P X μ-<> 2{1},P Y μ-<则必有(A)21σσ>; (B) 21σσ<; (C) 21μμ>; (D) 21μμ<.第三章练习题1.甲乙二人轮流投篮,假定每次甲的命中率为0.4,乙的命中率为o.6,且各次投篮相互独立.甲先投,乙再投,直到有人命中为止.求甲乙投篮次数X 与Y 的联合分布.解:2.设随机变量(X,Y)的联合概率密度为=),(y x f ⎩⎨⎧--其它,0),6(y x k ;40,20<<<<y x求:(1)常数k ;(2));3,1(<<Y X P (3));5.1(<X P (4))4(≤+Y X P解:3.已知X 与Y 同分布且概率密度为⎪⎩⎪⎨⎧<<=其他,030,814)(3x x x f设事件}0{>>=a X A 和}0{>>=a Y B 独立,且9/5)(=⋃B A P ,求常数a .解:4.一批产品中有a 件合格品与b 件次品.每次从这批产品中任取一件产品,共取两次,抽样方式是:(1)放回抽样;(2)不放回抽样.设随机变量X 及Y 分别表示第一次及第二次取出的次品数,写出上述两种情况下二维随机变量(X ,Y )的概率分布及边缘分布,并说明X 与Y 是否独立.解:5.设二维随机变量),(Y X 的联合密度函数为⎪⎩⎪⎨⎧≤≤=其他,01,421),(22y x y x y x f求条件密度函数和条件概率}2143{=>x Y P 解:6.设二维随机变量),(Y X 的概率函数为求:(1))0,1(≤≥Y X P ;(2))02(≤=Y X P ;(3)讨论Y X ,的独立性; 解:7.设X 与Y 两个相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=.,0;10,1)(其它x x f X ⎪⎩⎪⎨⎧≤>=-.0,0;0,)(y y e y f y Y 求随机变量Y X Z +=的概率密度.解:8.设随机变量X ,Y 相互独立,并且]1,0[~U X ,)1(~e Y ,求Y X +,},max{Y X ,},min{Y X 的概率密度函数.解:9.设(X ,Y )的分布律为试求:(1)Y X Z +=解:10.选择题:(1).下列函数可以作为二维分布函数的是( ).(A) ⎩⎨⎧>+=.,0,8.0,1),(其他y x y x F (B) ⎪⎩⎪⎨⎧>>⎰⎰=--.,0,0,0,),(00其他y x dsdt ey x F y x t s(C) ⎰⎰=∞-∞---y x ts dsdt ey x F ),(; (D) ⎪⎩⎪⎨⎧>>=--.,0,0,0,),(其他y x ey x F y x(2).设事件B A ,满足41)(=A P ,21)|()|(==A B P B A P .令 ⎩⎨⎧=.,0,,1不发生若发生若A A X ⎩⎨⎧=.,0,,1不发生若发生若B B Y 则===)0,0(Y X P .(A)81; (B) 83; (C) 85; (D) 87.(3).设随机变量X 与Y 相互独立且同分布:21)1()1(====Y P X P ,21)1()1(=-==-=Y P X P ,则==)1(XY P . (A)21; (B) 31; (C) 32; (D) 41. (4).设(),10~,N X (),21~,N Y Y X ,相互独立,令X Y Z 2-=,则~Z ( )(A ))5,2(-N ; (B) )5,1(N ; (C) )6,1(N ; (D) )9,2(N .(5).设二维随机变量),Y X (服从G 上的均匀分布,G 的区域由曲线2x y =与x y =所围,则),Y X (的联合概率密度函数为 .(A )⎩⎨⎧∈=他其,0),(,6),(G y x y x f ; (B )⎩⎨⎧∈=他其,0),(,6/1),(Gy x y x f ;(C )⎩⎨⎧∈=他其,0),(,2),(G y x y x f ; (D )⎩⎨⎧∈=他其,0),(,2/1),(Gy x y x f第四章练习题1. 设随机变量X 的分布律为如下, 求)(X E ,)12(-X E ,)(2X E .解:2. 射击比赛,每人射4次,每次射一发,约定全都不中得0分,只中一弹得15分,中两弹得30分,中三弹得55分,中四弹得100分.甲每次射击命中率为0.6,问他期望得多少分?解:3. 9粒种子分种在3个坑内,每粒种子发芽的概率为0.5.若一个坑内至少有1粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种.假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求 的数学期望.解:4.(1)(2) 求完成该任务的期望天数;(3) 该任务的费用由两部分组成:20000元的固定费用加每天2000元,求整个项目费用的期望值;(4) 求完成天数的方差和标准差.解:5. 设离散型随机变量X的概率分布为(1)(2)试求DXEX,解:6. 设两个相互独立的随机变量X和Y均服从正态分布(1,1/5).如果随机变量X-aY+2满足条件X+-aYD=XaYE)2-[(]+(2)2求(1)a的值;(2))2-aYX(+D-aY(+XE及)2解:7. 游客乘电梯从底层到电视塔的顶层观光,电梯于每个整点的第5分钟、第25分钟和第55分钟从底层起行.一游客在早上八点的第X分钟到达底层候梯处,且X在[0,60]上服从均匀分布,求该游客等候时间Y的数学期望.解:8. 某电力排灌站,一天内停电的概率为0.1(设若停电,全天不能工作),若4天内全不停电,可获得利润6万元;如果停电一次,可获利3万元;如果有二次停电,则获利为0万元;若有三次以上停电,要亏损1万元.求4天内期望利润是多少?解:9. 一台设备由三大部件构成,在设备运行中各部件需要调整的概率相应为0.10,0.20,0.30.假设各部件的状态相互独立,以X表示同时需要调整的部件数,求X的概率分布、数学期望EX和方差DX.解:10. 一商店经销某种商品,每周进货的数量X与顾客对该种商品的需求量Y是相互独立的随机变量,且都服从区间[10,20]上的均匀分布.商店每售出一单位商品可得利润1000元;若需求量超过了进货量,商店可从其他商店调剂供应,这时每单位商品可得利润500元.试计算此商店经销该种商品每周所得利润的期望值.解:11. 已知X ,Y 的相关系数为.,,d cY b aX +=+=ηζρ,求ηζ,的相关系数ζηρ 解:12. 设),0(~),,0(~2221σσN Y N X ,且相互独立Y a X a V Y a X a U 2121,-=+= (1)分别写出U,V 的概率密度函数;(2)求U,V 的相关系数; (3)讨论U,V 的独立性;(4)当U,V 相互独立时,写出(U,V)的联合密度函数解:13. 设A ,B 是二随机事件;随机变量 ⎩⎨⎧-=不出现若,出现若A A X 1,1 ⎩⎨⎧-=不出现若,出现若B B Y 1,1试证明随机变量X 和Y 不相关的充分必要条件是A 与B 相互独立. 解:14.试验证21X Y =与X 不相关,而32X Y =与X 却相关. 解:15.选择题:(1).随机变量X 的概率分布为:)1(21)(+==n n n X P ,),3,2,1( =n .则其数学期望)(X E 为( ).(A) 0; (B) 0.5; (C) 1; (D) 不存在. (2).随机变量X 与Y 独立同分布,令Y X -=ξ,Y X +=η,则随机变量ξ和η必然( ) (A) 独立; (B) 不独立; (C) 相关系数为0; (D) 相关系数不为0. (3).对任意随机变量X 与Y ,则下列等式中一定成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y E X E Y X E +=+; (C) )()()(Y D X D XY D =; (D) )()()(Y E X E XY E =.(4).设X 与Y 为任意随机变量,若)()()(Y E X E XY E =,则下述结论中成立的为( )(A) )()()(Y D X D Y X D +=+; (B) )()()(Y D X D XY D =;(C) X 与Y 相互独立; (D) X 与Y 不独立.(5).设离散型随机变量X 的可能取值为1、2、3,且3.2)(=X E ,9.5)(2=X E ,则对应取值1、2、3的概率应为( )(A)1.01=p ,2.02=p ,7.03=p ; (B) 3.01=p ,2.02=p ,5.03=p ; (C) 1.01=p ,4.02=p ,5.03=p ; (D) 2.01=p ,3.02=p ,5.03=p .第五章练习题1.利用Chebychev 不等式证明:能以大于0.97的概率断言,掷1000次均匀硬币,正面出现的次数在400到600次之间.解:2.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤>=-0,00,)(x x xe x f x用Chebychev 不等式证明 2/1}40{≥<<X P解:3.电视机厂每月生产10000台电视机,但它的显象管车间的正品率为0.8,为了以0.997的概率保证出厂的电视机都装上正品的显象管,该车间每月应生产多少只显象管?解:4.保险公司对20岁男青年卖保险,每年交300元,约定:若在今后5年内投保历史资料表明一个人若能活到25岁并一直投保,则平均保险公司可获利1500元.试问:(1)20岁男青年能活过25岁以上的概率有多大?(2)收300元保险费,而一旦死亡要赔10万元,两者差距似乎很大,而公司还能获利,为什么?设有十万人投保能获利多少?(3)试求对每个20 岁投保人,大致可获利多少?(5)为了准备获利1000000元,应征集多少20岁男青年投保?解:5.药厂断言,该工厂生产的某种药品对于治疗一种疑难的疾病的治愈率为0.8.某医院试用了这种药品,任意抽查了100个服用次药品的病人,如果其中多于75人治愈,医院就接受药厂的这一断言,否则就拒绝之.问:(1)若实际上次药品对这种疾病的治愈率为0.8,那么,医院接受这一断言的概率是多少?(2)若实际上次药品对这种疾病的治愈率为0.7,那么,医院接受这一断言的概率是多少?解:6.某商店负责供应某地区1000人所需商品,其中一商品在一段时间内每人需用一件的概率为0.6,假定在这一段时间内个人购买与否彼此无关,问商店应预备多少件这样的商品,才能以99.7%的概率保证不会脱销(假定该商品在某一段时间内每人最多可以买一件).解:7.选择题(1).设随机变量),(~211σμN X ,),(~222σμN Y ,且}1|{|}1|{|21<-><-μμY P X P ,则必有( ).(A)21σσ>; (B) 21σσ<; (C) 21μμ<; (D) 21μμ>.(2).设随机变量序列}{n X 相互独立,],[~n n U X n -, ,2,1=n ,则对}{n X ( ). (A)可使用切比雪夫大数定律; (B) 不可使用切比雪夫大数定律;(C) 可使用辛钦大数定律; (D) 不可使用辛钦大数定律. (3).设随机事件A 在第i 次独试验中发生的概率为i p ,n i ,,2,1 =.m 表示事件A 在n次试验中发生的次数,则对于任意正数ε恒有=⎪⎪⎭⎫⎝⎛<∑-=∞→εni i n p n n mP 11lim ( ). (A)1; (B) 0; (C)21; (D)不可确定. (4).设 ,,,,21n X X X 相互独立且都服从参数为λ的指数分布,则下述选项中成立的是( ).(A) )(lim 1x x n X Pn i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ; (B) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→; (C) )(lim 1x x nn X P n i i n Φ=⎪⎪⎪⎪⎭⎫⎝⎛≤-∑=∞→λ; (D) )(lim 1x x n X P n i i n Φ=⎪⎪⎪⎪⎭⎫ ⎝⎛≤-∑=∞→λλ. (5).设随机变量序列 ,,,,21n X X X 相互独立同分布, 0)(=i X E ,2)(σ=i X D ,且)(4i X E 存在,则对任意0>ε,下述选项中正确的是( ).(A) 11lim 21=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (B) 11lim 212≤⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P ; (C) 11lim 212=⎪⎪⎭⎫ ⎝⎛<-∑=∞→εσni i n X n P ; (D) 01lim 212=⎪⎪⎭⎫⎝⎛<-∑=∞→εσni i n X n P第六章练习题1. 在总体)3.6,52(2N 中随机抽取一容量为36的样本,求样本均值X 落在50.8至53.8之间的概率.解:由题意:)363.6,2.5(~2N X , 8293.0]8729.01[9564.0)1429.1()7143.1()63.6528.50()63.6528.53()8.538.50(=--=-Φ-Φ=-Φ--Φ=<<∴X P 2. 已知某种白炽灯泡的使用寿命服从正态分布, 在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(以小时计)为:1067 919 1196 785 1126 936 918 1156 920 948试用样本数字特征法求出寿命总体的均值μ和方差2σ的估计值,并估计这种灯泡的寿命大于1300小时的概率.解:由题设知:样本容量10=n 样本均值1.997)9489201156918936112678511969191067(101=+++++++++=X 样本方差17305)1.997109489201156918936112678511969191067(91222222222222=⨯-+++++++++=S.0107.09893.01)3026.2(1)55.1311.9971300(1)173051.9971300(1)1300(1)1300(=-=Φ-=-Φ-=-Φ-≈≤-=>X P X P3. 设各种零件的重量都是随机变量, 它们相互独立, 且服从相同的分布,其数学期望为0.5公斤,均方差为0.1公斤,问5000只零件的总重量超过2510公斤的概率是多少?(提示:当n 较大时,随机变量之和n X X X X +++= 21近似地服从正态分布,以下第6题,第7题也适用)解:由题设知5000=n ,已知)50001.0,5.0(~5000500050001N X X X i i 近似∑===33.06700.01)444.0(1)0045.0002.0(1)50001.05.05020.0(1)5020.0(1)5020.0()500025105000()2510(=-=Φ-=Φ-=-Φ-=≤-=>=>=>∴X P X P X P X P4. 部件包括10个部分, 每部分的长度是一个随机变量, 它们相互独立, 且服从同一分布. 其数学期望为2毫米, 均方差为0.05毫米,规定总长度为1.020±毫米时产品合格, 试求产品合格的概率.解:由题设知102,1,05.0)(,2,10 ====i X D EX n i i则总长度∑==101i iXX ,且5.005.010,20210=⨯==⨯=DX EX则产品合格的概率为.1114.01)1414.0(2)5.01.0()5.01.0()1.0201.020(=-Φ=-Φ-Φ=+≤≤-X P 5. 计算机进行加法时, 对每个加数取整(即取最接近于它的整数),设所有的取整误差是相互独立的,且它们都在(-0.5,0.5)上服从均匀分布.(1) 若将1500个数相加,问误差总和的绝对值超过15的概率是多少? (2) 几个数加在一起, 可使得误差总和的绝对值小于10的概率为0.90?解:由题设知15002,1,121)(,0,1500 ====i X D EX n i i则误差总和∑==15001i i X X ,且121500,0==DX EX(1).1802.0)]3416.1(1[2]1)12150015(2[1)15(1)15(=Φ-=-Φ-=≤-=>X P X P(2)∑==ni i n X X 1且12,0n DX EX n == 90.01)1210(21)10(=-Φ==<n X P n441121095.0)1210(=⇒⇒=Φ⇒n n n6.设总体X 具有概率密度 ⎩⎨⎧<<=其它0102)(x x x f从总体X 抽取样本4321,,,X X X X ,求最大顺序统计量max =T (4321,,,X X X X )的概率密度.解:)()]([4)(,)]([)(34t f t F t f t F t F T T ==⎪⎩⎪⎨⎧≥<<≤==⎰∞-111000)()(2t t t t dt t f t F t⎩⎨⎧<<==∴otherst t t f t F t f T 0108)()]([4)(737.已知一台电子设备的寿命T (单位:h )服从指数分布,其概率密度为⎪⎩⎪⎨⎧≤>=-0,00,001.0)(001.0t t e t f t现在检查了100台这样的设备,求寿命最短的时间小于10h 的概率解:设min =M (10021,X X X ))()](1[100)(,)](1[1)(99100m f m F m f m F m F M M -=--=⎩⎨⎧>-==-∞-⎰othersm e dt t f m F mm001)()(001.0⎩⎨⎧>=-=∴-othersm e m f m F m f M 01.0)()](1[100)(1.099则1.01)10(e M P -=<8.设n X X X ,,,21 是来自正态总体),(2σμN 的简单随机样本,2n S 为样本方差,求满足下式的最小值n : 95.0)5.1(22≥≤σn S P .解:因为)1(~)1(222-χσ-n S n n 95.0)5.1(22=≤σn S P 95.0))1(5.1)1((22=-≤σ-⇒n S n P n 27=⇒n9.设1021,,,X X X 为)3.0,0(2N 的一个样本,求∑>=1012}44.1{i i X P解:因为∑=χ10122)9(~3.0/i i X∑=>1012}44.1{i i X P ∑=>=101222}3.0/44.13.0/{i i X P1.0}163.0/{110122=≤-=∑=i i X P10.假定),(21X X 是取自正态总体),0(2σN 的一个样本,试求概率].4)/()[(221221<-+X X X X P解:),1.0(~221N X X σ+),1.0(~221N X X σ-)1(~2)(22221χσ+∴X X ,)1(~2)(22221χσ-∴X X)1,1(~)/()(221221F X X X X -+∴ .7.0]4)/()[(221221=<-+∴X X X X P11.已知321,,X X 是从正态总体),0(2σN 抽取的样本.证明:∑+∑-==-=-16122121612212)(/)(i i i i i i X X X X T )16,16(~F证明:),1.0(~2212N X X ii σ+-),1.0(~2212N X X ii σ--),16(~2)(216122212χσ+∑=-i i i X X ,),16(~2)(216122212χσ-∑=-i i i X X ∑∑=-=-+-=∴16122121612212)(/)(i i i i i i X X X X T)16,16(~2)(/2)(1612221216122212F X X X X i i i i i i ∑∑=-=-ο+ο-=12.选择题(1)、设12(,,,)n X X X 为来自总体X 的一个样本,则n X X X ,,,21 必然满足(C ) (A )独立不同分布 (B )不独立但同分布 (C )独立同分布 (D )无法确定(2)、设),,,(21n X X X 为来自总体),(~2σμN X 的一个样本,其中2,μσ未知,则下 面不是统计量的是(D ) (A )i X (B )11n i i X X n ==∑ (C )211()1n i i X X n =-∑- (D )211()n i i X n μ=-∑ (3)、设总体)16,3(~N X ,126,,,X X X 为来自总体X 的一个样本,X 为样本均值,则 (没正确答案)(A ))1,0(~3N X - (B ))1,0(~)3(4N X - (C ))1,0(~43N X - (D ))1,0(~23N X - (4)、设),,,(21n X X X (1)n >来自总体)1,0(~N X ,X 与S 分别为样本均值和样本标准差,则有(C ) (A )(0,1)X N (B )(0,1)nXN (C) 221()ni i X n χ=∑ (D )(1)Xt n S-(5)、设),,,(21n X X X 为来自总体)1,0(~N X 的一个样本,统计量Y ,则(B )(A )2(1)Y n χ- (B) (1)Yt n - (C) (1,1)Y F n - (D)(1,1)YF n -第七章练习题1. 对目标独立地进行射击,直到命中为止,假设n 轮(n >1)这样射击,各轮射击的次数相应地为n k k k ,,,21 ,试求命中率p 的极大似然估计和矩估计.解:2.设某计算机用来产生某彩票摇奖时所需的10个随机数0,1,2, …, 9.设某人用该机做了100天试验,每天都是第一次摇到数字1为止.此100天中各天的试验次数分布如下:假设每次试验相互独立且产生数字1的概率p 保持不变.(1)求p 的最大然估计值p ˆ;(2)如果所得1.0ˆ≠p,请做出所有可能的解释;(3)求p 的矩估计值p ˆ. 解:3.已知总体的概率密度函数为⎪⎩⎪⎨⎧≤≤+=其它010)1()(x x x f ββ现抽取n =6的样本,样本观察值分别为0.2,0.3,0.9,0.7,0.8,0.7试用矩估计法和极大似然估计法求出β的估计量.解:4.设总体服从瑞利分布00,0,)(22>⎪⎩⎪⎨⎧<≥=-θθθx x ex x f xh 为参数n X X X ,,,21 为简单随机样本求θ的极大似然估计量;(2)该估计量是否为无偏估计量?说明理由.解:5.设随机变量X 在区间],0(θ上服从均匀分布,由此总体抽出的一随机样本n X X X ,,,21 .试证明θ的有偏估计)()1(1ˆn n X n n +=θ及一个无偏估计)()2(1ˆn n X nn +=θ都是θ的一致估计.证明:8.设总体X 在区间],0[θ上服从均匀分布,其中0>θ是未知参数,求θ的最大似然估计量,并判断它是否为θ的无偏估计.解:9.某车间生产的螺杆直径服从正态分布,今随机抽取5只,测得直径(单位:mm )为: 22.5 21.5 22.0 21.8 21.4(1) 已知0.3σ=,求μ的0.95置信区间; (2) σ未知,求μ的0.95置信区间. 解:10.从总体X 中抽取样本321,X X X ,,证明下列三个统计量,632ˆ3211X X X ++=μ,442ˆ3212X X X ++=μ,333ˆ3213X XX ++=μ 都是总体均值μ=)(X E 的无偏估计量;并确定哪个估计量更有效.解:11.从正态总体中抽取容量为5的样本,其观测值为: 1.86 , 3.22 , 1.46 , 4.01 , 2.64 ,σ及标准差σ的0.95置信区间.试求正态总体方差2解:12.为了研究施肥和不施肥对某钟农作物产量的影响,选了十三个小区在其他条件相同的情况下进行对比实验,收获量如下表:均产量之差的置信水平为0.95的置信区间.解:13.从甲乙两个生产蓄电池的工厂的产品中,分别抽取一些样品,测得蓄电池的电容量(A.h)如下:甲厂:144 141 138 142 141 143 138 137;乙厂:142 143 139 140 138 141 140 138 142 136.设两个工厂生产的蓄电池的容量分别服从正态分布),(2xx N σμ及),(2y y N σμ,求: (1)电容量的方差比22yx σσ的置信水平为95%的置信区间;(2)电容量的均值差y x μμ-的置信水平为95%的置信区间(假定22y x σσ=).解:14.从汽车轮胎厂生产的某种轮胎中抽取个10样品进行磨损试验,直至轮胎行驶到磨坏为止,测得它们的行驶路程(km)如下:41250 41010 42650 38970 40200 42500 43500 40400 41870 39800 设汽车行驶路程服从正态分布),(~2σμN X ,求:(1)μ的置信水平为95%的单侧置信下限;(2)σ的置信水平为95%的单侧置信上限.解:16.选择题 (1)、θ为总体X 的未知参数,θ的估计量为θ,则有 (A )θ是一个数,近似等于θ; (B )θ是一个随机变量;(C )θ是一个统计量,且()E θθ=; (D )当n 越大,θ的值可任意靠近θ. (2)、设12(,)X X 为来自任意总体X 的一个容量为2的样本,则在下列EX 的无偏线性估 计量中,最有效的估计量是(A )122133X X + (B )121344X X + (C )122355X X + (D )121()2X X +(3)、设θ是参数θ的无偏估计,且有()0D θ≠,则2θ必为2()θ的(A )无偏估计 (B )一致估计 (C )有效估计 (D )有偏估计(4)、设总体2(,)XN μσ,其中2σ已知,若已知样本容量和置信度1α-均不变,则对于不同的样本观察值,总体均值μ的置信区间的长度(A )变长 (B )变短 (C) 不变 (D )不能确定(5)、已知一批零件的长度X (单位:cm )服从正态总体(,1)N μ,从中随机抽取16个零件,测得其长度的平均值为40cm ,则μ的置信度为0.95的置信区间是 (注:标准正态分布函数值(1.96)0.975,(1.645)0.95Φ=Φ=)(A )(31.95, 40.49) (B) (39.59, 40.41) (C) (-∞, 31.95) (D) (40.49, +∞)第八章练习题1.一个停车场,有12个位置排成一行,某人发现有8个位置停了车,而有4个相连的位置空着。
《概率论与数理统计》练习题6考试时间:120分钟题目部分,(卷面共有22题,100分,各大题标有题量和总分) 一、选择题(10小题,共30分)1、设某人射击的命中率为0.4,共进行了n 次独立射击,恰能使至少命中一次的概率大于0.9,则n 值为( )。
A 、3B 、4C 、5D 、6 答案:C2、设,,A B C 为随机试验中的三个事件,则A B C 等于( )。
A 、A B C B 、A B C C 、A B C D 、A B C答案:B3、设随机变量ξ服从0-布,又知ξ取1的概率为它取0的概率的一半,则{1}p ξ=是( )。
A 、13B 、0C 、12D 、1答案:A4、设二维随机变量(,)ξη的联合概率密度为(,)x y ϕ,记在条件{}x ξ=下η的条件分布密度为1(|)y x ϕ,则1122P ηξ⎧⎫⎛⎫⎛⎫≤≤⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭的值为( )。
A 、112212(,)(,)x y dxdyx y dxϕϕ-∞-∞-∞⎰⎰⎰B 、11221(|)y x dxdy ϕ-∞-∞⎰⎰C 、112212(,)(,)x y dxdyx y dyϕϕ-∞-∞-∞⎰⎰⎰D 、112212(,)(,)x y dxdy x y dy dxϕϕ-∞-∞+∞-∞-∞⎡⎤⎢⎥⎣⎦⎰⎰⎰⎰答案:D5、具有下面分布密度的随机变量中,数学期望不存在的是( )。
A 、()1200102x x x e x ϕ-≤⎧⎪=⎨>⎪⎩B 、()2218x x ϕ⎧⎫=-⎨⎬⎩⎭C 、()2300exp 02x x x x x ϕ≤⎧⎪=⎧⎫⎨->⎨⎬⎪⎩⎭⎩D 、()()4211x x ϕπ=+ 答案:D6、具有下面分布密度的随机变量中方差不存在的是( )。
A 、()150050x x x e x ϕ-≤⎧=⎨>⎩B 、()262x x ϕ-=C 、()312x x e ϕ-=D 、()()4211x x ϕπ=+ 答案:D7、设随机变量的数学期望和方差均是1m +(m 为自然数),那么(){}041P m ξ<<+≥( )。
习题六1.设总体X ~N (60,152),从总体X 中抽取一个容量为100的样本,求样本均值与总体均值之差的绝对值大于3的概率. 【解】μ=60,σ2=152,n =100~(0,1)Z N =即 60~(0,1)15/10X Z N -=(|60|3)(||30/15)1(||2)P X P Z P Z ->=>=-<2[1(2)]2(10.9772)0.0456.=-Φ=-=2.从正态总体N (4.2,52)中抽取容量为n 的样本,若要求其样本均值位于区间(2.2,6.2)内的概率不小于0.95,则样本容量n 至少取多大? 【解】~(0,1)Z N =(2.2 6.2)P X P Z <<=<<210.95,=Φ-=则,故即n >24.01,所以n 至少应取253.设某厂生产的灯泡的使用寿命X ~N (1000,σ2)(单位:小时),随机抽取一容量为9的样本,并测得样本均值及样本方差.但是由于工作上的失误,事后失去了此试验的结果,只记得样本方差为S 2=1002,试求P (X >1062). 【解】μ=1000,n =9,S 2=10021000~(8)100/3X t t -==10621000(1062)()( 1.86)0.05100/3P X P t P t ->=>=>=4.从一正态总体中抽取容量为10的样本,假定有2%的样本均值与总体均值之差的绝对值在4以上,求总体的标准差. 【解】~(0,1)Z N =,由P (|X -μ|>4)=0.02得P |Z |>4(σ/n )=0.02,故210.02⎡⎤-Φ=⎢⎥⎢⎥⎝⎭⎣⎦,即0.99.Φ=⎝⎭ 查表得2.33,=所以5.43.σ== 5.设总体X ~N (μ,16),X 1,X 2,…,X 10是来自总体X 的一个容量为10的简单随机样本,S 2为其样本方差,且P (S 2>a )=0.1,求a 之值.【解】2222299~(9),()0.1.1616S a P S a P χχχ⎛⎫=>=>= ⎪⎝⎭查表得914.684,16a= 所以 14.6841626.105.9a ⨯== 6.设总体X 服从标准正态分布,X 1,X 2,…,X n 是来自总体X 的一个简单随机样本,试问统计量Y =∑∑==-ni ii i XX n 62512)15(,n >5服从何种分布? 【解】2522222211~(5),~(5)i nii i i XX X n χχχ====-∑∑且12χ与22χ相互独立. 所以2122/5~(5,5)/5X Y F n X n =--7.求总体X ~N (20,3)的容量分别为10,15的两个独立随机样本平均值差的绝对值大于0.3的概率. 【解】令X 的容量为10的样本均值,Y 为容量为15的样本均值,则X ~N (20,310), Y ~N (20,315),且X 与Y 相互独立. 则33~0,(0,0.5),1015X Y N N ⎛⎫-+= ⎪⎝⎭那么~(0,1),Z N = 所以(||0.3)||2[1(0.424)]P X Y P Z Φ⎛->=>=- ⎝2(10.6628)0.6744.=-=8.设总体X ~N (0,σ2),X 1,…,X 10,…,X 15为总体的一个样本.则Y =()15121121022212X X X X X X ++++++ 服从 分布,参数为 . 【解】~(0,1),iX N σi =1,2, (15)那么122210152222111~(10),~(5)i i i i X X χχχχσσ==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑且12χ与22χ相互独立,所以222110122211152/10~(10,5)2()/5X X X Y F X X X ++==++ 所以Y ~F 分布,参数为(10,5).9.设总体X ~N (μ1,σ2),总体Y ~N (μ2,σ2),X 1,X 2,…,1n X 和Y 1,Y 2,…,2n X 分别来自总体X 和Y 的简单随机样本,则⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+-+-∑∑==2)()(21121221n n Y Y X X E n j j n i i = . 【解】令 1222212111211(),(),11n n i i i j S X X S Y Y n n ===-=---∑∑ 则122222112211()(1),()(1),n n ij i j XX n S y y n S ==-=--=-∑∑又2222221122112222(1)(1)~(1),~(1),n S n S n n χχχχσσ--=-=-那么1222112222121212()()1()22n n i j i j X X Y Y E E n n n n σχσχ==⎡⎤-+-⎢⎥⎢⎥=+⎢⎥+-+-⎢⎥⎣⎦∑∑2221212221212[()()]2[(1)(1)]2E E n n n n n n σχχσσ=++-=-+-=+-10.设总体X ~N (μ,σ2),X 1,X 2,…,X 2n (n ≥2)是总体X 的一个样本,∑==ni i X n X 2121,令Y =∑=+-+ni i n iX X X12)2(,求EY .【解】令Z i =X i +X n +i , i =1,2,…,n .则Z i ~N (2μ,2σ2)(1≤i ≤n ),且Z 1,Z 2,…,Z n 相互独立.令 2211, ()/1,nni i i i Z Z S Z Z n n ====--∑∑则 21111,222nn i ii i X X Z Z nn =====∑∑ 故 2Z X = 那么22211(2)()(1),n ni n i i i i Y X X X Z Z n S +===+-=-=-∑∑所以22()(1)2(1).E Y n ES n σ=-=-11. 设总体X 的概率密度为f (x )=x-e 21 (-∞<x <+∞),X 1,X 2,…,X n 为总体X 的简单随机样本,其样本方差为S 2,求E (S 2).解: 由题意,得1e , 0,2()1e ,0,2xx x f x x -⎧<⎪⎪=⎨⎪≥⎪⎩于是 22222220()()()()1()()d e d 021()()d e d e d 2,2xxx E S D X E X E X E X xf x x x x E X x f x x x x x x +∞+∞--∞-∞+∞+∞+∞---∞-∞==-=======⎰⎰⎰⎰⎰所以2()2E S =.。
第一章 随机事件及其概率一、选择题:1.设A 、B 、C 是三个事件,与事件A 互斥的事件是: ( )A .AB AC + B .()A B C + C .ABCD .A B C ++2.设B A ⊂ 则 ( )A .()P AB =1-P (A ) B .()()()P B A P B A -=-C . P(B|A) = P(B)D .(|)()P AB P A =3.设A 、B 是两个事件,P (A )> 0,P (B )> 0,当下面的条件( )成立时,A 与B 一定独立A .()()()P AB P A P B = B .P (A|B )=0C .P (A|B )= P (B )D .P (A|B )= ()P A4.设P (A )= a ,P (B )= b, P (A+B )= c, 则 ()P AB 为: ( )A .a-bB .c-bC .a(1-b)D .b-a5.设事件A 与B 的概率大于零,且A 与B 为对立事件,则不成立的是 ( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 互不独立D .A 与B 互不相容6.设A 与B 为两个事件,P (A )≠P (B )> 0,且A B ⊃,则一定成立的关系式是( )A .P (A|B )=1 B .P(B|A)=1C .(|A)1p B =D .(A|)1p B =7.设A 、B 为任意两个事件,则下列关系式成立的是 ( )A .()AB B A -= B .()A B B A -⊃C .()A B B A -⊂D .()A B B A -=8.设事件A 与B 互不相容,则有 ( )A .P (AB )=p (A )P (B ) B .P (AB )=0C .A 与B 互不相容D .A+B 是必然事件9.设事件A 与B 独立,则有 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (AB )=0D .P (A+B )=110.对任意两事件A 与B ,一定成立的等式是 ( )A .P (AB )=p (A )P (B ) B .P (A+B )=P (A )+P (B )C .P (A|B )=P (A )D .P (AB )=P (A )P (B|A )11.若A 、B 是两个任意事件,且P (AB )=0,则 ( )A .A 与B 互斥 B .AB 是不可能事件C .P (A )=0或P (B )=0D .AB 未必是不可能事件12.若事件A 、B 满足A B ⊂,则 ( )A .A 与B 同时发生 B .A 发生时则B 必发生C .B 发生时则A 必发生D .A 不发生则B 总不发生13.设A 、B 为任意两个事件,则P (A-B )等于 ( )A . ()()PB P AB - B .()()()P A P B P AB -+C .()()P A P AB -D .()()()P A P B P AB --14.设A 、B 、C 为三事件,则AB BC AC 表示 ( )A .A 、B 、C 至少发生一个 B .A 、B 、C 至少发生两个C .A 、B 、C 至多发生两个D .A 、B 、C 至多发生一个15.设0 < P (A) < 1. 0 < P (B) < 1. P(|B)+P(A B A )=1. 则下列各式正确的是( )A .A 与B 互不相容 B .A 与B 相互独立C .A 与B 相互对立D .A 与B 互不独立16.设随机实际A 、B 、C 两两互斥,且P (A )=0.2,P (B )=0.3,P (C )=0.4,则PA B C -= ()( ). A .0.5 B .0.1 C .0.44 D .0.317掷两枚均匀硬币,出现一正一反的概率为 ( )A .1/2B .1/3C .1/4D .3/418.一种零件的加工由两道工序组成,第一道工序的废品率为 1p ,第二道工序的废品率为2p ,则该零件加工的成品率为 ( )A .121p p --B .121p p -C .12121p p p p --+D .122p p --19.每次试验的成功率为)10(<<p p ,则在3次重复试验中至少失败一次概率为( )。
《概率论与数理统计》试题(1)一 、 判断题(本题共15分,每小题3分。
正确打“√”,错误打“×”)⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( )⑸ 样本方差2n S=n121)(X Xni i-∑=是母体方差DX 的无偏估计 ( )二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生;(2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。
三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为210131111115651530XP-- 求2Y X =的分布列.五、(10分)设随机变量X 具有密度函数||1()2x f x e -=,∞< x <∞, 求X 的数学期望和方差.六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布1()(1),1,2,,01k P X k p p k p -==-=<<,的样本,试求未知参数p 的极大似然估计.《概率论与数理统计》试题(1)评分标准一 ⑴ ×;⑵ ×;⑶ √;⑷ √;⑸ ×。
专练66 高考大题专练(六) 概率与统计的综合运用1.[2022·全国甲卷(理),19]甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X表示乙学校的总得分,求X的分布列与期望.2.[2021·全国甲卷]甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),3.[2022·全国乙卷(理),19]某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据:并计算得∑i =110x 2i =0.038,∑i =110y 2i =1.6158,∑i =110x i y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数r =i =1n(x i -x -)(y i -y -)i =1n (x i -x -)2i =1n (y i -y -)2, 1.896≈1.377.4.[2022·江西鹰潭高三模拟]某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g )与尺寸x(mm )之间近似满足关系式y =c·x b(b 、c 为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间(e 9,e7)≈(0.302,0.388)内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的期望;(2)根据测得数据作了初步处理,得相关统计量的值如表:①根据所给统计量,求y 关于x 的回归方程;②已知优等品的收益z(单位:千元)与x 、y 的关系为z =2y -0.32x ,则当优等品的尺寸x 为何值时,收益z 的预报值最大?附:对于样本(v i ,u i )(i =1,2,…,n),其回归直线u =b·v+a 的斜率和截距的最小二乘估计公式分别为:b ^=∑ni =1(v i -v )(u i -u )∑ni =1(v i -v )2=∑ni =1v i u i -nvu ∑n i =1v 2i -nv 2, a ^=u -b ^v ,e ≈2.7182.5.[2022·河南省六市联考]在全球抗击新冠肺炎疫情期间,我国医疗物资生产企业加班加点生产防疫物品,保障抗疫一线医疗物资供应,某口罩生产厂商在加大生产的同时,狠抓质量管理,不定时抽查口罩质量,质检人员从某日所生产的口罩中随机抽取了100个,将其质量指标值分成以下五组:[100,110),[110,120),[120,130),[130,140),[140,150],得到如下频率分布直方图.(1)规定:口罩的质量指标值越高,说明该口罩质量越好,其中质量指标值低于130的为二级口罩,质量指标值不低于130的为一级口罩,现从样本口罩中利用分层抽样的方法随机抽取8个口罩,再从中抽取3个,求抽取的口罩至少有一个一级口罩的概率;(2)在2021年“双十一”期间,某网络购物平台推出该型号口罩订单“秒杀”抢购活动,甲、乙、丙三人分别在该平台参加一次抢购活动,假定甲、乙、丙抢购成功的概率分别为0.1,0.2,0.3,记三人抢购成功的总次数为X,求X的分布列及数学期望E(X).专练66 高考大题专练(六)概率与统计的综合运用1.解析:(1)设三个项目比赛中甲学校获胜分别为事件A,B,C,易知事件A,B,C相互独立.甲学校获得冠军,对应事件A,B,C同时发生,或事件A,B,C中有两个发生,故甲学校获得冠军的概率为p=P(ABC+A-BC+A B-C+AB C-)=P (ABC )+P (A -BC )+P (A B -C )+P (AB C -)=0.5×0.4×0.8+(1-0.5)×0.4×0.8+0.5×(1-0.4)×0.8+0.5×0.4×(1-0.8) =0.16+0.16+0.24+0.04 =0.6.(2)由题意得,X 的所有可能取值为0,10,20,30.易知乙学校在三个项目中获胜的概率分别为0.5,0.6,0.2,则P (X =0)=(1-0.5)×(1-0.6)×(1-0.2)=0.16,P (X =10)=0.5×(1-0.6)×(1-0.2)+(1-0.5)×0.6×(1-0.2)+(1-0.5)×(1-0.6)×0.2=0.44,P (X =20)=0.5×0.6×(1-0.2)+0.5×(1-0.6)×0.2+(1-0.5)×0.6×0.2=0.34, P (X =30)=0.5×0.6×0.2=0.06,所以X 的分布列为则E (X )2.解析:(1)根据题表中数据知,甲机床生产的产品中一级品的频率是150200=0.75,乙机床生产的产品中一级品的频率是120200=0.6.(2)根据题表中的数据可得K 2=400×(150×80-120×50)2200×200×270×130=40039≈10.256.因为10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.3.解析:(1)该林区这种树木平均一棵的根部横截面积x -=0.610=0.06(m 2),平均一棵的材积量y -=3.910=0.39(m 3).(2)由题意,得i =110(x i -x -)2=i =110x 2i -10x -2=0.038-10×0.062=0.002,i =110(y i -y -)2=i =110y 2i -10y -2=1.6158-10×0.392=0.0948,i =110(x i -x -)(y i -y -)=i =110x i y i -10x -y -=0.2474-10×0.06×0.39=0.0134,所以相关系数r =0.01340.002×0.0948=0.01341.896×0.0001≈0.01340.01377≈0.97.(3)因为树木的材积量与其根部横截面积近似成正比,所以比例系数k =y -x -=0.390.06=6.5,所以该林区这种树木的总材积量的估计值为186×6.5=1209(m 3). 4.解析:(1)由表可知,抽取的6件合格产品中有3件优等品, 所以,ξ的所有可能取值为0,1,2,3,P(ξ=0)=C 33 C 36 =120,P(ξ=1)=C 13 C 23 C 36 =920,P(ξ=2)=C 23 C 13 C 36 =920,P(ξ=3)=C 33C 36=120, 所以,随机变量ξ的期望为E(ξ)=0×120+1×920+2×920+3×120=32.(2)①∵y=c·x b,∴ln y =ln c +b ln x ,∵∑6i =1 (ln x i )=24.6,∑6i =1(ln y i )=18.3, ∴ln x =16∑6i =1 (ln x i )=4.1,ln y =16∑6i =1(ln y i )=3.05,∴b ^=∑6i =1(ln x i ·ln y i )-6×ln x ×ln y∑6i =1(ln x i )2-6×(ln x )2=75.3-6×4.1×3.05101.4-6×4.12=0.5, a ^=ln y -b ^ln x =3.05-0.5×4.1=1, ∴ln y =1+0.5ln x ,所以,c =e, 故y 关于x 的回归方程为y ^=e x 0.5; ②由①知,y ^=e x 0.5,∴z ^=2y ^-0.32x =2e x 0.5-0.32x =-0.32(x -e 0.32)2+e 20.32,当x =e 0.32,即x =(e 0.32)2≈72时,z ^取得最大值,故当优等品的尺寸x 为72mm 时,收益z 的预报值最大.5.解析:(1)由频率分布直方图可得,二级品的频率为10×(0.005+0.04+0.03)=0.75, 一级品的频率为10×(0.02+0.005)=0.25,按分层抽样抽取8个口罩,则其中二级、一级口罩个数分别为6、2,故事件“至少有一个一级品”的概率P =C 26 C 12 +C 16 C 22 C 38=914. (2)由题知X 的可能取值为0,1,2,3, P(X =0)=0.9×0.8×0.7=0.504,P(X =1)=0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398, P(X =2)=0.1×0.2×0.7+0.1×0.8×0.3+0.9×0.2×0.3=0.092, P(X =3)=0.1×0.2×0.3=0.006, 所以X 的分布列为E(X)。
概率统计练习题答案一、概率1.(1)P(摸出一个球是红球)=8816+=824=13;(2)解法一:24×58=15,15-8=7.答:取走了7个白球.解法二:设取走了x个白球,则824x+=58,解得x=7.答:取走了7个白球.2、(1)(解法一)画树状图列举所有等可能的结果:(解法二)列表如下:(2)不同意这种说法.由(1)知,P(两红)=26=13,P(一红一白)=36=12.∴P(两红)<P(一红一白).3、(1)任取两张卡片共有10种取法,它们是:(1,2),(1,3),(1,4),(1,6),(2,3),(2,4),(2,6),(3,4),(3,6),(4,6);和为偶数的共有四种情况:(1,3),(2,4),(2,6),(4,6).∴P(数字之和为偶数)=410=25;红红1 红2 白白甲袋乙袋红1 红2 白(2)抽得的两个数字分别作为点P 横、纵坐标共有20种机会均等的结果,在直线y =x -2上的只有(3,1),(4,2),(6,4)三种情况,∴P (点P 在直线y =x -2上)=320.4、(1)树状图为:开始正面 反面 正面反面正面 反面 正面 反面 正面 反面 正面 反面小王 小李小林 不确定确定结果 确定确定确定确定确定不确定(2)由(1)中的树状图可知:P (一个回合能确定两人先上场)=68=34.5、(1)12;(2)13;(3)根据题意,画树状图:由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44. 所以,P (4的倍数)=416=14.或根据题意,画表格:1 2 3 4 1第一次第二次 1 2 3 4 21 2 3 4 31 2 3 44开始由表格可知,共有16种等可能的结果,其中是4的倍数的有4种,所以,P (4的倍数)=416=14.二、统计1、(1)25,54,补充后的图如下:(2)乙班应交费:3281004100129004⨯+⨯⨯-=⎛⎫⎪⎝⎭元甲班受到国家资助教科书的学生占全班人数的百分比:255100%60%50+⨯=(3)总册数:15÷30%=50(册) 艺术类图书共有:()()50130%44%13⨯--=册2、(1)a =8,b =0.08 (2)(3)小华被选上的概率是:41 3、(1)50人 ; 15元;)甲班乙班x (年级)图(2)50-6-16-10=18(人) 图略(3)4、(1)∵13÷26%=50,∴本次被调查的人数是50. 补全的条形统计图如图所示.(2)∵1500×26%=390,∴该校最喜欢篮球运动的学生约为390人.(3)如“由于最喜欢乒乓球运动的人数最多,因此,学校应组织乒乓球对抗赛”等.(只要根据调查结果提出合理、健康、积极的建议即可给分) 5、(1)36045%162⨯=°°; (2)4030%12⨯=;图略.(3)40121864100%10%---=⨯=4,40.。
一、填空题1. 若一个样本的观测值为0,0,1,1,0,1,则总体均值的矩估计值为___________,总体方差的矩估计值为___________。
2. 设1,0,0,1,1是来自两点分布总体),1(p B 的样本观察值,则参数p q -=1的矩估计值为___________。
3. 若由总体),(θx F (θ为未知参数)的样本观察值所求得95.0)9.355.35(=<<X P ,则称___________是θ的置信度为___________的置信区间。
4. 设由来自正态总体)9.0,(~2μN X 容量为9的简单随机样本,得样本均值5=X ,则未知参数μ的置信度为0.95的置信区间为___________。
5. 设一批产品的某一指标),(~2σμN X ,从中随机地抽取容量为25的样本,测得样本方差2210=S ,则总体X 的方差2σ的置信区度为%95的置信区间为___________.二、选择题1. 设总体),(~2σμN X ,其中2σ已知,则总体均值μ的置信区间长度l 与置信度α-1的关系是( )(A )当α-1缩小时,l 缩短; (B )当α-1缩小时,l 增大; (C )当α-1缩小时,l 不变;(D )以上说法都错。
2. 设总体),(~2σμN X ,2σ已知,若样本容量n 和α-1均不变,则对于不同的样本观测值,总体均值的置信区间的长度( )。
(A )变长;(B )变短;(C )不变;(D )不能确定。
3. 设n X X X ,,21是来自总体的一个样本,2,σμ==DX EX ,则方差2σ的无偏估计值是( )(A )当μ已知时,统计量∑=-n i i X n 12)(1μ;(B )当μ已知时,统计量∑=--n i i X n 12)(11μ; (C )当μ未知时,统计量∑=-n i i X X n 12)(1;(D )当μ已知时,统计量∑=--n i i X X n 12)(11。
数的概率与统计练习题
以下是一份关于数的概率与统计的练习题:
题目一:选择题
1. 下面哪个不是随机事件?
A. 抛硬币结果是正面朝上
B. 从扑克牌中抽取一张A
C. 掷骰子结果为偶数
D. 爬山时碰到下雨
2. 一副标准扑克牌共有52张,其中红心牌有13张,那么从中随机抽取一张牌是红心牌的概率是多少?
A. 1/13
B. 1/26
C. 1/52
D. 13/52
3. 从一个装有8个红球和4个蓝球的袋子中随机取出一球,取出红球的概率是多少?
A. 1/12
B. 2/3
C. 2/12
D. 1/4
题目二:计算题
1. 小明家有三个抽屉,每个抽屉里有红球3个和蓝球2个。
小明先随机选择一个抽屉,然后从该抽屉中随机取球。
若小球为红色,求其来自第一个抽屉的概率。
2. 有一个含有8只白球和5只黑球的袋子,从袋子中依次取球不放回,取出3只,求:
a) 相同颜色的球至少有2只的概率;
b) 取出的3只球均为黑球的概率。
题目三:应用题
甲、乙、丙三位同学分别参加英语和数学两门科目的考试。
已知甲的英语成绩优秀,乙的数学成绩优秀,那么丙同学同时在英语和数学两门科目上优秀的概率是多少?
请将答案写在纸上,答案不唯一。
注意:本试卷是一份练习题,可以根据自己的实际情况适当调整题目。
以上题目仅供参考,不保证完全无误。
祝您学习进步!。