南通市2016届高三全真模拟数学试题3
- 格式:doc
- 大小:1.23 MB
- 文档页数:13
2016年某某某某市平罗中学高考数学三模试卷(理科)一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.246.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,s in15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.487.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.328.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为.三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.2016年某某某某市平罗中学高考数学三模试卷(理科)参考答案与试题解析一.选择题:(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.)1.若集合P={x||x|<3,且x∈Z},Q={x|x(x﹣3)≤0,且x∈N},则P∩Q等于()A.{0,1,2} B.{1,2,3} C.{1,2} D.{0,1,2,3}【考点】交集及其运算.【分析】化简集合P、Q,求出P∩Q即可.【解答】解:P={x||x|<3,且x∈Z}={x|﹣3<x<3,x∈Z}={﹣2,﹣1,0,1,2},Q={x|x(x﹣3)≤0,且x∈N}={x|0≤x≤3,且x∈N}={0,1,2,3},∴P∩Q={0,1,2}.2.若复数z=sinθ﹣+(cosθ﹣)i是纯虚数,则tanθ的值为()A.B.﹣ C.D.﹣【考点】复数的基本概念.【分析】复数z=sinθ﹣+(cosθ﹣)i是纯虚数,可得si nθ﹣=0,cosθ﹣≠0,可得cosθ,即可得出.【解答】解:∵复数z=sinθ﹣+(cosθ﹣)i是纯虚数,∴sinθ﹣=0,cosθ﹣≠0,∴cosθ=﹣.则tanθ==﹣.故选:B.3.设命题p:若x,y∈R,x=y,则=1;命题q:若函数f(x)=e x,则对任意x1≠x2都有>0成立.在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是()A.①③ B.①④ C.②③ D.②④【考点】复合命题的真假.【分析】命题p:y=0时, =1不成立,即可判断出真假;命题q:由于函数f(x)在R 上单调递增,即可判断出真假.再利用复合命题真假的判定方法即可得出.【解答】解:命题p:若x,y∈R,x=y,则=1,y=0时不成立,因此是假命题;命题q:若函数f(x)=e x,由于函数f(x)在R上单调递增,则对任意x1≠x2都有>0成立,是真命题.因此在命题①p∧q;②p∨q;③p∧(¬q);④(¬p)∨q中,真命题是②④.故选:D.4.已知向量满足•(+)=2,且||=1,||=2,则与的夹角为()A.B.C.D.【考点】平面向量数量积的运算.【分析】根据条件求出向量•的值,结合向量数量积的应用进行求解即可.【解答】解:∵•(+)=2,∴•+2=2,即•=﹣2+2=2﹣1=1则cos<,>==,则<,>=,故选:D5.若随机变量X~N(μ,σ2)(σ>0),则下列如下结论:P(μ﹣σ<X≤μ+σ)=0.6826,P(μ﹣2σ<X≤μ+2σ)=0.9544,P(μ﹣3σ<X≤μ+3σ)=0.9974,某班有48名同学,一次数学考试的成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数均为()A.32 B.16 C.8 D.24【考点】正态分布曲线的特点及曲线所表示的意义.【分析】正态总体的取值关于x=80对称,位于70分到90分之间的概率是0.6826,位于80分到90分之间的概率是位于70分到90分之间的概率的一半,得到要求的结果.【解答】解:∵数学成绩近似地服从正态分布N(80,102),P(|x﹣u|<σ)=0.6826,∴P(|x﹣80|<10)=0.6826,根据正态曲线的对称性知:位于80分到90分之间的概率是位于70分到90分之间的概率的一半∴理论上说在80分到90分的人数是(0.6826)×48≈16.故选:B.6.公元263年左右,我国数学家X徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”X徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用X徽的“割圆术”思想设计的一个程序框图,则输出n的值为()(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305)A.12 B.24 C.36 D.48【考点】程序框图.【分析】列出循环过程中S与n的数值,满足判断框的条件即可结束循环.【解答】解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:B.7.设S n是数列{a n}(n∈N+)的前n项和,n≥2时点(a n﹣1,2a n)在直线y=2x+1上,且{a n}的首项a1是二次函数y=x2﹣2x+3的最小值,则S9的值为()A.6 B.7 C.36 D.32【考点】二次函数的性质.【分析】先根据数列的函数特征以及二次函数的最值,化简整理得到{a n}是以为2首项,以为公差的等差数列,再根据前n项公式求出即可.【解答】解∵点(a n﹣1,2a n)在直线y=2x+1上,∴2a n=2a n﹣1+1,∴a n﹣a n﹣1=,∵二次函数y=x2﹣2x+3=(x﹣1)2+2,∴a1=2,∴{a n}是以为2首项,以为公差的等差数列,∴a n=2+(n﹣1)=n+当n=1时,a1=n+=2成立,∴a n=n+∴S9=9a1+=9×2+=36故选:C8.某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.4cm3B.6cm3C.D.【考点】由三视图求面积、体积.【分析】根据几何体的三视图,得出该几何体是三棱锥与三棱柱的组合体,由此求出它的体积即可【解答】解:根据几何体的三视图,得该几何体是上部为三棱锥,下部为三棱柱的组合体,三棱柱的每条棱长为2cm,三棱锥的高为2cm,∴该组合体的体积为V=×2×2×2+××2×2×2=cm2,选:C.9.双曲线E:﹣=1(a,b>0)的右焦点为F(c,0),若圆C:(x﹣c)2+y2=4a2与双曲线E的渐近线相切,则E的离心率为()A.B.C.D.【考点】双曲线的简单性质.【分析】求得双曲线的渐近线方程,圆的圆心和半径,运用直线和圆相切的条件:d=r,计算即可得到b=2a,由a,b,c的关系和离心率公式,计算即可得到所求值.【解答】解:双曲线E:﹣=1(a,b>0)的渐近线方程为y=±x,圆C:(x﹣c)2+y2=4a2的圆心为(c,0),半径为2a,由直线和圆相切的条件可得,=b=2a,可得c==a,即有e==.故选:C.10.数列{a n}满足a1=1,对任意的n∈N*都有a n+1=a1+a n+n,则=()A.B.C.D.【考点】数列递推式.【分析】利用累加法求出数列的通项公式,得到.再由裂项相消法求得答案.【解答】解:∵a1=1,∴由a n+1=a1+a n+n,得a n+1﹣a n=n+1,则a2﹣a1=2,a3﹣a2=3,…a n﹣a n﹣1=n(n≥2).累加得:a n=a1+2+3+…+n=(n≥2).当n=1时,上式成立,∴.则.∴=2=.故选:B.11.已知三棱锥S﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC 为球O的直径,且SC=2,则此棱锥的体积为()A.B.C.D.【考点】棱柱、棱锥、棱台的体积.【分析】根据题意作出图形,利用截面圆的性质即可求出OO1,进而求出底面ABC上的高SD,即可计算出三棱锥的体积.【解答】解:根据题意作出图形:设球心为O,过ABC三点的小圆的圆心为O1,则OO1⊥平面ABC,延长CO1交球于点D,则SD⊥平面ABC.∵CO1==,∴OO1=,∴高SD=2OO1=,∵△ABC是边长为1的正三角形,∴S△ABC=,∴V=××=,故选:A.12.定义在R上的函数f(x),f′(x)是其导数,且满足f(x)+f′(x)>2,ef(1)=2e+4,则不等式e x f(x)>4+2e x(其中e为自然对数的底数)的解集为()A.(1,+∞)B.(﹣∞,0)∪(1,+∞)C.(﹣∞,0)∪(0,+∞)D.(﹣∞,1)【考点】利用导数研究函数的单调性.【分析】构造函数g(x)=e x f(x)﹣2e x,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.【解答】解:设g(x)=e x f(x)﹣2e x,(x∈R),则g′(x)=e x f(x)+e x f′(x)﹣2e x=e x[f(x)+f′(x)﹣2],∵f(x)+f′(x)>2,∴f(x)+f′(x)﹣2>0,∴g′(x)>0,∴y=g(x)在定义域上单调递增,∵e x f(x)>2e x+4,∴g(x)>4,又∵g(1)=ef(1)﹣2e=4,∴g(x)>g(1),∴x>1,故选:A.二、填空题:(本大题共4小题,每小题5分,共20分)13.若(2x﹣1)dx=6,则二项式(1﹣2x)3m的展开式各项系数和为﹣1 .【考点】二项式系数的性质;定积分.【分析】由于(2x﹣1)dx==6,化简解得m.令x=1,即可得出二项式(1﹣2x)3m展开式各项系数和.【解答】解:∵(2x﹣1)dx==6,化为:m2﹣m﹣(1﹣1)=6,m>1,解得m=3.令x=1,则二项式(1﹣2x)3m即(1﹣2x)9展开式各项系数和=(1﹣2)9=﹣1.故答案为:﹣1.14.记集合,构成的平面区域分别为M,N,现随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为.【考点】几何概型.【分析】平面区域M、N,分别为圆与直角三角形,面积分别为π,,利用几何概型的概率公式解之即可.【解答】解:集合构成的平面区域M、N,分别为圆与直角三角形,面积分别为π,,随机地向M中抛一粒豆子(大小忽略不计),则该豆子落入N中的概率为=.答案为:.15.已知点A(0,2),抛物线C1:y2=ax(a>0)的焦点为F,射线FA与抛物线C相交于点M,与其准线相交于点N,若|FM|:|MN|=1:,则a的值等于 4 .【考点】抛物线的简单性质.【分析】作出M在准线上的射影,根据|KM|:|MN|确定|KN|:|KM|的值,进而列方程求得a.【解答】解:依题意F点的坐标为(,0),设M在准线上的射影为K,由抛物线的定义知|MF|=|MK|,∴|KM|:|MN|=1:,则|KN|:|KM|=2:1,k FN==﹣,k FN=﹣=﹣2∴=2,求得a=4,故答案为:4.16.给出下列命题:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是真命题;②“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件;③函数f(x)=2x﹣x2的零点个数为2;④幂函数y=x a(a∈R)的图象恒过定点(0,0)⑤“向量与的夹角是钝角”的充分必要条件是“•<0”;⑥方程sinx=x有三个实根.其中正确命题的序号为②.【考点】命题的真假判断与应用.【分析】①根据逆命题的定义结合方程根的关系进行判断.②根据三角函数的周期公式以及充分条件和必要条件的定义进行判断.③根据函数与方程的关系进行判断.④根据幂函数的定义和性质进行判断.⑤根据向量夹角和数量积的关系进行判断.⑥构造函数,判断函数的单调性即可.【解答】解:①命题“若方程ax2+x+1=0有两个实数根,则a≤”的逆命题是若a≤,则方程ax2+x+1=0有两个实数根,当a=0时,方程等价为x+1=0,则x=﹣1,此时方程只有一个根,故①错误;②f(x)=cos2ax﹣sin2ax=cos2ax,若“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”,则,则|a|=1,则a=±1,则充分性不成立,反之成立,即“函数f(x)=cos2ax﹣sin2ax的最小正周期为π”是“a=1”的必要不充分条件正确,故②正确,③由f(x)=2x﹣x2=0得2x=x2,作出两个函数y=2x和y=x2的图象如图,由图象知两个函数交点个数为3个,故③错误;④幂函数y=x a(a∈R)的图象恒过定点(0,0),错误,当a<0时,函数的图象不过点(0,0),故④错误,⑤“向量与的夹角是钝角”的充分必要条件是“•<0”且≠λ,λ<0;故⑤错误,⑥设f(x)=sinx﹣x,则函数的导数f′(x)=cosx﹣1≤0,则函数f(x)是奇函数,∵f(0)=sin0﹣0=0,∴f(x)=0的根只有一个0,解集方程sinx=x有一个实根.故⑥错误,故正确的是②,故答案为:②三、解答题(本大题共计70分,解答应写出说明文字、证明过程或演算步骤).17.已知f(x)=2sin(Ⅰ)若,求f(x)的值域;(Ⅱ)在△ABC中,A为BC边所对的内角若f(A)=2,BC=1,求的最大值.【考点】平面向量数量积的运算;三角函数中的恒等变换应用.(Ⅰ)根据二倍角的正余弦公式,和两角和的正弦公式即可化简f(x)=,【分析】而由x的X围可以求出x+的X围,从而可得出f(x)的值域;(Ⅱ)由f(A)=2即可求得A=,从而由余弦定理和不等式a2+b2≥2ab可求得|AB||AC|≤1,根据向量数量积的计算公式便可得出的最大值.【解答】解:(Ⅰ);∵;∴;∴;∴f(x)的值域为[1,2];(Ⅱ)∵f(A)=2,∴;在△ABC中,∵0<A<π,∴;∴;∴|AB||AC|=|AB|2+|AC|2﹣1≥2|AB||AC|﹣1;∴|AB||AC|≤1;∴;∴的最大值为.18.自2016年1月1日起,我国全面二孩政策正式实施,这次人口与生育政策的历史性调整,使得“要不要再生一个”“生二孩能休多久产假”等成为千千万万个家庭在生育决策上避不开的话题.为了解针对产假的不同安排方案形成的生育意愿,某调查机构随机抽取了200户有生育二胎能力的适龄家庭进行问卷调查,得到如下数据:产假安排(单位:周)14 15 16 17 18有生育意愿家庭数 4 8 16 20 26(1)若用表中数据所得的频率代替概率,面对产假为14周与16周,估计某家庭有生育意愿的概率分别为多少?(2)假设从5种不同安排方案中,随机抽取2种不同安排分别作为备选方案,然后由单位根据单位情况自主选择.①求两种安排方案休假周数和不低于32周的概率;②如果用ξ表示两种方案休假周数和.求随机变量ξ的分布及期望.【考点】离散型随机变量的期望与方差;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(1)由表某某息可知,利用等可能事件概率计算公式能求出当产假为14周时某家庭有生育意愿的概率和当产假为16周时某家庭有生育意愿的概率.(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有10种,由此利用列举法能求出其和不低于32周的概率.②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.分别求出相应的概率,由此能求出ξ的分布列和E(ξ).【解答】解:(1)由表某某息可知,当产假为14周时某家庭有生育意愿的概率为;当产假为16周时某家庭有生育意愿的概率为…(2)①设“两种安排方案休假周数和不低于32周”为事件A,由已知从5种不同安排方案中,随机地抽取2种方案选法共有(种),其和不低于32周的选法有14、18、15、17、15、18、16、17、16、18、17、18,共6种,由古典概型概率计算公式得…②由题知随机变量ξ的可能取值为29,30,31,32,33,34,35.,,,因而ξ的分布列为ξ29 30 31 32 33 34 35P 0.1 0.1 0.2 0.2 0.2 0.1 0.1所以E(ξ)=29×0.1+30×0.1+31×0.2+32×0.2+33×0.2+34×0.1+35×0.1=32,…19.如图,空间几何体ABCDE中,平面ABC⊥平面BCD,AE⊥平面ABC.(1)证明:AE∥平面BCD;(2)若△ABC是边长为2的正三角形,DE∥平面ABC,且AD与BD,CD所成角的余弦值均为,试问在CA上是否存在一点P,使得二面角P﹣BE﹣A的余弦值为.若存在,请确定点P的位置;若不存在,请说明理由.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(1)过点D作直线DO⊥BC交BC于点O,连接DO.运用面面垂直的性质定理,可得DO⊥平面ABC,又直线AE⊥平面ABC,可得AE∥DO,运用线面平行的判定定理,即可得证;(2)连接AO,运用线面平行和线面垂直的性质,求得OA,OB,OD两两垂直,以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系.求得O,A,B,E的坐标,假设存在点P,连接EP,BP,设=λ,求得P的坐标,求得平面PBE,ABE 的法向量,运用向量的夹角公式,计算可得P的位置.【解答】解:(1)证明:如图,过点D作直线DO⊥BC交BC于点O,连接DO.因为平面ABC⊥平面BCD,DO⊂平面BCD,DO⊥BC,且平面ABC∩平面BCD=BC,所以DO⊥平面ABC,因为直线AE⊥平面ABC,所以AE∥DO,因为DO⊂平面BCD,AE⊄平面BCD,所以直线AE∥平面BCD;(2)连接AO,因为DE∥平面ABC,所以AODE是矩形,所以DE⊥平面BCD.因为直线AD与直线BD,CD所成角的余弦值均为,所以BD=CD,所以O为BC的中点,所以AO⊥BC,且.设DO=a,因为BC=2,所以,所以.在△ACD中,AC=2.所以AC2=AD2+CD2﹣2AD•CD•cos∠ADC,即,即.解得a2=1,a=1;以O为坐标原点,OA,OB,OD所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系.则.假设存在点P,连接EP,BP,设=λ,即有=+λ(﹣),则.设平面ABE的法向量为={x,y,z},由=(0,0,1),=(,﹣1,0),则,即,取x=1,则平面ABE的一个法向量为.设平面PBE的法向量为={x,y,z},则,取x=1+λ,则平面PBE的一个法向量为=(1+λ,﹣λ,﹣2λ),设二面角P﹣BE﹣A的平面角的大小为θ,由图知θ为锐角,则cosθ===,化简得6λ2+λ﹣1=0,解得λ=或(舍去),所以在CA上存在一点P,使得二面角P﹣BE﹣A的余弦值为.其为线段AC的三等分点(靠近点A).20.已知椭圆C: +=1(a>b>0)过点A(﹣,),离心率为,点F1,F2分别为其左右焦点.(1)求椭圆C的标准方程;(2)若y2=4x上存在两个点M,N,椭圆上有两个点P,Q满足,M,N,F2三点共线,P,Q,F2三点共线,且PQ⊥MN.求四边形PMQN面积的最小值.【考点】直线与圆锥曲线的综合问题.【分析】(1)由椭圆的离心率公式和点满足椭圆方程及a,b,c的关系,解方程,即可得到椭圆方程;(2)讨论直线MN的斜率不存在,求得弦长,求得四边形的面积;当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)联立抛物线方程和椭圆方程,运用韦达定理和弦长公式,以及四边形的面积公式,计算即可得到最小值.【解答】解:(1)由题意得:,a2﹣b2=c2,得b=c,因为椭圆过点A(﹣,),则+=1,解得c=1,所以a2=2,所以椭圆C方程为.(2)当直线MN斜率不存在时,直线PQ的斜率为0,易得,.当直线MN斜率存在时,设直线方程为:y=k(x﹣1)(k≠0)与y2=4x联立得k2x2﹣(2k2+4)x+k2=0,令M(x1,y1),N(x2,y2),则,x1x2=1,|MN|=•.即有,∵PQ⊥MN,∴直线PQ的方程为:y=﹣(x﹣1),将直线与椭圆联立得,(k2+2)x2﹣4x+2﹣2k2=0,令P(x3,y3),Q(x4,y4),x3+x4=,x3x4=,由弦长公式|PQ|=•,代入计算可得,∴四边形PMQN的面积S=|MN|•|PQ|=,令1+k2=t,(t>1),上式=,所以.最小值为.21.设函数,(a>0)(Ⅰ)当时,求函数f(x)的单调区间;(Ⅱ)若f(x)在内有极值点,当x1∈(0,1),x2∈(1,+∞),求证:.(e=2.71828…)【考点】利用导数研究函数的极值;利用导数研究函数的单调性.【分析】(Ⅰ)求出f(x)的导数,解关于导函数的不等式,从而求出函数的单调区间即可;(Ⅱ)求出f(x)的导数,令g(x)=x2﹣(a+2)x+1,根据函数的单调性得到:;,作差得到新函数F(n)=2lnn+n ﹣,(n>e),根据函数的单调性求出其最小值即可证明结论成立.【解答】解:(Ⅰ)函数f(x)的定义域为(0,1)∪(1,+∞),当时,,…令f′(x)>0,得:或,所以函数单调增区间为:,,令f′(x)<0,得:,所以函数单调减区间为:,…(Ⅱ)证明:,令:g(x)=x2﹣(a+2)x+1=(x﹣m)(x﹣n)=0,所以:m+n=a+2,mn=1,若f(x)在内有极值点,不妨设0<m<,则:n=>e,且a=m+n﹣2>e+﹣2,由f′(x)>0得:0<x<m或x>n,由f′(x)<0得:m<x<1或1<x<n,所以f(x)在(0,m)递增,(m,1)递减;(1,n)递减,(n,+∞)递增当x1∈(0,1)时,;当x2∈(1,+∞)时,,所以:=,n>e,设:,n>e,则,所以:F(n)是增函数,所以,又:,所以:.【选考题】请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分,答题时用2B铅笔在答题卡上把所选题目的题号涂黑.请考生在第(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做的第一题计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑.[选修4-1:几何证明选讲] 22.如图,AB是⊙O的直径,弦CA、BD的延长线相交于点E,EF垂直BA的延长线于点F.求证:(1)∠DEA=∠DFA;(2)AB2=BE•BD﹣AE•AC.【考点】与圆有关的比例线段.【分析】(1)连接AD,利用AB为圆的直径结合EF与AB的垂直关系,通过证明A,D,E,F 四点共圆即可证得结论;(2)由(1)知,BD•BE=BA•BF,再利用△ABC∽△AEF得到比例式,最后利用线段间的关系即求得AB2=BE•BD﹣AE•AC.【解答】证明:(1)连接AD,因为AB为圆的直径,所以∠ADB=90°,又EF⊥AB,∠AFE=90°,则A,D,E,F四点共圆∴∠DEA=∠DFA(2)由(1)知,BD•BE=BA•BF,又△ABC∽△AEF∴,即AB•AF=AE•AC∴BE•BD﹣AE•AC=BA•BF﹣AB•AF=AB•(BF﹣AF)=AB2[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,设倾斜角为α的直线(t为参数)与曲线(θ为参数)相交于不同两点A,B.(1)若,求线段AB中点M的坐标;(2)若|PA|•|PB|=|OP|2,其中,求直线l的斜率.【考点】参数方程化成普通方程;直线的斜率;直线与圆的位置关系.【分析】(1)把直线和圆的参数方程化为普通方程,联立后根据根与系数的关系求出两交点中点的横坐标,待入直线方程再求中点的纵坐标;(2)把直线方程和圆的方程联立,化为关于t的一元二次方程,运用直线参数方程中参数t的几何意义,结合给出的等式求解直线的倾斜角的正切值,则斜率可求,【解答】解:(1)当时,由,得,所以直线方程为,由,得曲线C的普通方程为,设A(x1,y1),B(x2,y2)再由,得:13x2﹣24x+8=0,所以,,所以M的坐标为(2)把直线的参数方程代入,得:,所以,由|PA|•|PB|=|t1t2|=|OP|2=7,得:,所以,,所以,所以.所以直线L的斜率为±.[选修4-5:不等式选讲]24.设函数f(x)=|x﹣1|+|x﹣2|.(1)画出函数y=f(x)的图象;(2)若不等式|a+b|+|a﹣b|≥|a|f(x),(a≠0,a、b∈R)恒成立,某某数x的X围.【考点】分段函数的解析式求法及其图象的作法.【分析】本题考查的是分段函数的解析式求法以及函数图象的作法问题.在解答时对(1)要先将原函数根据自变量的取值X围转化为分段函数,然后逐段画出图象;对(2)先结和条件a≠0将问题转化,见参数统统移到一边,结合绝对值不等式的性质找出f(x)的X围,通过图形即可解得结果.【解答】解:(1)(2)由|a+b|+|a﹣b|≥|a|f(x)得又因为则有2≥f(x)解不等式2≥|x﹣1|+|x﹣2|得。
2016届江苏省扬州中学高三3月质量检测数学试题一、填空题1.已知集合{}|11M x x =-<<,|01x N x x ⎧⎫=≤⎨⎬-⎩⎭,则=⋂N M __________. 【答案】}10|{<≤x x【解析】试题分析:|01x N x x ⎧⎫=≤⎨⎬-⎩⎭=[0,1),=⋂N M [0,1) 【考点】集合运算【方法点睛】1.用描述法表示集合,首先要弄清集合中代表元素的含义,再看元素的限制条件,明确集合类型,是数集、点集还是其他的集合.2.求集合的交、并、补时,一般先化简集合,再由交、并、补的定义求解.3.在进行集合的运算时要尽可能地借助Venn 图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn 图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.2.复数i(1i)z =+(i 是虚数单位)在复平面内所对应点的在第__________象限. 【答案】二【解析】试题分析:i(1i)z =+1i =-+在复平面内所对应点的在第二象限. 【考点】向量几何意义3.执行如图所示的程序框图,则输出的i 值为__________.【答案】4【解析】试题分析:第一次循环:2,2m i ==;第二次循环:1,3m i ==,第三次循环:0,4m i ==,结束循环,输出 4.i =【考点】循环结构流程图4.在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为90km/h ~120km/h ,试估计2000辆车中,在这段时间内以正常速度通过该处的汽车约有________辆.【答案】1700【解析】试题分析:2000(0.0350.030.02)101700⨯++⨯= 【考点】 频率分布直方图 5.已知等差数列{}n a 的公差0≠d ,且39108a a a a +=-.若n a =0 ,则n = .[【答案】5 【解析】试题分析:39108a a a a +=-3910821010828550200a a a a a a a a a a a a ⇒+=-⇒+=-⇒+=⇒=⇒=,因此n =5【考点】等差数列性质【思路点睛】等差、等比数列的性质是两种数列基本规律的深刻体现,是解决等差、等比数列问题既快捷又方便的工具,应有意识地去应用.但在应用性质时要注意性质的前提条件,有时需要进行适当变形. 在解决等差、等比数列的运算问题时,经常采用“巧用性质、整体考虑、减少运算量”的方法.6.“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的_______________条件.(空格处请填写“充分不必要条件” 、“必要不充分条件”、“充要条件”或“既不充分也不必要条件”) 【答案】充分不必要条件 【解析】试题分析:()cos f x a x x =⋅+在R 上单调递增()sin 0f x a x '⇒=-≥在R 上恒成立max (sin )11a x a ⇒≥=⇒≥,所以“1a >”是“函数()cos f x a x x =⋅+在R 上单调递增”的充分不必要条件条件. 【考点】导数应用【思路点睛】导数与函数的单调性(1)函数单调性的判定方法:设函数y =f (x )在某个区间内可导,如果f′(x )>0,则y =f (x )在该区间为增函数;如果f′(x )<0,则y =f (x )在该区间为减函数. (2)函数单调性问题包括:①求函数的单调区间,常常通过求导,转化为解方程或不km/h )频率0.0050.0200.030等式,常用到分类讨论思想;②利用单调性证明不等式或比较大小,常用构造函数法. 7.在区间[1,1]-上随机取一个数x ,cos2x π的值介于1[0,]2的概率为 . 【答案】13【解析】试题分析:由题意得1220cos,[1,1]112232222333xx x x x x πππππππ≤≤∈-⇒≤≤≤≤-⇒≤≤≤≤-或-或-,因此所求概率为22(1)13.1(1)3-=--【考点】几何概型概率8.已知正六棱锥底面边长为2,侧棱长为4,则此六棱锥体积为_______. 【答案】12【解析】试题分析:由题意得六棱锥的高为=,体积为216212.3⨯= 【考点】六棱锥体积9.函数xx a y 421⋅++=在]1,(-∞∈x 上0>y 恒成立,则a 的取值范围是 .【答案】(34-,+∞)【解析】试题分析:由题意得max 11[()],(1)42x x a x >-+≤,令12x t =,则1[,)2t ∈+∞,因此2113()()424x x t t -+=-+≤-,从而34a >-【考点】不等式恒成立10.已知F 是椭圆1C :1422=+y x 与双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 .【答案】26【解析】试题分析:设双曲线的实轴长为2a ,F '为椭圆1C :1422=+y x 与双曲线2C 的另一个公共焦点,则由对称性知0AF AF '⋅=,因此由22222()()2()8AF AF AF AF AF AF c '''-++=+=得22244832a a e +=⨯⇒=⇒==【考点】椭圆与双曲线定义 【思路点睛】(1)对于圆锥曲线的定义不仅要熟记,还要深入理解细节部分:比如椭圆的定义中要求|PF 1|+|PF 2|>|F 1F 2|,双曲线的定义中要求||PF 1|-|PF 2||<|F 1F 2|,抛物线上的点到焦点的距离与准线的距离相等的转化.(2)注意数形结合,画出合理草图. 11.平行四边形ABCD中,60,1,BAD AB AD P ∠===为平行四边形内一点,且2AP =,若),(R ∈+=μλμλ,则λ的最大值为 . 【答案】36【解析】试题分析:设(0,)3PAB πθθ∠=∈,,则由正弦定理得:2sin120sin(60)λθ==-,因此)3πλθ=+≤,当且仅当=6πθ时取等号【考点】向量与三角综合【思路点睛】三角函数和平面向量是高中数学的两个重要分支,内容繁杂,且平面向量与三角函数交汇点较多,向量的平行、垂直、夹角、数量积等知识都可以与三角函数进行交汇.不论是哪类向量知识与三角函数的交汇试题,都会出现交汇问题中的难点,对于此类问题的解决方法就是利用向量的知识将条件转化为三角函数中的“数量关系”,再利用三角函数的相关知识进行求解. 12.已知ABC ∆,若存在111A B C ∆,满足111cos cos cos 1sin sin sin A B CA B C ===,则称111A B C ∆是ABC ∆的一个“友好”三角形.若等腰ABC ∆存在“友好”三角形,则其底角的弧度数为 .【答案】83π【解析】试题分析:不妨设A 为顶角,则由题意得2A π≠,且,,222A AB BC Cπππ'''=±=±=±,因此有3++=22A B C A B C A B C ππ'''=±±±⇒±±±,逐一验证得:3,=48A B C ππ==满足【考点】诱导公式13.已知函数()f x 是定义在R 上的奇函数,且当0x >时,()f x x a a =--(a ∈R ).若)()2016(,x f x f R x >+∈∀,则实数a 的取值范围是 . 【答案】504a <【解析】试题分析:当0a =时,(),f x x x R =∈,满足条件;当0a <时,2,0()0,02,0x a x f x x x a x ->⎧⎪==⎨⎪+<⎩,为R 上的单调递增函数,也满足条件;当0a >时,2,(),2,x a x a f x x a x ax a x a ->⎧⎪=--≤≤⎨⎪+<-⎩,要满足条件,需42016a < ,即0504a <<,综上实数a 的取值范围是504a <【考点】分段函数图像与性质14.若函数n mx x x f ++=2)(),(R n m ∈在[1,1]-上存在零点,且120≤-≤m n ,则n 的取值范围是 .【答案】3,9⎡--⎣【解析】试题分析:由题意得:(1)(1)0f f -≤或240112(1)0,(1)0m n m f f ⎧∆=-≥⎪⎪-≤-≤⎨⎪-≥≥⎪⎩,作出可行域OCAB :其中由2,(102n m n A n mm -==⎧⎧⇒--⎨⎨-+==-⎩⎩,2219(94,04n m n B m n m m ⎧-==-⎧⎪⇒--⎨⎨=<=-⎩⎪⎩得知n的取值范围是3,9⎡--⎣【考点】二次方程实根分布 【思路点睛】(1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.二、解答题15.如图,已知直三棱柱111C B A ABC -中, BC AC =,N M ,分别是棱1CC ,AB 中点.(1)求证:CN ⊥平面11A ABB ; (2)求证:CN ∥平面1AMB ;【答案】(1)详见解析(2)详见解析 【解析】试题分析:(1)证明线面垂直,一般利用线面垂直判定与性质定理,经多次转化进行论证:先由直棱柱性质将侧棱垂直底面转化为线线垂直1AA CN ⊥,再根据平几中等腰三角形性质得CN AB ⊥,最后由线面垂直判定定理得证(2)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予论证,而线线平行的寻找,往往利用平几知识,本题构造平行四边形,利用平行四边形性质得到线线平行:CN ∥MG .试题解析:解:(Ⅰ)证明:因为三棱柱111ABC A B C -中,1AA ⊥底面ABC ,又因为CN ⊂平面ABC ,所以1AA CN ⊥. 因为AC BC =,N 是AB 中点, 所以CN AB ⊥. 因为1AA AB A ⋂=,所以CN ⊥平面11ABB A .(Ⅱ)证明:取1AB 的中点G ,连结MG ,NG ,因为N ,G 分别是棱AB ,1AB 中点,所以NG ∥1BB ,112NG BB =.又因为CM ∥1BB ,112CM BB =,所以CM ∥NG ,CM =NG .所以四边形CNGM 是平行四边形. 所以CN ∥MG .因为CN ⊄平面1AMB ,MG ⊂平面1AMB ,所以CN ∥平面1AMB .【考点】线面垂直判定与性质定理,线面平行判定定理【方法点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.(4)证明面面垂直,需转化为证明线面垂直,进而转化为证明线线垂直. 16.设ABC ∆的内角,,A B C 的对边分别为,,,tan a b c a b A =,且B 为钝角. (1)证明:2B A π-=;(2)求sin sin A C +的取值范围.【答案】(1)详见解析(2)9]8【解析】试题分析:(1)先由正弦定理,将已知条件统一成角的关系:即sin sin tan A B A =,再根据同角三角函数关系,化切为弦得sin cos B A =,最后根据诱导公式得2B Aπ=+(2)求取值范围问题,一般先利用条件,将其转化为一元函数:sin sin sin sin(2)2A C A A π+=+-,再利用二倍角公式,将其转化为二次函数:22sin sin 1A A ++,最后根据角的范围04A π<<,确定二次函数定义区间0sin 2A <<,结合对称轴得到函数值域9(]28试题解析:解析:(1)由t a n a b A =及正弦定理,得sin sin cos sin A a AA bB ==,∴sin cos B A =, 即sin sin()2B A π=+,又B 为钝角,因此(,)22A πππ+∈,(不写范围的扣1分) 故2B Aπ=+,即2B A π-=;(2)由(1)知,()C A B π=-+(2)2022A A πππ-+=->,∴(0,)4A π∈, 于是sin sin sin sin(2)2A C A A π+=+-2219sin cos 22sin sin 12(sin )48A A A A A =+=-++=--+, ∵04A π<<,∴0sin A <<,因此21992(sin )488A <--+≤,由此可知sin sin A C +的取值范围是9]8.【考点】正弦定理,诱导公式与二倍角公式,二次函数值域【方法点睛】解三角形问题,多为边和角的求值问题,这就需要根据正、余弦定理结合已知条件灵活转化边和角之间的关系,从而达到解决问题的目的.其基本步骤是: 第一步:定条件即确定三角形中的已知和所求,在图形中标出来,然后确定转化的方向. 第二步:定工具即根据条件和所求合理选择转化的工具,实施边角之间的互化. 第三步:求结果.17.某环线地铁按内、外环线同时运行,内、外环线的长均为30 km (忽略内、外环线长度差异).(1)当9列列车同时在内环线上运行时,要使内环线乘客最长候车时间为10 min ,求内环线列车的最小平均速度; (2)新调整的方案要求内环线列车平均速度为25 km/h ,外环线列车平均速度为30 km/h.现内、外环线共有18列列车全部投入运行,问:要使内、外环线乘客的最长候车时间之差最短,则内、外环线应各投入几列列车运行? 【答案】(1)20 km/h.(2)内环线投入10列,外环线投入8列 【解析】试题分析:(1)本题实质为路程问题:9列列车总行驶30 km ,时间不超过10min ,即设内环线列车运行的平均速度为v km/h ,则3060109V ⨯≤,v≥20.注意单位统一(2)由(1)分析,可分别求出内、外环线乘客的最长候车时间:设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别72x ,6018x-.根据绝对值的定义研究差的单调性**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩,得x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短.试题解析:解:(1) 设内环线列车运行的平均速度为v km/h ,由题意可知3060109V ⨯≤,v ≥20.所以,要使内环线乘客最长候车时间为10 min ,列车的最小平均速度是20 km/h.(2) 设内环线投入x 列列车运行,则外环线投入(18-x )列列车运行,内、外环线乘客最长候车时间分别为t1、t2 min ,则t1=30726025x x ⨯=,t2=30606030(18)18x x⨯=--.于是有t=|t1-t2|=**7260,9,726018||726018,1017,18x x N x xx x x x N x x ⎧-≤∈⎪⎪--=⎨-⎪-+≤≤∈⎪-⎩在(0,9)递减,在(10,17)递增.又(9)(10)t t >,所以x =10,所以当内环线投入10列,外环线投入8列列车运行时,内、外环线乘客最长候车时间之差最短. 【考点】函数实际应用,分段函数最值18.如图,曲线Γ由两个椭圆1T :()222210x y a b a b +=>>和椭圆2T :()222210y x b c b c +=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点(0,M ,且,,a b c 的公比为22.x(1)求猫眼曲线Γ的方程; (2)任作斜率为()0k k ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:ON OMK k 为与k 无关的定值;(3l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N 为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.【答案】(1)222212:1,:1,422x y y T T x +=+=(2)详见解析(3)【解析】试题分析:(1)求椭圆标准方程,一般方法为待定系数法,由题意得b =再由,,a b c 成等比数列,且公比为22得2,1a c ==(2)弦中点问题,一般利用点差法得中点坐标与弦斜率关系:21k k OM-=⋅,2k k ON -=⋅,两式相除得ON OMK k 值为1.4(3)由椭圆几何意义得,过N1T 也相切,而直线与椭圆相切问题,一般利用判别式为零列等量关系,根据弦长公式可得底边长,根据平行直线间距离公式可得高试题解析:解. (1)b =2,1a c ∴==,221:142x y T ∴+=,222:12y T x ∴+=(2)设斜率为k 的直线交椭圆1T 于点()()1122,,,C x y D x y ,线段CD 中点()00,M x y121200,22x x y y x y ++∴==由22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,得()()()()12121212042x x x x y y y y -+-++=k 存在且0k ≠,12x x ∴≠,且0x 0≠ ∴01212012y y y x x x -⋅=-- ,即21k k OM -=⋅ 同理,2k k ON -=⋅41k k ON OM =∴得证(3)设直线l的方程为y m =+22221⎧=+⎪⎨+=⎪⎩y m y x b c ,()2222222220∴+++-=b c x x m c b c0∆=,2222∴=+m b c1: =+l y22221⎧=+⎪⎨+=⎪⎩y m x y a b , ()2222222220∴+++-=b a x x m a b a0∆=,2222∴=+m b a2: =l y两平行线间距离:d =∴=AB==AB ,d ==∆ABN的面积最大值为12S ==【考点】椭圆标准方程,点差法,直线与椭圆位置关系【思路点睛】定值问题通常是通过设参数或取特殊值来确定“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.定值问题同证明问题类似,在求定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定值显现.19.已知两个无穷数列{}{},n n a b 分别满足1112n n a a a +=⎧⎨-=⎩,1112n nb b b +=-⎧⎪⎨=⎪⎩,其中*n N ∈,设数列{}{},n n a b 的前n 项和分别为,n n S T ,(1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数k (2k ≥),使得1k k c c -<,称数列{}n c 为“k 坠点数列”①若数列{}n a 为“5坠点数列”,求n S ;②若数列{}n a 为“p 坠点数列”,数列{}n b 为“q 坠点数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,说明理由.【答案】(1)21na n =-,11,12,2n n n b n --=⎧=⎨≥⎩(2)①22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②6 【解析】试题分析:(1)由题意得数列{}n a 为等差数列,公差为2,首项为1,通项公式为21n a n =-,(2)①由题意得2123234345456563,5,7,5,7,a a a a a a a a a a a a a a a ≥⇒=≥⇒=≥⇒=<⇒=≥⇒=当6n ≥时,12n n a a +-=,可分项讨论得22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩②三个未知正整数p 、q 、m 是本题难点,先分析数列{}n a 成为p 坠点数列的条件: 12,2p p a a p --=-≥,当n p ≠时,12n n a a +-=,数列{}n b 为“q 坠点数列” 的条件:除首项外有且只有一个负项. 这样,n n S T 的范围可用等差与等比数列前n 项和限制:当q m >时,121122223m m m m T --=-++⋅⋅⋅++=-,()211321(1)m S m m +≤++⋅⋅⋅++=+,当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立;当q m =时, 121122230m m m T --=-++⋅⋅⋅+-=-<不存在m,使得1m mS T +=成立;当q m<时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-,当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立,所以6m ≤,最后验证当6m =时,满足条件.试题解析:解(1)数列{}{},n n a b 都为递增数列,∴12n n a a +-=,21212,2,n n b b b b n N *++=-=∈,∴21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩;(2)①∵数列{}n a 满足:存在唯一的正整数=5k ,使得1k k a a -<,且12n na a +-=,∴数列{}n a 必为1,3,5,7,5,7,9,11,⋅⋅⋅,即前4项为首项为1,公差为2的等差数列,从第5项开始为首项5,公差为2的等差数列,故22,4415,5n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ② ∵2214n n b b +=,即12n n b b +=±,1||2n n b -∴=而数列{}n b 为“q 坠点数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数.()211321(1)m S m m +≤++⋅⋅⋅++=+i.当q m >时,121122223m m mm T --=-++⋅⋅⋅++=- 当6m ≥时,223(1)m m ->+,故不存在m ,使得1m m S T +=成立 ii.当q m =时,121122230m m m T --=-++⋅⋅⋅+-=-< 显然不存在m ,使得1m m S T +=成立iii .当q m <时,()()1321112+22223m m m m m T ----≥-++⋅⋅⋅++-+=-当1223(1)m m --≤+时,才存在m ,使得1m m S T +=成立 所以6m ≤当6m =时,6q <,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,--⋅⋅⋅此时3p =,5q =,所以m 的最大值为6 【考点】等差数列与等比数列综合应用20.已知函数221()xax bx f x e++=(e 为自然对数的底数). (1) 若21=a ,求函数)(x f 的单调区间; (2) 若1)1(=f ,且方程1)(=x f 在)1,0(内有解,求实数a 的取值范围.【答案】(1)0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞;0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . (2))21,22(-e 【解析】试题分析:(1)求函数单调区间,一般利用导数,先求导函数:x e b x b x x f --+-+-=']1)2([)(2,再求导函数在定义区间内的零点情况:11=x ,b x -=12,最后根据两根大小分类讨论单调区间(2)先由1)1(=f 得a e b 21--=,再研究代入1)(=x f ,变量分离得2(1)12x e e x a x x ---=-,令函数2(1)1(),(0,1)x e e xg x xx x---=∈-,利用导数可知2(1)1(),(0,1)x e e x g x x x x ---=∈-为增函数,结合洛必达法则可得()(2,1)g x e ∈-,因此可得实数a 的取值范围.本题也可讨论求参数取值范围.试题解析:解.(1)当21=a ,x e bx x x f -++=)1()(2,x e b x b x x f --+-+-=']1)2([)(2,令0)(='x f ,得11=x ,b x -=12.当0=b 时,0)(≤'x f .当0>b ,11<<-x b 时,0)(>'x f ,b x -<1或1>x 时,0)(<'x f ; 当0<b ,b x -<<11时,0)(>'x f ,b x ->1或1<x 时,0)(<'x f .所以,0=b 时,)(x f 的单调递减区间为),(+∞-∞;0>b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(b --∞,),1(+∞; 0<b 时,)(x f 的单调递增区间为)1,1(b -,递减区间为)1,(-∞,),1(+∞-b . .....4分(2)由1)1(=f 得e b a =++12,a e b 21--=,由1)(=x f 得122++=bx ax e x ,设12)(2---=bx ax e x g x , 则)(x g 在)1,0(内有零点.设0x 为)(x g 在)1,0(内的一个零点,则由0)1(,0)0(==g g 知)(x g 在区间),0(0x 和)1,(0x 上不可能单调递增,也不可能单调递减,设)()(x g x h '=,则)(x h 在区间),0(0x 和)1,(0x 上均存在零点,即)(x h 在)1,0(上至少有两个零点. b ax e x g x --='4)(,a e x h x4)(-='.当41≤a 时,0)(>'x h ,)(x h 在区间)1,0(上递增,)(x h 不可能有两个及以上零点;.6分当4ea ≥时,0)(<'x h ,)(x h 在区间)1,0(上递减,)(x h 不可能有两个及以上零点;.7分当441e a <<时,令0)(='x h 得)1,0()4ln(∈=a x ,所以)(x h 在区间))4ln(,0(a 上递减,在)1),4(ln(a 上递增,)(x h 在区间)1,0(上存在最小值))4(ln(a h . 若)(x h 有两个零点,则有:0))4(ln(<a h ,0)0(>h ,0)1(>h .)441(1)4ln(46)4ln(44))4(ln(ea e a a ab a a a a h <<-+-=--=设)1(,1ln 23)(e x e x x x x <<-+-=ϕ,则xx ln 21)(-='ϕ,令0)(='x ϕ,得e x =.当e x <<1时,0)(>'x ϕ,)(x ϕ递增,当e x e <<时,0)(<'x ϕ,)(x ϕ递减,01)()(max <-+==e e e x ϕϕ,所以0))4(ln(<a h 恒成立.由0221)0(>+-=-=e a b h ,04)1(>--=b a e h ,得2122<<-a e .当2122<<-a e 时,设)(x h 的两个零点为21,x x ,则)(x g 在),0(1x 递增,在),(21x x 递减,在)1,(2x 递增,所以0)0()(1=>g x g ,0)1()(2=<g x g ,则)(x g 在),(21x x 内有零点.综上,实数a 的取值范围是)21,22(-e . 【考点】利用导数求函数单调区间,利用导数研究参数取值范围【思路点睛】先把方程解的问题转化为函数的零点问题.,再利用导数解决与函数零点(或方程的根)有关的问题:通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路. 21.已知矩阵 10120206A B -⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,,求矩阵1.A B - 【答案】11203A B ---⎡⎤=⎢⎥⎣⎦ 【解析】试题分析:由逆矩阵公式得110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,再利用矩阵运算得11203A B ---⎡⎤=⎢⎥⎣⎦ 试题解析:解:110102A --⎡⎤⎢⎥=⎢⎥⎣⎦,11203A B ---⎡⎤=⎢⎥⎣⎦ 【考点】逆矩阵22.直角坐标系xoy 内,直线l 的参数方程22(14x tt y t =+⎧⎨=+⎩为参数),以OX 为极轴建立极坐标系,圆C的极坐标方程为)4πρθ=+,确定直线l 和圆C 的位置关系.【答案】直线l 与圆C 相交.【解析】试题分析:先利用代入消元得直线l 的普通方程为32-=x y ,再利用cos ,sin x y ρθρθ==将圆C 的极坐标方程化为直角坐标方程()()21122=-+-y x ,最后根据圆心到直线距离与半径大小关系确定位置关系试题解析:解:由⎩⎨⎧+=+=t y tx 4122,消去参数t ,得直线l 的普通方程为32-=x y ,由⎪⎭⎫⎝⎛+=4sin 22πθρ,即()()θρθρρθθρcos sin 2cos sin 22+=⇒+=,消去参数θ,得直角坐标方程为()()21122=-+-y x . 由(1)得圆心()1,1C ,半径2=r ,∴ C 到l 的距离r d =<=+--=25521231222,所以,直线l 与圆C 相交.【考点】参数方程化普通方程,极坐标方程化直角坐标方程,直线与圆位置关系23.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X (年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年.将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求在未来4年中,至多1年的年入流量超过120的概率;(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量发电机年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台? 【答案】(1)0.9477(2)2【解析】试题分析:(1)至多1年的年入流量超过120包含两种情况,一是4年年入流量不大于120,二是恰有一年年入流量超过120,利用互斥事件概率加法公式得351(120)5010P P X =>==,04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯=(2)由于至多安装3台,因此分三类依次讨论,分别求出对应分布列、数学期望值,最后比较数学期望值大小,试题解析:解:(1)由题意得:1101(4080)505P P X =<<==,2335751(80120),(120)50105010P P X P P X =≤≤===>==由二项分布,在未来4年中,至多1年的年入流量超过120的概率为04134343433991(1)(1)()4()0.9477101010P C P C P P =-+-=+⨯⨯= (2) 设水电站年总利润为y (万元)①安装1台发电机,5000,5000.y Ey == y42000.2+100000.8=8840.Ey =⨯⨯y 150000.1=8620.+⨯综上,欲使水电站年总利润的均值达到最大,应安装发电机2台 【考点】数学期望值,概率【方法点睛】求解离散型随机变量的数学期望的一般步骤为: 第一步是“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义; 第二步是“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率;第三步是“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;第四步是“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X ~B (n ,p )),则此随机变量的期望可直接利用这种典型分布的期望公式(E (X )=np )求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度. 24.设数列{}n a (n N ∈)为正实数数列,且满足20nin i n i ni C a aa -==∑. (1)若24a =,写出10,a a ;(2)判断{}n a 是否为等比数列?若是,请证明;若不是,请说明理由. 【答案】(1)2,110==a a (2)是等比数列【解析】试题分析:(1)先寻求10,a a 之间关系:当1n =时,0121011011102C a a C a a a a a +=⇒=,同理可得当2n =时,1222022*********C a a C a a C a a a a a ++=⇒=,再根据24a =,得到2,110==a a (2)利用数学归纳法,同(1)求出02nn a a =试题解析:解:(1)当1n =时,0121011011102C a a C a a a a a +=⇒= 当2n =时,01222022112202204C a a C a a C a a a a a ++=⇒= 因为24a =,所以2,110==a a(2)假设对于n i n N ≤∈,,均有02nn a a =,则当1n i =+时,2121110101022(22)2i i i i i i a a a a a a ++++++=+-⇒= 综上,02nn a a =,{}n a 为等比数列 【考点】数学归纳法。
2016年数学全真模拟试卷五试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.已知集合{}1A =,{}19B =, ,则A B =U ▲ . 【答案】{}19,2. 已知实数a ,b 满足(9+3i)(i)104i a b +=+(其中i 是虚数单位),则a b += ▲ . 【答案】653. 对一批产品的长度(单位:毫米)进行抽样检测,样本容量为400,右图为检测结果的频率分布直方图.根据产品标准,单件产品长度在区间[25,30)的为一等品,在区间[20,25)和[30,35)的为二等品,其余均为三等品.则样本中三等品的件数为 ▲ . 【答案】1004. 在长为12 cm 的线段AB 上任取一点C .现作一矩 形,邻边长分别等于线段AC ,CB 的长,则该矩形 面积大于32 cm 2的概率为 ▲ . 【答案】135. 如图,是某校限时12 min 跑体能达标测试中计算每一个 参加测试的学生所跑路程S (单位:m )及时间t (单位: min )的流程图,每跑完一圈(400 m ),计一次路程,12 min 内达标或超过12 min 则停止计程.若某同学成功通过该项测试,则该同学所跑路程至少为 ▲ m . 【答案】20005. 已知向量a ,b 满足1=a ,3=b,)1+=a b ,则-=a b ▲ .(第5题)(第5题)(第3题)0.0.0.0.0.【答案】4;6. 在平面直角坐标系xOy 中,“双曲线C 的标准方程为221169y x -=”是“双曲线C 的渐近线方程为34y x =±”成立的 ▲ 条件.(填“充要”、“充分非必要”、“必要非充分”、“非充分非必要”中的一种) 【答案】充分非必要8. 设a ,b ,c 为三条不同的直线,给出如下两个命题: ①若//a b ,b c ⊥,则a c ⊥;②若a b ⊥,b c ⊥,则//a c .试类比以上某个命题,写出一个正确的命题:设α,β,γ为三个不同的平面, ▲ . 【答案】若//αβ,βγ⊥,则αγ⊥9. 若函数()()ππ()sin 44f x a x x =++-是偶函数,则实数a 的值为 ▲ .【答案】10. 设奇函数()f x 在(0,+∞)上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集是 ▲ . 【答案】(10)(01)-,,【解析】由奇函数及()()0f x f x x --< 得2()0f x x <,即(2,0),(3,1)A B 或()00f x x <⎧⎨>⎩,由函数的草图得解集为(10)(01)-,,11.四面体ABCD 中,AB ⊥平面BCD ,CD ⊥平面ABC ,且1cm AB BC CD ===,则四面体ABCD 的外接球的表面积为 ▲ 2cm . 【答案】3π【解析】如图,则四面体ABCD 的外接球即它所在正方体(棱长为1)的外接球,而正方体的外接球的直径即正方体的体对角线长,所以外接球的表面积为24π3π=(cm 2).12.正五边形ABCDE 的边长为AC AE ⋅uu u r uu u r的值为 ▲ .【答案】6【解析】利用AC uuu r 在AE uu u r 上的投影得,AC AE ⋅=u u u r u u u r 2162AE =uu u r .13.设集合{}()0A x x x a =-<,{}27180B x x x =--<,若A B ⊆,则a 的取值范围是 ▲ .【答案】[]29-,【解析】依题意,()2 9B =-,,当0a >时,(0 )A a =,,由A B ⊆得,09a <≤;当0a <时,( 0)A a =,, 由A B ⊆得,2a -≥;当0a =时,A =∅,满足A B ⊆, 综上得,[]29a ∈-,. 14. 已知两个等比数列}{n a ,{}n b 满足1(0)a a a =>,111b a -=,222b a -=,333b a -=,若数列}{n a唯一,则实数a 的值为 ▲ . 【答案】13【解析】设数列}{n a 的公比为q ()0q ≠,由11b a =+,22b aq =+,233b aq =+成等比得,()()()22213aq a aq +=++,即24310a q a q a -+-=,因为0a >,所以2440a a ∆=+>,故方程24310aq aq a -+-=有两个不同的实数解,其中一解必为0q =,从而13a =,此时,另一解为2q =.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)BA(第16题)CEF GD 在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对边的长.若a cos B =1,b sin A =2,且A-B =π4.(1)求a 的值; (2)求tan A 的值.解:(1)由正弦定理知,b sin A =a sin B =2,①(2分) 又a cos B =1, ②①,②两式平方相加,得(a sin B )2+(a cos B )2=3,(4分) 因为sin 2B +cos 2B =1,所以a =3(负值已舍);(6分)(2),由(1)中①,②两式相除,得sin B cos B =2,即tan B =2,(8分)因为A -B =π4,所以tan A =tan(B +π4)=tan B +tanπ41-tan B tanπ4(12分)=1+21-2=-3-22.(14分)16.(本题满分14分)如图,在四面体ABCD 中,AD =BD ,∠ABC =90°,点E ,F 分别为棱AB ,AC 上的点, 点G 为棱AD 的中点,且平面EFG //平面BCD .求证: (1)EF =12BC ;(2)平面EFD ⊥平面ABC .证明:(1)因为平面EFG ∥平面BCD ,平面ABD ∩平面EFG =EG ,平面ABD ∩平面BCD =BD ,所以EG //BD ,(4分) 又G 为AD 的中点, 故E 为AB 的中点,同理可得,F 为AC 的中点, 所以EF =12BC .(7分)(2)因为AD =BD ,由(1)知,E 为AB 的中点, 所以AB ⊥DE ,又∠ABC =90°,即AB ⊥BC , 由(1)知,EF //BC ,所以AB ⊥EF , 又DE ∩EF =E ,DE ,EF ⊂平面EFD , 所以AB ⊥平面EFD ,(12分) 又AB ⊂平面ABC ,故平面EFD ⊥平面ABC .(14分)17.(本题满分14分)已知函数3()f x x ax b =++的图象关于坐标原点对称,且与x 轴相切. (1)求实数a ,b 的值;(2)是否存在正实数m n , ,使函数()3()g x f x =-在区间[]m n , 上的值域仍为[]m n ,?若存 在,求出m n , 的值;若不存在,说明理由.解:(1)因为函数3()f x x ax b =++的图像关于坐标原点对称,所以()()f x f x -=-,即()33x ax b x ax b --+=-++,于是0b =, 设函数3()f x x ax =+的图象与x 轴切于点( 0)T t ,, 则()0f t =,且()0f t '=,即30t at +=,且230t a +=, 解得0t a ==, 所以3()f x x =;(6分)(2)333 0 ()3()3 0 x x g x f x x x ⎧+<⎪=-=⎨-⎪⎩,,,≥,,假设存在 m n ,满足题意, 因为0n m >>,且3()3g x x =-在区间[]m n , 上单调递减,所以333 3 m n n m ⎧-=⎪⎨-=⎪⎩,,ABDC(第18题)·E 两式相减得221m mn n ++=,可得0 1m n ≤≤,,这与[]332 3n m =-∈,矛盾,所以不存在正实数m n , 满足题意.(14分)18.(本题满分16分)下图是一块平行四边形园地ABCD ,经测量,AB =20 m ,BC =10 m ,120ABC ∠=°.拟过线段AB 上一点E 设计一条直路EF (点F 在四边形ABCD 的边上,不计路的宽度),将该园地分为面积之比为3:1的左,右两部分分别种植不同花卉.设EB x EF y ==,(单位:m ). (1)当点F 与点C 重合时,试确定点E 的位置; (2)求y 关于x 的函数关系式;(3)请确定点E ,F 的位置,使直路EF 长度最短. 【解】(1)当点F 与点C 重合时,由题设知,S △BEC 1=S □ABCD ,于是1124EB h AB h ⋅=⋅,其中h 为平行四边形AB 边上的高,得12EB AB =,即点E 是AB 的中点.(4分) (2)因为点E 在线段AB 上,所以020x ≤≤.(6分) 当1020x ≤≤时,由(1)知,点F 在线段BC 上, 因为AB =20 m ,BC =10 m ,120ABC ∠=°,所以S □ABCD sin 2010AB BC ABC =⋅⋅∠=⨯=由S△EBF12x BF=⋅⋅sin120°=100BF x=, 所以由余弦定理得y EF === 当010x <≤时,点F 在线段CD 上, 由S四边形EBCF()110x CF =+⨯⨯sin 60°=10CF x =-, 当BE CF≥时,EF =当BE CF <时,EF =,化简均为y EF ==综上,101020x y x ⎧<=0≤,≤≤. (12分) (3)当010x <≤时,y == 于是当5x =时,min y =,此时1510CF x =-=;当1020x ≤≤时,y=53>故当E 距B 点2.5m ,F 距C 点7.5m 时,EF 最短,其长度为(16分)19.(本题满分16分)在平面直角坐标系xOy 中,已知直线l :3280x y +-=,圆M :22(3)(2)1x y -+-=. (1)设A ,B 分别为直线l 与圆M 上的点,求线段AB 长度的取值范围;(2)试直接写出一个圆N (异于圆M )的方程(不必写出过程),使得过直线l 上任 一点P 均可作圆M 与圆N 的切线,切点分别为M T ,N T ,且M N PT PT =; (3)求证:存在无穷多个圆N (异于圆M ),满足对每一个圆N ,过直线l 上任一点P均可作圆M 与圆N 的切线,切点分别为M T ,N T ,且M N PT PT =. 解:(1)易得圆心(32)M ,到直线l :3280x y +-=的距离1d r ==,故直线l 与圆M 相离,从而1AB -,所以线段AB 长的取值范围是)1+∞,.(5分)(2)易得圆M 关于直线l 对称的圆必满足题意, 故满足题意的一个圆N 的方程为:()()229611313x y -+-=.(8分)(3)设圆N :222()() (03)x a y b r r a -+-=>≠,,由M N PT PT =,得2221PM PN r -=-,即22222(3)(2)1()()x y x a y b r -+--=-+--,(10分) 整理得,()()2222322120a x b y r a b -+-⋅++--=, 因为3280x y +-=,所以283y x =-,从而()()()22223283120a x b x r a b -+-⋅-++--=, 整理得,()22223840a b x r a b b -+--+-=,(13分)因为上式对任意的x ∈R 恒成立,所以222230840a b r a b b -=⎧⎨--+-=⎩,, 解得2223131640 (3)93b a r a a a ⎧=⎪⎨⎪=-+>≠⎩,,所以圆N 的方程为:()22221316()4393x a y a a a -+-=-+,即证.(16分)20.(本题满分16分)定义:从一个数列{a n }中抽取若干项(不少于三项)按其在{a n }中的次序排列的一列数叫做{a n }的子数列,成等差(比)的子数列叫做{a n }的等差(比)子列. (1)求数列1,12,13,14,15的等比子列;(2)设数列{a n }是各项均为实数的等比数列,且公比q ≠1.(i )试给出一个{a n },使其存在无穷项的等差子列(不必写出过程); (ii )若{a n }存在无穷项的等差子列,求q 的所有可能值.解:(1)设所求等比子数列含原数列中的连续项的个数为k (1≤k ≤3,k ∈N *), 当k =2时,①设1n ,1n +1,1m 成等比数列,则1(n +1)2=1n ×1m ,即m =n +1n +2, 当且仅当n =1时,m ∈N *,此时m =4,所求等比子数列为1,12,14;②设1m ,1n ,1n +1成等比数列,则1n 2=1n +1×1m ,即m =n +1+1n +1-2∉N *;(3分)当k =3时,数列1,12,13;12,13,14;13,14,15均不成等比,当k =1时,显然数列1,13,15不成等比;综上,所求等比子数列为1,12,14.(5分)(2)(i )形如:a 1,-a 1,a 1,-a 1,a 1,-a 1,…(a 1≠0,q =-1)均存在无穷项等差子数列: a 1,a 1,a 1,… 或-a 1,-a 1,-a 1,(7分)(ii )设{a n k}(k ∈N *,n k ∈N *)为{a n }的等差子数列,公差为d ,当|q |>1时,|q |n >1,取n k >1+log |q ||d ||a 1|(|q |-1),从而|q |n k-1>|d ||a 1|(|q |-1),故|a n k +1-a n k|=|a 1qn k +1-1-a 1qn k -1|=|a 1||q |n k -1·|qn k +1-n k-1|≥|a 1||q |n k -1(|q |-1)>|d |, 这与|a n k +1-a n k|=|d |矛盾,故舍去;(12分)当|q |<1时,|q |n <1,取n k >1+log |q ||d |2|a 1|,从而|q |n k-1<|d |2|a 1|, 故|a n k +1-a n k|=|a 1||q |n k -1|qn k +1-n k-1|≤|a 1||q |n k -1||q |n k +1-n k+1|<2|a 1||q |n k -1<|d |,这与|a n k +1-a n k|=|d |矛盾,故舍去;又q ≠1,故只可能q =-1,结合(i)知,q 的所有可能值为-1.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区...............域内作...答..若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,⊙O 的半径OB 垂直于直径AC ,M 为AO上一点,C (第21—A 题)BM 的延长线交⊙O 于点N ,过点N 的切线交CA 的延长线于点P . 求证:2PM PA PC =⋅.证明:因为PN 切⊙O 于N ,所以90ONP ∠=︒,从而90ONB BNP ∠+∠=︒,因为OB =ON ,所以OBN ONB ∠=∠,因为OB AC ⊥于O , 所以 90OBN BMO ∠+∠=︒, 故BNP BMO PMN ∠=∠=∠, PM PN =,(6分) 又2PN PA PC =⋅,所以2PM PA PC =⋅.(10分)B .(矩阵与变换)已知a ,b ∈R ,矩阵A 13a b -⎡⎤=⎢⎥⎣⎦所对应的变换T A 将直线230x y --=变换为自身,求实数a ,b 的值.解:(1)设变换T :x x y y '⎡⎤⎡⎤→⎢⎥⎢⎥'⎣⎦⎣⎦,则133x a x x ay b y y bx y '--+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥'+⎣⎦⎣⎦⎣⎦⎣⎦,(4分) 因为点x y '⎡⎤⎢⎥'⎣⎦在已知直线上,所以230x y ''--=,故()()2330x ay bx y -+-+-=,整理得()1(23)30b x a y --+--=,(7分) 所以22 231 b a --=⎧⎨-=-⎩,,解得1 4a b =⎧⎨=-⎩,.(10分)C .(极坐标与参数方程)设直线l :cos60 1sin 60x l y l =︒⎧⎨=-+︒⎩,(l 为参数)与曲线C :22 2x at y at⎧=⎨=⎩,(t 为参数,常数0a ≠)交于不同两点,求实数a 的取值范围.解:易得直线l的普通方程为:1y -,代入曲线C 的普通方程22y ax =(0)a ≠得,(6分)232(3)10x a x -+=,依题意,其判别式24(120a ∆=->,解得a <-0a >.(10分)D .(不等式选讲)31>.31>31<-,(4分)4>2<, 故3216x ->或0324x -<≤,(8分) 即6x >或223x <≤,所以该不等式的解集为{}26 2x x x ><≤,或.(10分) 【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,正四棱柱1111ABCD A B C D -中,设1AD =,1 (0)D D λλ=>, 若棱1C C 上存在唯一的一点P 满足1A P ⊥PB ,求实数λ的值.解:如图,以点D 为原点O ,1DA DC DD , , 分别为x y z , , 轴建立空间直角坐标系O xyz -,则()000D ,, ,()110B , , ,()110A λ, , , 设()01P x ,, ,其中[]0x λ∈, , 因为1A P ⊥PB ,(第22题)y所以10A P BP ⋅=,即()()11100x x λ--⋅-=, , , , , 化简得210x x λ-+=,[]0x λ∈, ,(7分) 由点()01P x , , 的唯一性知方程210x x λ-+=只有唯一解, 所以,判别式240λ∆=-=,且0λ>, 解得λ=2.(10分)23.设n 是给定的正整数,有序数组122( )n a a a ⋅⋅⋅,,,同时满足下列条件: ① {}1 1i a ∈-,,1 2 2i n =⋅⋅⋅,,,; ②对任意的1k l n ≤≤≤,都有2212li i k a =-∑≤.(1)记n A 为满足“对任意的1k n ≤≤,都有2120k k a a -+=”的有序数组122( )n a a a ⋅⋅⋅,,,的个数,求n A ;(2)记n B 为满足“存在1k n ≤≤,使得2120k k a a -+≠”的有序数组122( )n a a a ⋅⋅⋅,,,的个数,求n B .解:(1)因为对任意的1k n ≤≤,都有2120k k a a -+=, 所以22222n n n A =⨯⨯⋅⋅⋅⨯=个相乘;(3分)(2)因为存在1k n ≤≤,使得2120k k a a -+≠, 所以2122k k a a -+=或2122k k a a -+=-,(5分) 设所有这样的k 为12(1)m k k k m n ⋅⋅⋅≤≤,, , 不妨设2122(1)j j k k a a j m -+=≤≤,则112122j j k k a a ++-+=-(否则12212j j k i i k a +=->∑=4); 同理,若2122(1)j j k k a a j m -+=-≤≤,则112122j j k k a a ++-+=, 这说明212j j k k a a -+的值由11212k k a a -+的值(2或-2)确定, 又其余的()n m -对相邻的数每对的和均为0,所以,11222C 22C 22C n n n n n n n B --=⨯+⨯+⋅⋅⋅+11222(2+C 2C 2C )22n n n n nn n n --=⨯+⨯+⋅⋅⋅+-⨯2(12)22n n =+-⨯ 2(32)n n =-.(10分)。
2016年新课标全国卷Ⅲ文科数学3卷高考试题Word文档版(含答案)A)a+b>c (B)a+c>b (C)b+c>a (D)a+b+c>08)已知函数f(x)=x3-3x2+2x+1,g(x)=ax2+bx+c,满足g(1)=f(1),g(2)=f(2),g(3)=f(3)。
则a+b+c的值为A)0 (B)1 (C)2 (D)39)已知函数f(x)=x2-2x+1,g(x)=f(x-1),则g(-1)的值为A)-2 (B)-1 (C)0 (D)110)已知等差数列{an}的前n项和为Sn,且a1=2,d=3,则S10的值为A)155 (B)165 (C)175 (D)18511)已知函数f(x)=x3-3x2+2x+1,g(x)=f(x-1),则g(2)的值为A)-5 (B)-1 (C)1 (D)512)已知点A(1,2),B(3,4),C(5,6),则三角形ABC的周长为A)2 (B)4 (C)6 (D)81.设集合 $A=\{0,2,4,6,8,10\},B=\{4,8\}$。
则 $A\capB=\{4,8\}$。
2.若 $z=4+3i$。
则$\frac{z}{|z|}=\frac{4}{5}+\frac{3}{5}i$。
3.已知向量 $\overrightarrow{BA}=(1,3,3,1)$。
$\overrightarrow{BC}=(3,3,2,2)$。
则$\angle ABC=60^{\circ}$。
4.某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图。
图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃。
下面叙述不正确的是:(A)各月的平均最低气温都在5℃以上;(B)七月的平均温差比一月的平均温差大;(C)三月和十一月的平均最高气温基本相同;(D)平均最高气温高于20℃的月份有5个。
5.XXX打开计算机时,忘记了开机密码的前两位,只记得第一位是M,I,N中的一个字母,第二位是1,2,3,4,5中的一个数字,则XXX输入一次密码能够成功开机的概率是$\frac{2}{15}$。
专题1.1 集合【三年高考】1.【2017高考某某1】已知集合{1,2}A =,2{,3}B a a =+,若{1}A B =,则实数a 的值为 ▲ . 【答案】1【解析】由题意1B ∈,显然233a +≥,所以1a =,此时234a +=,满足题意,故答案为1.【考点】集合的运算、元素的互异性【名师点睛】(1)认清元素的属性.解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.(2)注意元素的互异性.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致错误. (3)防X 空集.在解决有关,AB A B =∅⊆等集合问题时,往往容易忽略空集的情况,一定要先考虑∅时是否成立,以防漏解.2.【2016高考某某1】已知集合{1,2,3,6},{|23},A B x x =-=-<<则=A B . 【答案】{}1,2- 【解析】 试题分析:{}{}{}1,2,3,6231,2AB x x =--<<=-.故答案应填:{}1,2-【考点】集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,属于基本题,难度不大.一要注意培养良好的答题习惯,避免出现粗心而出错,二是明确某某高考对于集合题的考查立足于列举法,强调对集合运算有关概念及法则的理解.2.【2015高考某某1】已知集合{}3,2,1=A ,{}5,4,2=B ,则集合B A 中元素的个数为_______. 【答案】5【解析】{123}{245}{12345}A B ==,,,,,,,,,,,则集合B A 中元素的个数为5个. 【考点定位】集合运算3.【2014某某1】已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=. 【答案】{1,3}- 【解析】由题意得{1,3}AB =-.4.【2017课标II ,理】设集合{}1,2,4A =,{}240x x x m B =-+=。
(第4题)2016年数学全真模拟试卷六试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 已知集合{}1 3 5 9U =,,,,{}1 3 9A =,,,{}1 9B =,,则()U A B =Uð ▲ . 【答案】{5}2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的模是 ▲ .3. 已知函数()a f x =在1x =处的导数为2-,则实数a 的值是 ▲ .【答案】24. 右图是某算法的流程图,则输出的i 的值为 ▲ . 【答案】75. 有红心1,2,3和黑桃4,5这5张扑克牌,现从中随机抽取一张,则抽到的牌为红心的概率是 ▲ . 【答案】356. 某单位在岗职工624人,为了调查工人用于上班途中的时间,决定采用系统抽样的方法抽取10 % 的工人进行调查.首先 在总体中随机剔除4人,将剩下的620名职工编号(分别为 000,001,002,…,619),若样本中的最小编号是007, 则样本中的最大编号是 ▲ . 【答案】6177.在平面直角坐标系xOy 中,已知角()π4α+的终边经过点(1P ,则t a n α的值为 ▲ .【答案】28. 已知0x >,0y >,且2520x y +=,则lg lg x y +的最大值为 ▲ . 【答案】19. 已知等比数列{}n a 的前n 项和为3 ()n n S k k =-∈*N ,则2k a 的值为 ▲ . 【答案】610. 已知()y f x =是R 上的奇函数,且0x >时,()1f x =,则不等式2()(0)f x x f -<的解集为▲ .【答案】(0,1)【解析】易得2()0f x x -<,即20x x -<,解得x ∈(0,1).11. 设向量a ()cos25sin 25=,,b ()sin 20cos20=,,若t 是实数,且t =+u a b ,则u 的最小值为 ▲ .【解析】因为()22222221212sin 4512t t t t t t =+=++⋅=++=+≥u a b a b a b ,所以u 的最小.12.某同学的作业不小心被墨水玷污,经仔细辨认,整理出以下两条有效信息:①题目:“在平面直角坐标系xOy 中,已知椭圆2221x y +=的左顶点为A ,过点A 作两条斜率之积为2的射线与椭圆交于B ,C ,…”②解:设AB 的斜率为k ,…点B ()222122 1212k k k k-++,,D ()5 03-,,…” 据此,请你写出直线CD 的斜率为 ▲ .(用k 表示) 【答案】2324k k +【解析】将点B ()222122 1212k k k k -++,用2k 代替得点C 的坐标()22284 88k k k k -++,,从而直线CD 的斜率 为2324k k +.13.使“a b <”成立的必要不充分条件是“ ▲ ”.(填上所有满足题意的序号)①0x ∀>,a b x +≤;APBPCPMDP(第16题)②0x ∃≥,a x b +<; ③0x ∀≥,a b x <+; ④0x ∃>,a x b +≤. 【答案】①【解析】①⇔0x ∀>,a b x -≤,从而0a b -≤,即a b ≤; ②⇔0x ∃≥,b a x ->,从而0b a ->,即a b <; ③⇔0x ∀≥,a b x -<,从而0a b -<,即a b <; ④⇔0x ∃>,b a x -≥,从而0b a ->,即a b <.14. 在△ABC 中,已知sin A =13sin B sin C ,cos A =13cos B cos C ,则tan A +tan B +tan C 的值为 ▲ .【答案】196【解析】依题意cos A -sin A =13cos B cos C -13sin B sin C ,即cos A -sin A =13cos ()B C +, 即cos A -sin A =-13cos A ,所以tan A 14=,又易得tan A =tan B tan C , 而tan A +tan B +tan C =tan A tan B tan C ,所以tan A +tan B +tan C =tan 2A 196=.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)如图,在四棱锥P —ABCD 中,AD // BC ,且AD =2BC ,AD ⊥CD ,PA =PD ,M 为棱AD 的中点.(1)求证:CD //平面PBM ; (2)求证:平面PAD ⊥平面PBM .证明:(1)因为AD // BC ,且AD =2BC , 所以四边形BCDM 为平行四边形, 故CD // BM ,又CD ⊄平面PBM ,BM ⊂平面PBM , 所以CD //平面PBM ;(6分) (2)因为PA =PD ,点M 为棱AD 的中点, 所以PM ⊥AD ,又AD ⊥CD ,CD // BM , 故AD ⊥BM , 而PMBM M =,PM 、BM ⊂平面PBM ,所以AD ⊥平面PBM , 又AD ⊂平面PAD ,所以平面PAD ⊥平面PBM .(14分)16.(本题满分14分)在△ABC中,BC 2AB AC ⋅=.(1)求证:△ABC 三边的平方和为定值; (2)当△ABC 的面积最大时,求cos B 的值.证明:(1)因为2AB AC ⋅=,所以cos 2AB AC A ⋅⋅=.(3分)在△ABC 中,由余弦定理得2222cos BC AB AC AB AC A =+-⋅⋅,即2224AB AC =+-,于是2210AB AC +=, 故22210616AB BC AC ++=+=为定值.(6分) 解:(2)由(1)知2210AB AC +=,所以2252AB AC AB AC +⋅=≤,当且仅当AB AC =时取“=”号.(8分) 因为cos 2AB AC A ⋅⋅=,所以2cos A AB AC=⋅,从而sin A (10分) △ABC的面积11sin S AB AC A AB AC =⋅⋅=⋅=(12分) 当且仅当AB AC =时取“=”号.因为2210AB AC +=,所以当AB AC =时,AB AC =,故2cos BCB AB ===(14分)17.(本题满分14分)某生物探测器在水中逆流行进时,所消耗的能量为n E cv T =,其中v 为行进时相对于水的速度,T 为行进时的时间(单位:小时),c 为常数,n 为能量次级数.如果水的速度为4 km/h ,该生物探测器在水中逆流行进200 km . (1)求T 关于v 的函数关系式;(2)(i)当能量次级数为2时,求该探测器消耗的最少能量;(ii)当能量次级数为3时,试确定v 的大小,使该探测器消耗的能量最少.解:(1)由题意得,该探测器相对于河岸的速度为200T,又该探测器相对于河岸的速度比相对于水的速度小4 km/h ,即4v -, 所以200T =4v -,即200T =,4v >;(4分)(2)(ⅰ) 当能量次级数为2时,由(1)知22004v E c v =⋅-,4v >,[]2(4)42004v c v -+=⋅-16200(4)84c v v ⎡⎤=⋅-++⎢⎥-⎣⎦2008c ⎡⎤⋅⎢⎥⎣⎦≥3200c =(当且仅当1644v v -=-即8v =km/h 时,取等号)(9分)(ⅱ) 当能量次级数为3时,由(1)知32004v E c v =⋅-,4v >,所以222(6)2000(4)v v E c v -'=⋅=-得6v =, 当6v <时,0E '<;当6v >时,0E '>, 所以当6v =时,min E 21600c =.答:(ⅰ) 该探测器消耗的最少能量为3200c ;(ⅱ) 6v =km/h 时,该探测器消耗的能量最少.(14分)18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆C :9x 2+y 2=m 2(m >0),直线l 不过原点O 且不平行于坐标轴,且与椭圆C 有两个交点A ,B ,记线段AB 的中点为M .(1)求证:直线OM 的斜率与l 的斜率的乘积为定值; (2)若直线l 过点()3m m ,,延长OM 与椭圆C 交于点P .问:四边形OAPB 能否为平行四边形?若能,求直线l 的斜率;若不能,说明理由. (1)证明:设直线l 的斜率为k ,A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).则222112222299x y m x y m ⎧+=⎪⎨+=⎪⎩,,,两式相减得()()()()1212121290x x x x y y y y -++-+=, 整理得()()()()121212129y y y y x x x x -+=--+,即k OM ⋅k =-9,得证.(6分)(2)四边形OAPB 能为平行四边形.(8分)因为直线l 过点()3m m ,,且l 不过原点且与椭圆C 有两个交点,则k >0,k ≠3,由(1)得直线OM 的方程为9y x k=-,设点P 的横坐标为x P ,由22299y x k x y m ⎧=-⎪⎨⎪+=⎩,得,P x (10分)将点()3m m ,的坐标代入l 的方程y =kx +b 得(3)3k mb -=, 因此()2(3)39M k k mx k -=+, (12分)四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分, 即x P =2x M()2(3)239k k m k -=⨯+,解得14k =,24k =所以当l的斜率为4或4OAPB 为平行四边形.(16分)19.(本题满分16分)设函数()f x ,()g x 的定义域均为R ,且()f x 是奇函数,()g x 是偶函数,()()f x g x + e x =,其中e 为自然对数的底数. (1)求()f x ,()g x 的表达式;(2)设0a ≤,1b ≥,0x >,证明:()()(1)()(1)f x ag x a bg x b x+-<<+-. 解:(1)由()()f x g x +e x =得,()()f x g x -+-e x -=, 因为()f x 是奇函数,()g x 是偶函数, 所以()()f x g x -+e x -=,从而e e ()2x x f x --=,e +e ()2x xg x -=(4分) (2)当0x >时,e 10e 1x x -><<,,所以()0f x >,e +e ()12x xg x -=.(6分) 由(1)得,e +e ()()2x x f x g x -'==,e e ()()2x x g x f x --'==,(8分) 当0x >时,()()(1)()()(1)f x ag x a f x axg x a x x>+-⇔>+-,()()(1)()()(1)f x bg x b f x bxg x b x <+-⇔<+-, 设函数()()()(1)P x f x cxg x c x =-+-,(10分)则[][]()()()()(1)(1)()1()P x f x c g x xg x c c g x cxf x '''=-++-=---,(12分) 若0c ≤,0x >,则()0P x '>,故()P x 为[)0+∞,上增函数, 所以()(0)0P x P >=,若1c ≥,0x >,则()0P x '<,故()P x 为[)0+∞,上减函数, 所以()(0)0P x P <=, 综上知,()()(1)()(1)f x ag x a bg x b x+-<<+-.(16分) 20.(本题满分16分)设()k f n 为关于n 的k ()k ∈N 次多项式.数列{a n }的首项11a =,前n 项和为n S .对于任意的正整数n ,()n n k a S f n +=都成立.(1)若0k =,求证:数列{a n }是等比数列;(2)试确定所有的自然数k ,使得数列{a n }能成等差数列.解:(1)若0k =,则()k f n 即0()f n 为常数,不妨设0()f n c =(c 为常数). 因为()n n k a S f n +=恒成立,所以11a S c +=,即122c a ==. 而且当2n ≥时,2n n a S +=, ① 112n n a S --+=,② ①-②得 120(2)n n a a n n --=∈N ,≥. 若a n =0,则1=0n a -,…,a 1=0,与已知矛盾,所以*0()n a n ≠∈N . 故数列{a n }是首项为1,公比为12的等比数列.(4分)(2)(i) 若k =0,由(1)知,不符题意,舍去.(6分) (ii) 若k =1,设1()f n bn c =+(b ,c 为常数), 当2n ≥时,n n a S bn c +=+, ③ 11(1)n n a S b n c --+=-+, ④ ③-④得 12(2)n n a a b n n --=∈N ,≥. 要使数列{a n }是公差为d (d 为常数)的等差数列,必须有n a b d =-(常数),而a 1=1,故{a n }只能是常数数列,通项公式为a n =1()*n ∈N ,故当k =1时,数列{a n }能成等差数列,其通项公式为a n =1()*n ∈N ,此时 1()1f n n =+.(9分)(iii) 若k =2,设22()f n an bn c =++(0a ≠,a ,b ,c 是常数), 当2n ≥时,2n n a S an bn c +=++, ⑤ 211(1)(1)n n a S a n b n c --+=-+-+, ⑥ ⑤-⑥得 122(2)n n a a an b a n n --=+-∈N ,≥, 要使数列{a n }是公差为d (d 为常数)的等差数列,必须有2n a an b a d =+--,且d =2a ,考虑到a 1=1,所以1(1)2221n a n a an a =+-⋅=-+()*n ∈N .故当k =2时,数列{a n }能成等差数列,其通项公式为221n a an a =-+()*n ∈N ,此时22()(1)12f n an a n a =+++-(a 为非零常数).(12分)(iv) 当3k ≥时,若数列{a n }能成等差数列,则n n a S +的表达式中n 的最高次数为2,故数列{a n }不能成等差数列.(14分)综上得,当且仅当k =1或2时,数列{a n }能成等差数列.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答.. 若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .选修4—1:几何证明选讲 (本小题满分10分)如图,C ,D 是直径为AB 的半圆上的两个不同的点,AC 与BD 交于点E ,点F 在弦BD 上,且△ACD ∽△BCF ,证明:△ABC ∽△DFC . 证明:因为△ACD ∽△BCF , 所以∠ACD =∠BCF ,故∠ACD ACF +∠=∠BCF ACF +∠, 即∠DCF =∠BCE , 又∠BDC =∠BAC ,所以△ABC ∽△DFC .(10分)B(第21题A )B .选修4—2:矩阵与变换 (本小题满分10分)设x 为实数.若矩阵M 152x -⎡⎤=⎢⎥⎣⎦为不可逆矩阵,求2M . 解:依题意,10x =-,(4分)所以2M 15159452102101890---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦.(10分)C .选修4—4:极坐标与参数方程 (本小题满分10分)已知极坐标系中的曲线2cos sin ρθθ=与曲线()πsin 4ρθ+=交于A ,B 两点,求线段AB 的长.解:曲线2cos sin ρθθ=化为2x y =;(4分)()πs i n 2ρθ+=同样可化为2x y +=,(8分) 联立方程组,解得A (1,1), B (-2,4),所以AB .(10分)D .选修4—5:不等式选讲 (本小题满分10分)设123 a a a ,,均为正数,且1231a a a ++=,求证:1231119.a a a ++≥ 证明:因为123 a a a ,,均为正数,且1231a a a ++=, 所以123111a a a ++()123123111()a a a aa a =++++()()1133123123111339a a a a a a ⋅=≥,(当且仅当1231a a a ===时等号成立)(8分)所以1239111a a a ++≥.(10分)ABCD1A1B11DP(第22题)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正方体1111ABCD A B C D -中,1AB =,11 (01)A P AC λλ=<<. (1)若12λ=,求直线PB 与PD 所成角的正弦值;(2)若直线1AC ⊥平面PBD ,求实数λ的值. 解:如图,以D 为坐标原点,分别以DA ,DC ,D D 1为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -,则A (1,0,0),B (1,1,0),C (0,1,0),D (0,0,0),A 1(1,0,1),B 1(1,1,1), C 1(0,1,1),D 1(0,0,1),(1)由12λ=得()111 222P ,,, 所以()()111111 222222PB PD =-=---,,,,所以11114cos 3PB PD --+⋅==-,所以,直线PB 与PD .(5分)(2)易得()11 1 1AC =--,,, 由11(1 1 1)A P AC λλ==--,,得,(1 1)P λλλ--,,, 此时( 1 1)BP λλλ=---,,,因为1AC PBD ⊥平面,所以1BP A C ⊥, 从而10AC BP ⋅=,即 110λλλ+-+-=,解得23λ=.(10分)23.(本小题满分10分)设i 为虚数单位,n 为正整数.(1)证明:(cos isin )cos isin n x x nx nx +=+;(2)结合等式“[][]1(cos isin )(1cos )isin n nx x x x ++=++”证明:121C cos C cos2C cos nn n n x x nx +++⋅⋅⋅+2c o s c o s 22n n x nx =.证明:(1)①当1n =时,cos isin cos isin x x x x +=+,即证; ②假设当n k =时,(cos isin )cos isin k x x kx kx +=+成立,则当1n k =+时,()1(cos isin )cos isin (cos isin )k x x kx kx x x ++=++ ()()cos cos sin sin sin cos sin cos i kx x kx x kx x x kx =-++ ()()cos 1isin 1k x k x =+++, 故命题对1n k =+时也成立,由①②得,(cos isin )cos isin n x x nx nx +=+;(5分) (2)由(1)知,[]01(cos isin )C (cos isin )C (cos isin )nnnr r r n n r r x x x x rx rx ==++=+=+∑∑,其实部为121C cos C cos2C cos n n n n x x nx +++⋅⋅⋅+;[](1cos )isin nx x ++=()()22cos 2isin cos 2cos cos isin 222222nnnnx x x x x x +=+()2cos cos isin 222n n x nx nx =+,其实部为2cos cos 22n n x nx ,根据两个复数相等,其实部也相等可得:121C cos C cos2C cos nn n n x x nx +++⋅⋅⋅+2cos cos 22n n x nx =.(10分)。
(第5题)2016年数学全真模拟试卷一试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 已知集合{}0A x x =≥,{}1B x x =<,则A B = ▲ .【答案】R2. 某公司生产三种型号A ,B ,C 的轿车,产量分别为1200辆,6000辆,2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,则型号A 的轿车应抽取 ▲ 辆. 【答案】63. 在平面直角坐标系xOy 中,抛物线22(0)x py p =>的焦点坐标为(0 1),,则实数p 的值为 ▲ .【答案】24. 已知集合{}0 A ππππ2π3π5π=π6432346,,,,,,,,.现从集合A 中随机选取一个元素,则该元素的余弦值为正数的概率为 ▲ . 【答案】495. 如图,是一个算法的程序框图,当输出的y 值为2时,若将输入的x 的所有可能值按从小到大的顺序排列得到一个数列{}n a ,则该数列的通项公式为n a = ▲ . 【答案】34n a n =-6. 豌豆的高矮性状的遗传由其一对基因决定,其中决定高的基因记为D ,决定矮的基因记为d ,则杂交所得第一子代的一对基因为Dd ,若第二子代的D ,d 的基因遗传是等可能的(只要有基因D 则其就是高茎,只有两个基因全是d 时,才显示矮茎),则第二子代为高茎的概率为 ▲ .BACD 1B1A1CD(第9题)E F【答案】347. 在平面直角坐标系xOy 中,已知向量(1 2)=,a ,1(2 1)5-=-,a b ,则⋅=a b ▲ .【答案】258. 已知x y ,为正实数,满足26x y xy +=+,则xy 的最小值为 ▲ .【答案】189. 如图,已知正四棱柱1111ABCD A B C D -的体积为36,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四 棱锥1A AEFD -的体积为 ▲ . 【答案】1210. 设定义在区间[] -11,的函数()sin()f x x ϕ=π+(其中0ϕ<<π)是偶函数,则函数()f x 的单调减区间为 ▲ . 【答案】(0 1),【解析】依题意,ϕπ=2,则()cos f x x =π的减区间为(0 1),. 11.在平面直角坐标系xOy 中,已知圆C :22()(21)2x a y a -++-=(11)a -≤≤,直线l :y x b =+ ()b ∈R .若动圆C 总在直线l 的下方且它们至多有1个交点,则实数b 的最小值是 ▲ .【答案】2【解析】依题意,圆心( 12)C a a -,(11)a -≤≤的轨迹为线段12y x =-(11)x -≤≤, 当且仅当1a =-=b 的最小,此时2b =.12.如图,三次函数32y ax bx cx d=+++的零点为112-, , ,则该函数的单调减区间为 ▲ .【答案】【解析】设()(1)(1)(2)fx a x x x =+--,其中0a >,令 ()0f x '<x <<,所以该函数的单调减区间为;13.如图,点O 为△ABC 的重心,且OAOB ⊥,6AB =,则AC BC ⋅的值为 ▲ .(第12题)ABCO(第13题)【答案】72【解析】以AB 的中点M 为坐标原点,AB 为x 轴建立 平面直角坐标系,则()30A -,,()30B ,, 设()C x y ,,则O ()33y x ,,因为OA ⊥OB ,所以0AO BO ⋅=, 从而()()()2330333yx x +⋅-+=,化简得,2281x y +=,所以222(3)(3)972AC BC x x y x y ⋅=+-+=+-=14.设k b ,均为非零常数,给出如下三个条件: ①{}n a 与{}n ka b +均为等比数列; ②{}n a 为等差数列,{}n ka b +为等比数列; ③{}n a 为等比数列,{}n ka b +为等差数列,其中一定能推导出数列{}n a 为常数列的是 ▲ .(填上所有满足要求的条件的序号) 【答案】①②③【解析】①易得()()()211n n n k x b k x b k x b -+⋅+=⋅+⋅+,即2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++, 因为211n n n x x x -+=,且0kb ≠,所以112n n n x x x -+=+,即证; ②由①知2222211112()n n n n n n k x kbx b k x x kb x x b -+-+++=+++,因为112n n n x x x -+=+,所以211n n n x x x -+=,即证; ③易得()()()112n n n k x b k x b k x b -+⋅+=⋅++⋅+,且0k ≠,故112n n n x x x -+=+,又211n n n x x x -+=,即证.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本题满分14分)已知()π02α∈,,()ππ2β∈,,1cos 3β=-,()7sin 9αβ+=.(1)求tan2β的值;(2)求sin α的值.解:(1)因为22222222cos sin 1tan 222cos cos sin 22cos sin 1tan 222βββββββββ--=-==++,且1cos 3β=-,所以221tan 1231tan 2ββ-=-+,解得2tan 22β=,(4分)因为()ππ2β∈,,所以()ππ242β∈,,从而tan 02β>,所以tan2β=(6分) (2)因为()ππ2β∈,,1cos 3β=-,所以sin β==(8分) 又()π0α∈,,故()π3παβ+∈,,从而()cos αβ+==,(10分)所以[]sin sin ()sin()cos cos()sin ααββαββαββ=+-=+-+()7193=⨯-(13-=.(14分)16.(本题满分14分)如图,在长方体1111ABCD A B C D -中, 已知11AD AA ==,2AB =,点E 是AB 的中点. (1)求三棱锥1C DD E -的体积; (2)求证:11D E A D ⊥.【解】(1)由长方体性质可得,1DD ⊥ 平面DEC ,所以1DD 是三棱锥1D DCE -的高,AEBCD1A 1D 1C 1B (第16题)又点E 是AB 的中点,11AD AA ==,AB =2,所以DE CE =222DE EC CD +=,90DEC ∠=, 三棱锥1D DCE -的体积1111323V DD DE CE =⨯⨯=;(7分)(2)连结1AD ,因为11A ADD 是正方形,所以11AD A D ⊥ ,又AE ⊥面11ADD A ,1A D ⊂面11ADD A , 所以1AE A D ⊥, 又1AD AE A =,1AD AE ⊂,平面1AD E ,所以1A D ⊥平面1AD E ,(12分) 而1D E ⊂平面1AD E , 所以11D E A D ⊥.(14分)17.(本题满分14分)请你为某养路处设计一个用于储藏食盐的仓库(供融化高速公路上的积雪之用).它的上部是底面圆半径为5m 的圆锥,下部是底面圆半径为5m 的圆柱,且该仓库的总高度为5m .经过预算,制造该仓库的圆锥侧面、圆柱侧面用料的单价分别为4百元/2m ,1百元/2m ,设圆锥母线与底面所成角为θ,且()π0 θ∈,,问当θ为多少时,该仓库的侧面总造价(单位:百元)最少?并求出此时圆锥的高度.解:设该仓库的侧面总造价为y ,则[]152π55(1tan )12π542cos y θθ⎡⎤=⨯⨯-⨯+⨯⨯⨯⨯⎢⎥⎣⎦()2sin 50π1+θθ-=,(6分)(第17题)由()22sin 1cos 50π0y θθ-'==得1sin 2θ=,()π0 4θ∈,,所以π6θ=,(10分)列表:所以当π6θ=时,侧面总造价ym .(14分)18.(本题满分16分)定义:如果一个菱形的四个顶点均在一个椭圆上,那么该菱形叫做这个椭圆的内接菱形,且该菱形的对角线的交点为这个椭圆的中心.如图,在平面直角坐标系xOy 中,设椭圆2214x y +=的所有内接菱形构成的集合为F .(1)求F 中菱形的最小的面积;(2)是否存在定圆与F 中的菱形都相切?(3边所在的直线的方程.解:(1)如图,设11( )A x y ,,22( )B x y ,, 1︒当菱形ABCD 的对角线在坐标轴上时,其面积为142142⨯⨯⨯=; 2︒当菱形ABCD 的对角线不在坐标轴上时,设直线AC 的方程为:y kx =,① 则直线BD 的方程为:1y x k=-,又椭圆2214xy +=, ②由①②得,212441x k =+,2212441k y k =+,从而22221124(1)41k OA x y k +=+=+,(第20题)同理可得,()()2222222221414(1)4141kk OB x y k k⎡⎤-+⎢⎥+⎣⎦=+==+-+,(3分) 所以菱形ABCD 的面积为2OA OB ⨯⨯====≥165= (当且仅当1k =±时等号成立),综上得,菱形ABCD 的最小面积为165;(6分)(2)存在定圆2245x y +=与F 中菱形的都相切,设原点到菱形任一边的距离为d ,下证:d =证明:由(1)知,当菱形ABCD 的对角线在坐标轴上时,d =,当菱形ABCD的对角线不在坐标轴上时,22222OA OB d OA OB ⨯=+222222224(1)4(1)4144(1)4(1)414k k k k k k k k ++⨯++=+++++ 2222224(1)(1)(4)(1)(41)k k k k k +=+++++22224(1)45(1)(55)k k k +==++,即得d = 综上,存在定圆2245x y +=与F 中的菱形都相切;(12分)(3)设直线AD 的方程为(y tx =-,即0tx y -=,则点(0 0)O ,到直线AD=,解得t =,所以直线AD的方程为y x =.(16分)19.(本题满分16分)设a ,b ,c 为实数,函数32()f x x ax bx c =--+为R 上的奇函数,且在区间[)1 +∞,上单调.(1)求a ,b ,c 应满足的条件; (2)求函数()f x 的单调区间;(3)设001 ()1x f x ≥,≥,且[]00()f f x x =,求证:00()f x x =. 解:(1)因为32()f x x ax bx c =--+为R 上的奇函数,所以()()f x f x -=-,即32x ax bx c --++=32x ax bx c -++-, 变形得,20ax c +=, 所以0a c ==, (2分)此时3()f x x bx =-在区间[)1 +∞,上单调,则2()30f x x b '=-≥在区间[)1 +∞,上恒成立,得3b ≤;(5分) (2)2()3f x x b '=-,且3b ≤,当0b ≤时,2()30f x x b '=-≥,所以函数()f x 的单调增区间为( )-∞+∞,;(7分)当0b >时,2()30f x x b '=->得,函数()f x 的单调减区间为(,单调增区间为( -∞,,)+∞;(10分) (3)设0()f x t =,则1t ≥,0()1f t x =≥, 即有300x bx t -=,且30t bt x -=, 两式相减得,()()33000x bx t bt t x ---=-, 即()()2200010x t x x t t b -+++-=,因为1t ≥,01x ≥,3b ≤,所以220011x x t t b ++-+≥, 故0x t =,即00()f x x =.(16分)20.(本题满分16分)若存在非零常数p ,对任意的正整数n ,212n n n a a a p ++=+,则称数列{}n a 是“T 数列”.(1)若数列{}n a 的前n 项和()2n S n n *=∈N ,求证:{}n a 是“T 数列”; (2)设{}n a 是各项均不为0的“T 数列”. ①若0p <,求证:{}n a 不是等差数列;②若0p >,求证:当1a ,2a ,3a 成等差时,{}n a 是等差数列. 解:(1)当1n =时,111a S ==;当2n ≥时,221(1)21n n n a S S n n n -=-=--=-, 所以21n a n =-,n *∈N ,(3分)则{}n a 是“T 数列”⇔存在非零常数p ,2(21)(21)(23)n n n p +=-++ 显然4p =满足题意,所以{}n a 是“T 数列”;( 5分) (2)①假设{}n a 是等差数列,设1(1)n a a n d =+-,则由212n n n a a a p ++=+得,()[][]2111(1)(1)a nd a n d a n d p +=+-+++, 解得20p d =≥,这与0p <矛盾,故假设不成立, 从而{}n a 不是等差数列;(10分) ②因为212n n n a a a p ++=+()0p >, ① 所以()211 2n n n a a a p n -+=+≥, ②①-②得,221211n n n n n n a a a a a a ++-+-=-(2)n ≥, 因为{}n a 的各项均不为0, 所以1121n n n n n n a a a a +---++=(2)n ≥, 从而11n n n a a a +-+⎧⎫⎨⎬⎩⎭()2n ≥是常数列, 因为1a ,2a ,3a 成等差,所以3122a aa +=,从而112n n na a a +-+=()2n ≥,即112n n n a a a +-+=()2n ≥,即证.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答....................若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤. A .(几何证明选讲)如图,已知凸四边形ABCD 的顶点在一个圆周上, 另一个圆的圆心O 在AB 上,且与四边形ABCD 的其余三边相切.点E 在边AB 上,且AE AD =. 求证: O ,E ,C ,D 四点共圆. 证明:因为AD AE =,所以()11802AED A ∠=-∠,因为四边形ABCD 的顶点在一个圆周上, 所以180A BCD -∠=∠, 从而AED DCO ∠=∠,所以O ,E ,C ,D 四点共圆.(10分) B .(矩阵与变换)在平面直角坐标系xOy 中,设点P (x ,5)在矩阵M 1234⎡⎤=⎢⎥⎣⎦对应的变换下得到点Q (y -2,y ),求1x y -⎡⎤⎢⎥⎣⎦M .解:依题意,1234⎡⎤⎢⎥⎣⎦5x ⎡⎤=⎢⎥⎣⎦2y y -⎡⎤⎢⎥⎣⎦,即102 320 x y x y +=-⎧⎨+=⎩,,解得4 8 x y =-⎧⎨=⎩,, (4分) 由逆矩阵公式知,矩阵M 1234⎡⎤=⎢⎥⎣⎦的逆矩阵1213122--⎡⎤⎢⎥=-⎢⎥⎣⎦M ,(8分) 所以1x y -⎡⎤⎢⎥⎣⎦M 2131-⎡⎤⎢⎥=-⎢⎥⎣⎦48-⎡⎤⎢⎥⎣⎦1610⎡⎤=⎢⎥-⎣⎦.(10分)PA B CD(第22题)EC .(极坐标与参数方程)在极坐标系中,设直线l 过点)A π6,,()3 B 0,,且直线l 与曲线C :cos (0)a a ρθ=>有且只有一个公共点,求实数a 的值. 解:依题意,)Aπ6,,()3 B 0,的直角坐标方程为(32A ,,()3B 0,, 从而直线l 的普通方程为30x -=,(4分) 曲线C :cos (0)a a ρθ=>的普通方程为()222aa x y -+=(0)a >,(8分) 因为直线l 与曲线C 有且只有一个公共点,所以3222a a -=(0)a >,解得2a =(负值已舍).(10分)D .(不等式选讲)设正数a ,b ,c 满足3a b c ++≤,求证:11131112a b c +++++≥.证明:由柯西不等式得, []()111(1)(1)(1)111a b c a b c +++++⋅+++++2≥23=,(6分)所以111993++=≥≥.(10分)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.如图,在四棱锥P ABCD -中,底面A B C D 为直角梯形,90ABC BAD ∠=∠=,且P A A B B C ==11AD ==,PA ⊥平面ABCD .(1)求PB 与平面PCD 所成角的正弦值;(2)棱PD 上是否存在一点E 满足AEC ∠=90?若存在,求AE 的长;若不存在,说明理由.解:(1)依题意,以A 为坐标原点,分别以AB ,AD ,AP为x ,y ,z 轴建立空间直角坐标系O xyz -,则(0 0 1)P ,,,(1 0 0)B ,,,(1 1 0)C ,,,(0 2 0)D ,,, 从而(1 0 1)PB =-,,,(1 1 1)PC =-,,,(0 2 1)PD =-,,,(2分) 设平面PCD 的法向量为( )a b c =,,n ,则⋅n 0PC =,且⋅n 0PD =, 即0a b c +-=,且20b c -=,不妨取2c =,则1b =,1a =, 所以平面PCD 的一个法向量为(1 1 2)=,,n ,(4分)此时cosPB 〈〉==,n所以PB 与平面PCD ;(6分)(2)设(01)PE PD λλ=≤≤,则(0 2 1)E λλ-,,, 则(1 21 1)CE λλ=---,,,(0 2 1)AE λλ=-,,, 由AEC ∠=90得,AE ⋅22(21)+(1)0CE λλλ=--=, 化简得,25410λλ-+=,该方程无解,所以,棱PD 上不存在一点E 满足AEC ∠=90.(10分)23.设整数n ≥3,集合P ={1,2,3,…,n },A ,B 是P 的两个非空子集.记a n 为所有满足A 中的最大数小于B 中的最小数的集合对(A ,B )的个数. (1)求a 3; (2)求a n .解:(1)当n =3时,P ={1,2,3 },其非空子集为:{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}, 则所有满足题意的集合对(A ,B )为:({1},{2}),({1},{3}),({2},{3}), ({1},{2,3}),({1,2},{3})共5对, 所以a 35=;(3分)(2)设A 中的最大数为k ,其中11k n -≤≤,整数n ≥3,则A 中必含元素k ,另元素1,2,…,k 1-可在A 中,故A 的个数为:0111111C C C 2k k k k k -----++⋅⋅⋅+=,(5分) B 中必不含元素1,2,…,k ,另元素k +1,k +2,…,k 可在B 中,但不能都不在B 中,故B 的个数为:12C C C 21n k n k n k n k n k -----++⋅⋅⋅+=-,(7分) 从而集合对(A ,B )的个数为()1221k n k --⋅-=1122n k ---, 所以a n ()11111111222(1)2(2)2112n n n k n n k n n ------=-=-=-⋅-=-⋅+-∑.(10分)。
2016年江苏省南通市高考数学模拟试卷(三)一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)(2016•南通模拟)已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B= .2.(5分)(2016•南通模拟)某中学共有学生2000人,其中高一年级共有学生650人,高二男生有370人.现在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.则该校高三学生共有人.3.(5分)(2016•南通模拟)已知i是虚数单位,且复数z1=2+bi,z2=1﹣2i,若是实数,则实数b= .4.(5分)(2016•南通模拟)根据如图所示的伪代码,已知输出值为1,则输入值x= .5.(5分)(2016•南通模拟)已知m∈{﹣1,0,1},n∈{﹣2,2},若随机选取m,n,则直线mx+ny+1=0上存在第二象限的点的概率是.6.(5分)(2016•南通模拟)已知||=2,||=3,,的夹角为120°,则|+2|= .7.(5分)(2016•南通模拟)已知一元二次不等式f(x)>0的解集为(﹣∞,1)∪(2,+∞),则f(lgx)<0的解集为.8.(5分)(2016•南通模拟)设α为锐角,若cos(α+)=,则cos(2α﹣)= .9.(5分)(2016•南通模拟)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,若AB=2,∠BAD=60°.则当四棱锥P﹣ABCD的体积等于2时,则PC= .10.(5分)(2016•南通模拟)在平面直角坐标系xOy中,过点P(4,3)引圆C:x2+(y ﹣m)2=m2+1(0<m<4)的两条切线,切点分别为A,B,则直线AB过定点.11.(5分)(2016•南通模拟)已知等差数列{a n}的各项均为正数,a1=1,且a3,a4+,a11成等比数列.若p﹣q=10,则a p﹣a q= .12.(5分)(2016•南通模拟)若曲线y=alnx(a≠0)与曲线y=x2在它们的公共点P(s,t)处具有公共切线,则= .13.(5分)(2016•南通模拟)已知▱ABCD的面积为2,P是边AD上任意一点,则|PB|2+|PC|2的最小值为.14.(5分)(2016•南通模拟)设函数f(x)=,则函数g(x)=xf(x)﹣6在区间[1,22015]内的所有零点的和为.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.(14分)(2016•南通模拟)已知在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin(A+)=2cosA.(1)若cosC=,求证:2a﹣3c=0;(2)若B∈(0,),且cos(A﹣B)=,求sinB的值.16.(14分)(2016•南通模拟)已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=.已知PB=PC.(1)若N为PA的中点,求证:DN∥平面PBC;(2)若M为BC的中点,求证:MN⊥BC.17.(14分)(2016•南通模拟)某城市在进行规划时,准备设计一个圆形的开放式公园,为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD作为绿化区域,其余作为市民活动区域,其中△ABD区域种植花木后出售,△BCD区域种植草皮后出售,已知草皮每平方米售价为a元,花木每平方米的售价是草皮每平方米售价的三倍,若BC=6km,AD=CD=4km.(1)若BD=2km,求绿化区域的面积;(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.18.(16分)(2016•南通模拟)已知A,B是椭圆C:+=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2k PF=k PA+k PB(1)求椭圆C的方程;(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求的取值范围.19.(16分)(2016•南通模拟)已知函数f(x)=ax+lnx(a∈R),g(x)=.(1)当a=1时,求f(x)的单调增区间;(2)若h(x)=f(x)﹣g(x)恰有三个不同的零点x1,x2,x3(x1<x2<x3).①求实数a的取值范围;②求证:(1﹣)2(1﹣)(1﹣)=1.20.(16分)(2016•南通模拟)已知数列{a n}是等比数列.(1)设a1=1,a4=8.①若++…+=M(++…+),n∈N*,求实数M的值;②若在与中插入k个数b1,b2,…,b k,使,b1,b2,…,b k,,成等差数列,求这k个数的和S k;(2)若一个数列{c n}的所有项都是另一个数列{d n}中的项,则称{c n}是{d n}的子数列,已知数列{b n}是公差不为0的等差数列,b1=a1,b2=a2,b m=a3,其中m是某个正整数,且m≥3,求证:数列{a n}是{b n}的子数列.选做题.[选修4-1:几何证明选讲](任选两个)21.(10分)(2016•南通模拟)如图,△BCD内接于⊙O,过B作⊙O的切线AB,点C在圆上,∠ABC的角平分线BE交圆于点E,且DB⊥BE.求证:DB=DC.[选修4-2:矩阵与变换]22.(10分)(2016•南通模拟)在平面直角坐标系xOy中,设点P(x,3)在矩阵M=对应的变换下得到点Q(y﹣4,y+2),求M2.[选修4-4:坐标系与参数方程选讲]23.(2016•南通模拟)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.若点P的坐标为(3,),求PA+PB的值.[选修4-5:不等式选讲]24.(2016•南通模拟)若关于x的不等式x2﹣ax+b<0的解集为(1,2),求函数f(x)=(a﹣1)+(b﹣1)的最大值.解答题25.(10分)(2016•南通模拟)如图,一简单几何体ABCDE的一个面ABC内接于圆O,AB 是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.若AC=BC=BE=2,(1)BE边上是否存在一点M,使得AD和CM的夹角为60°?(2)求锐二面角O﹣CE﹣B的余弦值.26.(10分)(2016•南通模拟)已知正项数列{a n}的前n项和为S n,若a1=1,且当n≥2时,2(S n﹣S n﹣1)=(n+1)(++…+).(1)求数列{a n}的通项公式;(2)求证:当n≥2时,4a n an≤.2016年江苏省南通市高考数学模拟试卷(三)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.1.(5分)(2016•南通模拟)已知集合A={x|﹣1≤x<2},集合B={x|x<1},则A∩B={x|﹣1≤x<1}.【分析】由集合A与B,求出两集合的交集即可.【解答】解:∵A={x|﹣1≤x<2},集合B={x|x<1},∴A∩B={x|﹣1≤x<1},故答案为:{x|﹣1≤x<1}【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)(2016•南通模拟)某中学共有学生2000人,其中高一年级共有学生650人,高二男生有370人.现在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.则该校高三学生共有600人.【分析】根据在全校学生中抽取1名学生,抽到高二年级女生的概率是0.19,先求出高二女生的人数,问题得以解决.【解答】解:∵在全校学生中抽取1名学生,抽到高二年级女生的概率是0.19,∴则高二女生人数为0.19×2000=380人,则高三人数为2000﹣650﹣370﹣380=600人,故答案为:600.【点评】本题主要考查频率、频率和总数的关系,根据条件求出高三女生认识是解决本题的关键.3.(5分)(2016•南通模拟)已知i是虚数单位,且复数z1=2+bi,z2=1﹣2i,若是实数,则实数b=﹣4.【分析】利用复数代数形式的乘除运算化简,由虚部为0求得实数b的值.【解答】解:∵z1=2+bi,z2=1﹣2i,∴=,又是实数,∴4+b=0,即b=﹣4.故答案为:﹣4.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.4.(5分)(2016•南通模拟)根据如图所示的伪代码,已知输出值为1,则输入值x=﹣1.【分析】算法的功能是求f(x)=的值,根据输出的值为1,分别求出当x≤0时和当x>0时的x值.【解答】解:由程序语句知:算法的功能是求f(x)=的值,当x≤0时,2x+1=1⇒x=﹣1;当x>0时,y=x+3=1⇒x无解.综上x的值为:﹣1.故答案为:﹣1.【点评】本题考查了选择结构的程序语句,根据语句判断算法的功能是解题的关键,属于基础题.5.(5分)(2016•南通模拟)已知m∈{﹣1,0,1},n∈{﹣2,2},若随机选取m,n,则直线mx+ny+1=0上存在第二象限的点的概率是.【分析】先求出基本事件总数,再利用列举法求出满足条件的m,n的可能取值,由此能求出直线mx+ny+1=0上存在第二象限的点的概率.【解答】解:∵m∈{﹣1,0,1},n∈{﹣2,2},随机选取m,n,∴基本事件总数n=3×2=6,∵直线mx+ny+1=0上存在第二象限的点,∴k=﹣<0,或m=0,n=﹣2,∴m,n的可能取值为(0,﹣2),(﹣1,﹣2),(1,2),∴直线mx+ny+1=0上存在第二象限的点的概率是:P==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.6.(5分)(2016•南通模拟)已知||=2,||=3,,的夹角为120°,则|+2|=2.【分析】先将向量的模平方,利用向量模的平方等于向量的平方,再利用向量的运算法则展开,求出值,再将值开方即可.【解答】解:|+2|2=||2+4||2+4•═||2+4||2+4||•||cos120°=4+4×9+4×2×3×(﹣)=28,∴|+2|=2,故答案为:2【点评】本题主要考查两个向量的数量积的定义,求向量的模的方法,属于基础题.7.(5分)(2016•南通模拟)已知一元二次不等式f(x)>0的解集为(﹣∞,1)∪(2,+∞),则f(lgx)<0的解集为(10,100).【分析】由已知利用补集思想求出一元二次不等式f(x)<0的解集(1,2),然后由1<lgx<2求解x的取值集合即可得到答案【解答】解:由一元二次不等式f(x)>0的解集为(﹣∞,1)∪(2,+∞),得f(x)<0的解集为(1,2),∴lg10=1<lgx<2=lg100,∴10<x<100,故f(lgx)<0的解集为(10,100),故答案为:(10,100)【点评】本题考查了对数的运算性质,考查了对数不等式的解法,体现了数学转化思想方法,训练了补集思想在解题中的应用,属中档题.8.(5分)(2016•南通模拟)设α为锐角,若cos(α+)=,则cos(2α﹣)=.【分析】由cos(2α﹣)=cos[(α+)+(α﹣)],分别根据诱导公式和同角的三角函数的关系即可求出答案.【解答】解:∵α为锐角,∴α+∈(,),α﹣∈(﹣,)∵cos(α+)=,∴sin(α+)=,∴cos(α+)=sin[﹣(α+)]=sin(﹣α)=,∴sin(α﹣)=﹣,∴cos(α﹣)=,∴cos(2α﹣)=cos[(α+)+(α﹣)]=cos(α+)cos(α﹣)﹣sin(α+)sin(α﹣)=×﹣×(﹣)=,故答案为:【点评】本题着重考查了两角和与差的余弦公式,考查了三角函数中的恒等变换应用,属于中档题.9.(5分)(2016•南通模拟)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,若AB=2,∠BAD=60°.则当四棱锥P﹣ABCD的体积等于2时,则PC=.【分析】根据菱形的性质求出底面积和AC,根据棱锥的体积计算PA,利用勾股定理计算PC.【解答】解:∵底面ABCD是菱形,若AB=2,∠BAD=60°.∴S菱形ABCD=2S△ABD=2×=2.AC==2∵PA⊥平面ABCD,∴V P﹣ABCD==2×PA=2,∴PA=3.∴PC==.故答案为:.【点评】本题考查了棱锥的体积计算,属于基础题.10.(5分)(2016•南通模拟)在平面直角坐标系xOy中,过点P(4,3)引圆C:x2+(y ﹣m)2=m2+1(0<m<4)的两条切线,切点分别为A,B,则直线AB过定点(,﹣3).【分析】求出切线长,写出以点P为圆心,切线长为半径的圆的方程,两圆方程相减,得出直线AB的方程,从而求出直线AB所过定点.【解答】解:平面直角坐标系xOy中,过点P(4,3)引圆C:x2+(y﹣m)2=m2+1(0<m<4)的两条切线,则切线长为=,∴以点P为圆心,切线长为半径的圆的方程为(x﹣4)2+(y﹣3)2=42+(3﹣m)2﹣(m2+1),∴直线AB的方程为[x2+(y﹣m)2]﹣[(x﹣4)2+(y﹣3)2]=(m2+1)﹣[16+(3﹣m)2﹣(m2+1)],整理得(4x+3y﹣1)﹣m(y+3)=0,令,解得,∴直线AB过定点(,﹣3).故答案为:(,﹣3).【点评】本题考查了直线与圆的方程的应用问题,也考查了方程组的解法与应用问题,是综合性题目.11.(5分)(2016•南通模拟)已知等差数列{a n}的各项均为正数,a1=1,且a3,a4+,a11成等比数列.若p﹣q=10,则a p﹣a q=15.【分析】设等差数列公差为d,由题意知d>0,由a3,a4+,a11成等比数列列式求得公差,再由等差数列的通项公式求得a p﹣a q.【解答】解:设等差数列公差为d,由题意知d>0,∵a3,a4+,a11成等比数列,∴(a4+)2=a3a11,∴=(1+2d)(1+10d),即44d2﹣36d﹣45=0,解得d=或d=﹣(舍去),∵p﹣q=10,则a p﹣a q=(p﹣q)d=10×.故答案为:15.【点评】本题考查等差数列的通项公式,考查了等比数列的性质,是基础题.12.(5分)(2016•南通模拟)若曲线y=alnx(a≠0)与曲线y=x2在它们的公共点P(s,t)处具有公共切线,则=2.【分析】求出两个函数的导数,然后求出公共点的斜率,利用斜率相等且有公共点联立方程组即可求出a的值.【解答】解:曲线y=alnx的导数为:y′=,在P(s,t)处的斜率为:k=,曲线y=x2的导数为:y′=,在P(s,t)处的斜率为:k=.由曲线y=alnx(a≠0)与曲线y=x2在它们的公共点P(s,t)处具有公共切线,可得,并且t=,∴,解得lns=,∴s2=e.则a=1,∴=.故答案为:.【点评】本题考查函数的导数、导数的几何意义、切线的斜率以及切线方程的求法,考查计算能力,是中档题.13.(5分)(2016•南通模拟)已知▱ABCD的面积为2,P是边AD上任意一点,则|PB|2+|PC|2的最小值为4.【分析】不妨设ABCD是矩形,BC=2,AB=1,设P(x,1)(0≤x≤2),|PB|2+|PC|2=x2+1+(x ﹣2)2+1=2(x﹣1)2+4,即可求出|PB|2+|PC|2的最小值【解答】解:不妨设ABCD是矩形,BC=2,AB=1,则设P(x,1)(0≤x≤2),|PB|2+|PC|2=x2+1+(x﹣2)2+1=2(x﹣1)2+4,∴x=1时,|PB|2+|PC|2的最小值为4,故答案为:4.【点评】本题考查两点间的距离公式,考查函数思想,考查学生的计算能力,比较基础.14.(5分)(2016•南通模拟)设函数f(x)=,则函数g(x)=xf(x)﹣6在区间[1,22015]内的所有零点的和为•(22015﹣1).【分析】函数f(x)是分段函数,要分区间进行讨论,当1≤x≤2,f(x)是二次函数,当x>2时,对应的函数很复杂,找出其中的规律,最后作和求出.【解答】解:当1≤x≤时,f(x)=8x﹣8,所以g(x)=8(x﹣)2﹣8,此时当x=时,g(x)max=0;当<x≤2时,f(x)=16﹣8x,所以g(x)=﹣8(x﹣1)2+2<0;由此可得1≤x≤2时,g(x)max=0.下面考虑2n﹣1≤x≤2n且n≥2时,g(x)的最大值的情况.当2n﹣1≤x≤3•2n﹣2时,由函数f(x)的定义知f(x)=f()=…=f(),因为1≤≤,所以g(x)=(x﹣2n﹣2)2﹣8,此时当x=3•2n﹣2时,g(x)max=0;当3•2n﹣2≤x≤2n时,同理可知,g(x)=﹣(x﹣2n﹣1)2+8<0.由此可得2n﹣1≤x≤2n且n≥2时,g(x)max=0.综上可得:对于一切的n∈N*,函数g(x)在区间[2n﹣1,2n]上有1个零点,从而g(x)在区间[1,2n]上有n个零点,且这些零点为x n=3•2n﹣2,因此,所有这些零点的和为.则当n=2015时,所有这些零点的和为•(22015﹣1).故答案为:•(22015﹣1)【点评】本题主要考查了根的存在性及根的个数的判断的问题,是一道较复杂的问题,综合性较强,难度较大.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤.15.(14分)(2016•南通模拟)已知在△ABC中,内角A、B、C所对的边分别为a、b、c,且sin(A+)=2cosA.(1)若cosC=,求证:2a﹣3c=0;(2)若B∈(0,),且cos(A﹣B)=,求sinB的值.【分析】(1)化简sin(A+)=2cosA可得tanA=,又A为三角形内角.可求sinA的值,又cosC=,C为三角形内角,可求sinC的值,由正弦定理可得:a=sinA•2R,c=sinC•2R,代入等式右边即可证明.(2)由B∈(0,),可求cosB=,由cos(A﹣B)=,利用同角三角函数关系式化简即可求值.【解答】解:(1)证明:∵sin(A+)=2cosA⇒sinA+cosA=2cosA⇒sinA=cosA⇒tanA=,A为三角形内角.⇒A=,sinA=又∵cosC=,C为三角形内角,∴sinC==,∵由正弦定理可得:a=sinA•2R,c=sinC•2R∴2a﹣3c=2R×﹣3×=2﹣2=0.从而得证.(2)∵B∈(0,),∴A﹣B=﹣B∈(0,),∵sin2(A﹣B)+cos2(A﹣B)=1,cos(A﹣B)=,∴sin(A﹣B)=,则sinB=sin[A﹣(A﹣B)]=sinAcos(A﹣B)﹣cosAsin(A﹣B)=﹣=.【点评】本题主要考查了同角三角函数关系式,三角函数恒等变换的应用,属于基本知识的考查.16.(14分)(2016•南通模拟)已知四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=.已知PB=PC.(1)若N为PA的中点,求证:DN∥平面PBC;(2)若M为BC的中点,求证:MN⊥BC.【分析】(1)取PB的中点G,连接NG,CG,经C点作CM∥AD,交AB与点M,利用已知可证:NG AB DC,从而得证四边形DCGN是平行四边形,得证DN∥CG,从而证明DN∥平面PBC.(2)由(1)可求BC,BM,AM,由勾股定理可得AM⊥BC,又PB=PC,M为BC的中点,可证PM⊥BC,通过证明BC⊥平面PAM,即可得证BC⊥MN.【解答】证明:(1)取PB的中点G,连接NG,CG,∵N为PA的中点,∴NG AB,再,经C点作CM∥AD,交AB与点M,∵ABCD是直角梯形,AB∥DC,∠ABC=60°,DC=1,AD=,∴BM===1,AB=2,∴NG AB DC,即四边形DCGN是平行四边形,∴DN∥CG,∵DN⊄平面PBC,CG⊂平面PBC,∴DN∥平面PBC.(2)由(1)可得:BC=2,∵M为BC的中点,可得:BM=1,∴利用余弦定理可得:AM2=22+12﹣2×2×1×cos60°=3,∴AM2+BM2=3+1=4=AB2,由勾股定理可得AM⊥BC,又∵PB=PC,M为BC的中点,∴PM⊥BC,∴由AM∩PM=M,可得BC⊥平面PAM,又MN⊂平面PAM,∴BC⊥MN.【点评】本题主要考查了直线与平面平行的判定,直线与平面垂直的性质,考查了空间想象能力和推理论证能力,属于中档题.17.(14分)(2016•南通模拟)某城市在进行规划时,准备设计一个圆形的开放式公园,为达到社会和经济效益双丰收,园林公司进行如下设计,安排圆内接四边形ABCD作为绿化区域,其余作为市民活动区域,其中△ABD区域种植花木后出售,△BCD区域种植草皮后出售,已知草皮每平方米售价为a元,花木每平方米的售价是草皮每平方米售价的三倍,若BC=6km,AD=CD=4km.(1)若BD=2km,求绿化区域的面积;(2)设∠BCD=θ,当θ取何值时,园林公司的总销售金额最大.【分析】(1)若BD=2km,可得C,进而求出AB,即可求绿化区域的面积;(2)设∠BCD=θ,求出园林公司的总销售金额,利用导数可得结论.【解答】解:(1)△BCD中,cosC==,∴C=60°,∴A=120°,∴28=AB2+16﹣2AB•4•(﹣),∴AB=2,∴绿化区域的面积S=+=8;(2)设AB=x,则x2+16﹣2x•4•cos(180°﹣θ)=36+16﹣2×6×4×cosθ,∴(x﹣6+8cosθ)(x+6)=0,∴x=6﹣8cosθ(cosθ<),∴园林公司的总销售金额y=a•sinθ+3a•(6﹣8cosθ)•4sin(180°﹣θ)=48a(sinθ﹣sinθcosθ).∴y′=﹣48a(cosθ﹣1)(2cosθ+1)∵cosθ<,∴cosθ=﹣,θ=120°时,函数取得最大值36a.【点评】本题考查利用数学知识解决实际问题,考查导数知识的运用,考查学生分析解决问题的能力,属于中档题.18.(16分)(2016•南通模拟)已知A,B是椭圆C:+=1(a>b>0)的左,右顶点,F为其右焦点,在直线x=4上任取一点P(点P不在x轴上),连结PA,PF,PB.若半焦距c=1,且2k PF=k PA+k PB(1)求椭圆C的方程;(2)若直线PF交椭圆于M,N,记△AMB、△ANB的面积分别为S1、S2,求的取值范围.【分析】(1)设P(4,t),(t≠0),A(﹣a,0),B(a,0),F(c,0).利用斜率计算公式及其2k PF=k PA+k PB,c=1,a2=b2+c2,解出即可得出椭圆的标准方程.(2)设直线PF的方程为:my+1=x,M(x1,y1),N(x2,y2).(m≠0).直线方程与椭圆方程联立化为:(3m2+4)y2+6my﹣9=0,解得y1,2,不妨取:y1=,y2=,可得==,令m=tanθ,θ∈∪.即可得出.【解答】解:(1)设P(4,t),(t≠0),A(﹣a,0),B(a,0),F(c,0).∴k PA=,k PF=,k PB=,∵2k PF=k PA+k PB,∴2×=+,t≠0,化为:a2=4c,又c=1,a2=b2+c2,联立解得c=1,a=2,b2=3.∴椭圆C的方程为:=1.(2)设直线PF的方程为:my+1=x,M(x1,y1),N(x2,y2).(m≠0).联立,化为:(3m2+4)y2+6my﹣9=0,解得y1,2==,不妨取:y1=,y2=,则==,令m=tanθ,θ∈∪.∴==﹣1∈∪(1,3).【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题、斜率计算公式、“换元法”、三角形面积计算公式,考查了推理能力与计算能力,属于难题.19.(16分)(2016•南通模拟)已知函数f(x)=ax+lnx(a∈R),g(x)=.(1)当a=1时,求f(x)的单调增区间;(2)若h(x)=f(x)﹣g(x)恰有三个不同的零点x1,x2,x3(x1<x2<x3).①求实数a的取值范围;②求证:(1﹣)2(1﹣)(1﹣)=1.【分析】(1)把a=1代入函数解析式,求导后得到其单调区间,注意到函数的定义域.(2)①先分离参数得到,令h(x)=.求导后得其极值点,求得函数极值,则使h(x)恰有三个零点的实数a的范围可求.②由a==,再令,转化为关于μ的方程后由根与系数关系得到μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,再结合着的图象可得到=1【解答】(1)当a=1时,>0(x>0),∴f(x)的单调增区间为(0,+∞).(2)①令=0,分离参数得,令h(x)=,由h′(x)===0,得x=1或x=e.列表知,当x∈(0,1)时,h′(x)<0;当x∈(1,e)时,h′(x)>0;当x∈(e,+∞)时,h′(x)<0.即h(x)在(0,1),(e,+∞)上为减函数,在(1,e)上为增函数.而当x→0,h(x)→+∞,当x→+∞,h(x)→1,又h(1)=1,h(e)=;结合函数的单调性可得,实数a的取值范围为(1,).②由①可知,0<x1<1<x2<e<x3,a==,令,则a=,即μ2+(a﹣1)μ+1﹣a=0,μ1+μ2=1﹣a<0,μ1μ2=1﹣a<0,对于,则当0<x<e时,μ′>0;当x>e时,μ′<0.而当x>e时,μ恒大于0.画其简图,不妨设μ1<μ2,则,∴====[1﹣(1﹣a)+(1﹣a)]2=1【点评】本题考察了利用函数研究函数单调性,极值等性质,训练了函数零点的判断方法,运用了分离变量法,换元法,函数构造法等数学转化思想方法,综合性强属于压轴题范畴.20.(16分)(2016•南通模拟)已知数列{a n}是等比数列.(1)设a1=1,a4=8.①若++…+=M(++…+),n∈N*,求实数M的值;②若在与中插入k个数b1,b2,…,b k,使,b1,b2,…,b k,,成等差数列,求这k个数的和S k;(2)若一个数列{c n}的所有项都是另一个数列{d n}中的项,则称{c n}是{d n}的子数列,已知数列{b n}是公差不为0的等差数列,b1=a1,b2=a2,b m=a3,其中m是某个正整数,且m≥3,求证:数列{a n}是{b n}的子数列.【分析】(1)①由数列{a n}是等比数列a1=1,a4=a1q3=8,求得q,求得数列{a n}的通项公式,求得{}是以公比为的等差数列,{}是以公比为的等比数列,根据等比数列前n项和公式,将原式转化成2[1﹣()2n]=M•[1﹣()n],求得M的值;②根据等差数列的性质得:b1+b k=+=,即可求得S k;(2)分别求得{a n},{b n}的通项公式,根据已知条件,求得m=q+2,求得b k=a1+a1(q﹣1)(k﹣1),并求得a n=a1+a1(q﹣1)(q n﹣2+q n﹣3+…+1),当n≥3时,k=q n﹣2+q n﹣3+…+2,求得a n=b k,当n=1或2时,a1=b1,a2=b2,即可证明数列{a n}是{b n}的子数列.【解答】解:(1)∵a1=1,a4=a1q3=8,∴q=2,∴a n=2n﹣1,①=()n﹣1,=[()n﹣1]2=()n﹣1,∴{}是以公比为的等差数列,{}是以公比为的等比数列,++…+==2[1﹣()2n],∴++…+==[1﹣()n],∴2[1﹣()2n]=M•[1﹣()n],解得M=,②根据等差数列的性质得:b1+b k=+=,S k==,(2)证明:设数列{a n}的公比是q,a n=a1q n﹣1,设数列{b n}是公差是d,则b n=b1+(n﹣1)d,∵b1=a1,b1=a2,b m=a3,,消去d,a1(q2﹣1)=(m﹣1)a1(q﹣1),即m=q+2,∵d≠0,m是某个正整数,且m≥3,∴q∈N,且q≥2,∵d=a1(q﹣1),b k=b1+(k﹣1)d=a1+a1(q﹣1)(k﹣1),∵a n=a1q n﹣1=a1+a1(q n﹣1﹣1),=a1+a1(q﹣1)(q n﹣2+q n﹣3+…+1),∴n≥3时,k=q n﹣2+q n﹣3+…+2,此时a n=b k,n=1或2时,a1=b1,a2=b2,数列{a n}中所有项都是数列{b n}的项,数列{a n}是数列{b n}的数列.【点评】本题考查等差数列及等比数列通项公式及前n项和公式,考查了数列的函数特性,考查推理论证能力,属难题.选做题.[选修4-1:几何证明选讲](任选两个)21.(10分)(2016•南通模拟)如图,△BCD内接于⊙O,过B作⊙O的切线AB,点C在圆上,∠ABC的角平分线BE交圆于点E,且DB⊥BE.求证:DB=DC.【分析】连接DE,交BC于点G.通过弦切角定理,得∠ABE=∠BCE,然后利用勾股定理可得DB=DC.【解答】证明:如图,连接DE,交BC于点G.由弦切角定理,得∠ABE=∠BCE.…(4分)而∠ABE=∠CBE,故∠CBE=∠BCE,所以BE=CE.…(6分)又因为DB⊥BE,所以DE为圆的直径,所以∠DCE=90°,由勾股定理可得DB=DC.…(10分)【点评】本题考查直线与圆的位置关系,圆的切线的应用,勾股定理的应用,考查推理能力.[选修4-2:矩阵与变换]22.(10分)(2016•南通模拟)在平面直角坐标系xOy中,设点P(x,3)在矩阵M=对应的变换下得到点Q(y﹣4,y+2),求M2.【分析】利用矩阵变换,求出x,y,再利用矩阵变换,即可求M2.【解答】解:由题意,=,∴,∴x=0,y=﹣10,=,∴M2==.【点评】本题考查矩阵与变换,考查学生的计算能力,属于中档题.[选修4-4:坐标系与参数方程选讲]23.(2016•南通模拟)在直角坐标系xOy中,直线l的参数方程为(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2sinθ.若点P的坐标为(3,),求PA+PB的值.【分析】把圆C的极坐标方程化为直角坐标方程,把直线l的参数方程代入直角坐标方程,利用根与系数的关系、参数的几何意义即可得出.【解答】解:圆C的方程为ρ=2sinθ,即ρsinθ,化为直角坐标方程:x2+y2=2y,直线l的参数方程为(t为参数),代入上述方程可得:t2﹣3t+4=0,∴t1+t2=3,∴PA+PB=|t1+t2|=3.【点评】本题主要考查极坐标方程与直角坐标方程的转化、参数方程与普通方程的转化及其应用、一元二次方程的根与系数的关系等基础知识,意在考查考生的分析问题解决问题的能力、转化能力、运算求解能力,属于中档题.[选修4-5:不等式选讲]24.(2016•南通模拟)若关于x的不等式x2﹣ax+b<0的解集为(1,2),求函数f(x)=(a﹣1)+(b﹣1)的最大值.【分析】由题意可得1,2是方程x2﹣ax+b=0的两根,运用韦达定理可得a=3,b=2,即有f (x)=2+,运用柯西不等式即可得到所求最大值.【解答】解:关于x的不等式x2﹣ax+b<0的解集为(1,2),可得1,2是方程x2﹣ax+b=0的两根,即有1+2=a,1×2=b,解得a=3,b=2,则函数f(x)=(a﹣1)+(b﹣1)=2+,由x﹣3≥0,4﹣x≥0可得3≤x≤4,由柯西不等式可得,(2+)2≤(4+1)(x﹣3+4﹣x),即有2+≤.当2=,即为x=∈[3,4]时,f(x)取得最大值.【点评】本题考查函数的最值的求法,注意运用柯西不等式,考查二次方程和二次不等式的转化思想,考查运算能力,属于中档题.解答题25.(10分)(2016•南通模拟)如图,一简单几何体ABCDE的一个面ABC内接于圆O,AB 是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.若AC=BC=BE=2,(1)BE边上是否存在一点M,使得AD和CM的夹角为60°?(2)求锐二面角O﹣CE﹣B的余弦值.【分析】(1)以CB为x轴,CB为y轴,CD为z轴,建立如图所示的直角坐标系,求出点的坐标,利用直线之间的夹角转化为向量之间的夹角进行求解即可.(2)设平面BCE的法向量,平面OCE的法向量.二面角O﹣CE﹣B是锐二面角,记为θ,利用空间向量的数量积求解cosθ即可.【解答】解:(1)以CB为x轴,CA为y轴,CD为z轴,建立如图所示的直角坐标系,∵AC=BC=BE=2,∴CD=BE=2,则C(0,0,0),B(2,0,0),A(0,2,0),O(1,1,0),E(2,0,2)D(0,0,2),设M(2,0,t),(0≤t≤2),则=(0,﹣2,2),=(2,0,t),若AD和CM的夹角为60°,|cos<,>|=||=||=||=cos60,平方得t2=4,得t=2,即M(2,0,2),即M位于E处时,AD和CM的夹角为60°.(2)设平面OCE的法向量=(x0.y0.z0).则平面BCE的法向量=(0,1,0),=(2,0,2),=(1,1,0).∴,则,令x0=﹣1,∴=(﹣1,1,1).∵二面角O﹣CE﹣B是锐二面角,记为θ,则cosθ=|cos|===.【点评】本题主要考查空间角的计算,根据异面直线所成角转化为向量之间的夹角以及求出平面的法向量利用向量法求二面角是解决本题的关键.注意向量法的应用.26.(10分)(2016•南通模拟)已知正项数列{a n}的前n项和为S n,若a1=1,且当n≥2时,2(S n﹣S n﹣1)=(n+1)(++…+).(1)求数列{a n}的通项公式;(2)求证:当n≥2时,4a n an≤.【分析】(1)当n≥2时,2(S n﹣S n﹣1)=(n+1)(++…+),令n=2,则2a2=3,解得a2=2.猜想a n=n,可得S n=,利用数学归纳法证明即可得出.(2)要证明:4a n an≤,(n≥2),即证明:4n n≤(n+2)n,即证明≥4,利用二项式定理展开:=+++…,即可证明.【解答】(1)解:当n≥2时,2(S n﹣S n﹣1)=(n+1)(++…+),令n=2,则2a2=3,化为:﹣a2﹣6=0,a2>0,解得a2=2.猜想a n=n,下面利用数学归纳法给出证明:①n=1,2时成立.②假设n=k时成立,则S k=,可得==2,∴++…+=2++…+=2=,当n≥2时,2(S k+1﹣S k)=(k+2)(++…+).∴2a k+1=(k+2)×,∴a k+1=k+1,因此n=k+1时也成立.综上可得:∀n∈N*,a n=n成立.(2)证明:要证明:4a n an≤,(n≥2),即证明:4n n≤(n+2)n,即证明≥4,利用二项式定理展开:=+++…≥1+2+≥4,(n≥2).∴≥4成立,∴4a n an≤,(n≥2).【点评】本题考查了递推关系、二项式定理、猜想归纳验证方法,考查了分析问题与解决问题的能力、推理能力与计算能力,属于难题.。
2016年某某某某市平罗中学高考数学一模试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|1≤x≤2},B={x|x2﹣1≤0},则A∩B=()A.{x|﹣1<x<1}B.{x|﹣1<x<2}C.{1}D.∅2.复数(i是虚数单位)的虚部为()A.﹣2B.﹣1C.1D.23.在下列函数中既是奇函数,又是在区间(0,+∞)上单调递减的函数为()A. B.y=x﹣1C. D.y=x3+x4.如图所示的程序框图,其作用是输入x的值,输出相应的y值,若输入,则输出的y值为()A.2B. C.2﹣2πD.85.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.116.在△ABC,a=,b=,B=,则A等于()A. B. C. D.或7.“x<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g (x)=a x+b的图象大致为()A. B. C. D.9.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2B.5C.6D.710.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A. B. C. D.11.已知函数的图象上相邻两个最高点的距离为π,若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(2x+)12.如图,一竖立在水平对面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.1mB. C. D.2m二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知向量=(1,x),=(x﹣1,2),若,则x=.14.设=2,则tan(α+)=.15.已知函数f(x)=,则f已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.18.某游戏为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.19.如图,在正三棱柱ABC﹣A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1上一点.(1)若M、N分别是CC1、AB的中点,求证:∥平面AB1M;(2)求证:不论M在何位置,三棱锥A1﹣AMB1的体积都为定值,并求出该定值.20.已知椭圆的左,右焦点分别为F1,F2,离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2的面积.21.已知函数f(x)=(ax﹣2)e x在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e.[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交AD的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ,直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数).(1)求直线l与圆C的普通方程;(2)若直线l分圆C所得两弧长度之比为1:2,某某数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值X围.2016年某某某某市平罗中学高考数学一模试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|1≤x≤2},B={x|x2﹣1≤0},则A∩B=()A.{x|﹣1<x<1}B.{x|﹣1<x<2}C.{1}D.∅【考点】交集及其运算.【分析】根据集合的基本运算进行求解.【解答】解:B={x|x2﹣1≤0}={x|﹣1≤x≤1}则A∩B={1},故选:C2.复数(i是虚数单位)的虚部为()A.﹣2B.﹣1C.1D.2【考点】复数代数形式的乘除运算.【分析】利用复数的运算法则、虚部的定义即可得出.【解答】解:复数==1﹣2i的虚部为﹣2.故选:A.3.在下列函数中既是奇函数,又是在区间(0,+∞)上单调递减的函数为()A. B.y=x﹣1C. D.y=x3+x【考点】函数奇偶性的判断;函数单调性的判断与证明.【分析】根据奇函数、偶函数的定义,和奇函数图象的对称性,以及函数y=x3和y=x的单调性即可判断每个选项的正误,从而找出正确选项.【解答】解:A.函数为偶函数,不是奇函数,∴该选项错误;B.反比例函数y=x﹣1是奇函数,且在(0,+∞)上单调递减,∴该选项正确;C.指数函数的图象不关于原点对称,不是奇函数,∴该选项错误;D.y=x3和y=x在区间(0,+∞)上都单调递增,∴y=x3+x在(0,+∞)上单调递增,∴该选项错误.故选B.4.如图所示的程序框图,其作用是输入x的值,输出相应的y值,若输入,则输出的y值为()A.2B. C.2﹣2πD.8【考点】程序框图.【分析】模拟执行程序,可得程序框图的功能是计算并输出y=的值,由函数解析式进行求解即可.【解答】解:模拟执行程序,可得程序框图的功能是计算并输出y=的值,因为,所以.故选:C.5.设S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A.5B.7C.9D.11【考点】等差数列的前n项和.【分析】由等差数列{a n}的性质,及a1+a3+a5=3,可得3a3=3,再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,及a1+a3+a5=3,∴3a3=3,∴a3=1,∴S5==5a3=5.故选:A.6.在△ABC,a=,b=,B=,则A等于()A. B. C. D.或【考点】正弦定理.【分析】由a,b及sinB的值,利用正弦定理即可求出sinA的值,根据A的X围,利用特殊角的三角函数值即可求出A的度数.【解答】解:由正弦定理可得:sinA===∵a=<b=∴∴∠A=,故选:B.7.“x<1”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】根据对数函数的性质和充要条件的定义,分析判断“x<1”⇒“”和“”⇒“x<1”的真假,可得答案.【解答】解:当“x<1”时,x可能小于等于0,此时“”无意义,当“”时,0<x<1,此时“x<1”成立,故“x<1”是“”的必要而不充分条件,故选:B.8.已知函数f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的图象如图所示,则函数g (x)=a x+b的图象大致为()A. B. C. D.【考点】指数函数的图象变换;函数的零点与方程根的关系.【分析】根据题意,易得(x﹣a)(x﹣b)=0的两根为a、b,又由函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;根据函数图象变化的规律可得g(x)=a X+b的单调性即与y轴交点的位置,分析选项可得答案.【解答】解:由二次方程的解法易得(x﹣a)(x﹣b)=0的两根为a、b;根据函数零点与方程的根的关系,可得f(x)=(x﹣a)(x﹣b)的零点就是a、b,即函数图象与x轴交点的横坐标;观察f(x)=(x﹣a)(x﹣b)的图象,可得其与x轴的两个交点分别在区间(﹣∞,﹣1)与(0,1)上,又由a>b,可得b<﹣1,0<a<1;在函数g(x)=a x+b可得,由0<a<1可得其是减函数,又由b<﹣1可得其与y轴交点的坐标在x轴的下方;分析选项可得A符合这两点,BCD均不满足;故选A.9.已知实数x,y满足,则目标函数z=x﹣y的最小值为()A.﹣2B.5C.6D.7【考点】简单线性规划.【分析】先画出约束条件的可行域,再将可行域中各个角点的值依次代入目标函数z=x﹣y,不难求出目标函数z=x﹣y的最小值.【解答】解:如图作出阴影部分即为满足约束条件的可行域,由得A(3,5),当直线z=x﹣y平移到点A时,直线z=x﹣y在y轴上的截距最大,即z取最小值,即当x=3,y=5时,z=x﹣y取最小值为﹣2.故选A.10.已知某棱锥的三视图如图所示,俯视图为正方形,根据图中所给的数据,那么该棱锥外接球的体积是()A. B. C. D.【考点】由三视图求面积、体积.【分析】由该棱锥的三视图判断出该棱锥的几何特征,以及相关几何量的数据,再求出该棱锥外接球的半径和体积.【解答】解:由该棱锥的三视图可知,该棱锥是以边长为的正方形为底面,高为2的四棱锥,做出其直观图所示:则PA=2,AC=2,PC=,PA⊥面ABCD,所以PC即为该棱锥的外接球的直径,则R=,即该棱锥外接球的体积V==,故选:C.11.已知函数的图象上相邻两个最高点的距离为π,若将函数f(x)的图象向左平移个单位长度后,所得图象关于y轴对称.则f(x)的解析式为()A.f(x)=2sin(x+)B.f(x)=2sin(x+)C.f(x)=2sin(2x+)D.f(x)=2sin(2x+)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由周期求出ω,根据y=Asin(ωx+φ)的图象变换规律、三角函数的奇偶性,求出φ的值,可得函数的解析式.【解答】解:设f(x)=2sin(ωx+φ),∵函数的图象上相邻两个最高点的距离为π,∴=π,ω=2.若将函数f(x)的图象向左平移个单位长度后,可得y=2sin[2(x+)+φ]的图象.根据所得图象关于y轴对称,可得+φ=,求得φ=,故选:C.12.如图,一竖立在水平对面上的圆锥形物体的母线长为4m,一只小虫从圆锥的底面圆上的点P出发,绕圆锥表面爬行一周后回到点P处,则该小虫爬行的最短路程为,则圆锥底面圆的半径等于()A.1mB. C. D.2m【考点】点、线、面间的距离计算.【分析】作出该圆锥的侧面展开图,该小虫爬行的最短路程为PP',由余弦定理求出.设底面圆的半径为r,求解即可得到选项.【解答】解:作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为PP′,由余弦定理可得,∴.设底面圆的半径为r,则有,∴.故C项正确.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中对应题号后的横线上.13.已知向量=(1,x),=(x﹣1,2),若,则x= 2或﹣1 .【考点】平行向量与共线向量.【分析】利用向量平行的坐标关系解答.【解答】解:因为,所以1×2=x(x﹣1),解得x=2或者﹣1;故答案为:2或﹣1.14.设=2,则tan(α+)= ﹣2 .【考点】同角三角函数基本关系的运用;两角和与差的正切函数.【分析】由已知可得tanα=3,用两角和的正切公式化简后代入即可求值.【解答】解:∵=2,∴cosα≠0, =2,解得tanα=3,∴tan(α+)==﹣2,故答案为:﹣2.15.已知函数f(x)=,则f=,∴f=f(0)=()0=1.故答案为:1.16.已知双曲线﹣=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为﹣=1 .【考点】双曲线的简单性质.【分析】求出抛物线的准线方程,可得双曲线的焦点,即有c=6,再由渐近线方程可得a,b 的方程,解出a,b,进而得到双曲线的方程.【解答】解:由题意可得,抛物线y2=24x的准线为x=﹣6,双曲线的一个焦点为(﹣6,0),即有c=6,又=,36=a2+b2=4a2,a2=9,b2=27,则所求双曲线的方程为﹣=1.故答案为:﹣=1.三、解答题:本大题共5小题,满分60分.解答须写出文字说明,证明过程和演算步骤. 17.已知等差数列{a n}满足a1+a3=8,a2+a4=12.(Ⅰ)求数列{a n}的前n项和为S n;(Ⅱ)若++…+=,求n的值.【考点】数列的求和;等差数列的前n项和.【分析】(Ⅰ)通过a1+a3=8,a2+a4=12与等差中项的性质可知a2=4,a3=6,进而可知公差及首项,利用等差数列的求和公式计算即得结论;(Ⅱ)通过(I)裂项可知=﹣,进而并项相加并与已知条件比较即得结论.【解答】解:(Ⅰ)∵a1+a3=8,a2+a4=12,∴a2=4,a3=6,∴等差数列{a n}的公差d=a3﹣a2=6﹣4=2,首项a1=a2﹣d=4﹣2=2,∴数列{a n}是首项、公差均为2的等差数列,于是其前n项和为S n=2•=n(n+1);(Ⅱ)由(I)可知, ==﹣,∴++…+=1﹣+﹣+…+﹣=,又∵++…+=,∴=,即n=999.18.某游戏为了了解某款游戏玩家的年龄情况,现随机调查100位玩家的年龄整理后画出频率分布直方图如图所示.(1)求100名玩家中各年龄组的人数,并利用所给的频率分布直方图估计该款游戏所有玩家的平均年龄;(2)若已从年龄在[35,45),[45,55)的玩家中利用分层抽样选取6人组成一个游戏联盟,现从这6人中选出2人,求这两人在不同年龄组的概率.【考点】列举法计算基本事件数及事件发生的概率;频率分布直方图.【分析】(Ⅰ)由直方图可得各组年龄的人数,由直方图计算平均值的方法可得平均年龄;(Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.列举可得总的情况共有15种,“这两人在不同年龄组”包含8种,由古典概型概率公式可得.【解答】解:(Ⅰ)由直方图可得各组年龄的人数分别为10,30,40,20人;估计所有玩家的平均年龄为0.1×20+0.3×30+0.4×40+0.2×50=37岁;(Ⅱ)在[35,45)的人数为4人,记为a,b,c,d;在[45,55)的人数为2人,记为m,n.∴抽取结果共有15种,列举如下:(ab),(ac),(ad),(am),(an),(bc),(bd),(bm),(bn),(cd),(cm),(),(dm),(dn),(mn)设“这两人在不同年龄组”为事件A,事件A所包含的基本事件有8种,则,∴这两人在不同年龄组的概率为19.如图,在正三棱柱ABC﹣A1B1C1(侧棱垂直于底面,且底面是正三角形)中,AC=CC1=6,M是棱CC1上一点.(1)若M、N分别是CC1、AB的中点,求证:∥平面AB1M;(2)求证:不论M在何位置,三棱锥A1﹣AMB1的体积都为定值,并求出该定值.【考点】棱柱、棱锥、棱台的体积;直线与平面平行的判定.【分析】(1)取AB1中点P,连结MP,NP,则四边形MP是平行四边形,得出∥MP,从而∥平面AB1M.(2)V=V=S•.只需证明⊥平面AB1BA1即可.【解答】证明:(1)取AB1中点P,连结MP,NP,∵P是AB1的中点,N是AB的中点,∴PN∥BB1,PN=,∵M是CC1的中点,∴CM∥BB1,CM=BB1,∴CM∥PN,CM=PN,∴四边形MP是平行四边形,∴∥MP,∵MP⊂平面AB1M,⊄AB1M,∴∥平面AB1M.(2)∵△ABC是等边三角形,∴⊥AB,∵BB1⊥平面ABC,PN∥BB1,∴PN⊥平面ABC,∵⊂平面ABC,∴PN⊥,又∵AB⊂平面ABB1A1,PN⊂平面ABB1A1,AB∩PN=N,∴⊥平面AB1BA1,∵==3.∴V=V=S•==18.∴不论M在何位置,三棱锥A1﹣AMB1的体积都为定值18.20.已知椭圆的左,右焦点分别为F1,F2,离心率为,且经过点.(1)求椭圆C的方程;(2)直线l:y=x+m与椭圆C相切,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l,求四边形F1MNF2的面积.【考点】椭圆的简单性质.【分析】(1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;(2)将直线的方程y=x+m,代入椭圆C的方程,消去y,得到x的二次方程,运用直线和椭圆相切的条件:判别式为0,再由点到直线的距离公式,结合直角梯形的面积公式计算即可得到所求值.【解答】解:(1)由题意可得,又a2=b2+c2,所以,又点在该椭圆C上,所以.解得a2=4,b2=3.所以椭圆C的方程为;(2)将直线的方程y=x+m,代入椭圆C的方程3x2+4y2=12中,得7x2+8mx+4m2﹣12=0,由直线与椭圆C仅有一个公共点可知,△=64m2﹣28(4m2﹣12)=0,化简得,m2=7.由F1(﹣1,0),F2(1,0),设,,由直线l的斜率为1,可得|d1﹣d2|=|MN|,所以四边形F1MNF2的面积S=|d1﹣d2|(d1+d2)=|d12﹣d22|=•2|m|=|m|=.故四边形F1MNF2的面积为.21.已知函数f(x)=(ax﹣2)e x在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的极值.【分析】(Ⅰ)求导数f′(x),由题意得f′(1)=0,可得a值,代入检验即可;(Ⅱ)当a=1时可求出f(x)的单调区间及极值点,按极值点在区间[m,m+1]的左侧、内部、右侧三种情况进行即可求得其最小值;(Ⅲ)对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤e,等价于|f(x1)﹣f(x2)|≤f max (x)﹣f min(x)≤e.问题转化为求函数f(x)的最大值、最小值问题,用导数易求;【解答】解:(Ⅰ)f′(x)=ae x+(ax﹣2)e x=(ax+a﹣2)e x,由已知得f′(1)=0,即(2a﹣2)e=0,解得:a=1,验证知,当a=1时,在x=1处函数f(x)=(x﹣2)e x取得极小值,所以a=1;(Ⅱ)f(x)=(x﹣2)e x,f′(x)=e x+(x﹣2)e x=(x﹣1)e x.x (﹣∞,1) 1 (1,+∞)f′(x)﹣0 +f(x)减增所以函数f(x)在(﹣∞,1)上递减,在(1,+∞)上递增.当m≥1时,f(x)在[m,m+1]上单调递增,f min(x)=f(m)=(m﹣2)e m.当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,f min(x)=f(1)=﹣e.当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,.综上,f(x)在[m,m+1]上的最小值(Ⅲ)由(Ⅰ)知f(x)=(x﹣2)e x,f′(x)=e x+(x﹣2)e x=(x﹣1)e x.令f′(x)=0得x=1,因为f(0)=﹣2,f(1)=﹣e,f(2)=0,所以f max(x)=0,f min(x)=﹣e,所以,对任意x1,x2∈[0,2],都有|f(x1)﹣f(x2)|≤f max(x)﹣f min(x)=e,[选修4-1:几何证明选讲]22.如图,A,B,C为⊙O上的三个点,AD是∠BAC的平分线,交⊙O于点D,过B作⊙O的切线交AD的延长线于点E.(Ⅰ)证明:BD平分∠EBC;(Ⅱ)证明:AE•DC=AB•BE.【考点】与圆有关的比例线段.【分析】(1)由BE是⊙O的切线,可得∠EBD=∠BAD,又∠CBD=∠CAD,∠BAD=∠CAD,从而可求∠EBD=∠CBD,即可得解.(2)先证明△BDE∽△ABE,可得,又可求∠BCD=∠DBC,BD=CD,从而可得,即可得解.【解答】解:(1)因为BE是⊙O的切线,所以∠EBD=∠BAD…又因为∠CBD=∠CAD,∠BAD=∠CAD…所以∠EBD=∠CBD,即BD平分∠EBC.…(2)由(1)可知∠EBD=∠BAD,且∠BED=∠BED,有△BDE∽△ABE,所以,…又因为∠BCD=∠BAE=∠DBE=∠DBC,所以∠BCD=∠DBC,BD=CD…所以,…所以AE•DC=AB•BE….[选修4-4:坐标系与参数方程]23.在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=4cosθ﹣2sinθ,直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数).(1)求直线l与圆C的普通方程;(2)若直线l分圆C所得两弧长度之比为1:2,某某数a的值.【考点】简单曲线的极坐标方程.【分析】(1)由ρ2=x2+y2,ρcosθ=x,ρsinθ=y,能求出直线l的普通方程和圆C的普通方程.(2)由直线l分圆C所得两弧长度之比为1:2,得到圆心C(2,﹣1)到直线2ax+2y﹣1=0的距离为半径一半,由此能求出a.【解答】解:(1)∵直线l的极坐标方程为2aρcosθ+2ρsinθ=1(a为常数),∴直线l的普通方程为2ax+2y﹣1=0.∵圆C的极坐标方程为ρ=4cosθ﹣2sinθ,∴ρ2=4ρcosθ﹣2ρsinθ,∴圆C的普通方程为:x2+y2﹣4x+2y=0.(2)∵圆C:x2+y2﹣4x+2y=0的圆心C(2,﹣1),半径r==,直线l分圆C所得两弧长度之比为1:2,∴直线l截圆C所得的弦|AB|所对圆心角为120°,∴圆心C(2,﹣1)到直线2ax+2y﹣1=0的距离为半径一半,即d==,解得a=或a=2.[选修4-5:不等式选讲]24.已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).(1)当m=7时,求函数f(x)的定义域;(2)若关于x的不等式f(x)≥2的解集是R,求m的取值X围.【考点】其他不等式的解法;函数的定义域及其求法.【分析】(1)由题设知:|x+1|+|x﹣2|>7,解此绝对值不等式求得函数f(x)的定义域.(2)由题意可得,不等式即|x+1|+|x﹣2|≥m+4,由于x∈R时,恒有|x+1|+|x﹣2|≥3,故m+4≤3,由此求得m的取值X围.【解答】解:(1)由题设知:|x+1|+|x﹣2|>7,不等式的解集是以下不等式组解集的并集:,或,或,解得函数f(x)的定义域为(﹣∞,﹣3)∪(4,+∞).(2)不等式f(x)≥2即|x+1|+|x﹣2|≥m+4,∵x∈R时,恒有|x+1|+|x﹣2|≥|(x+1)﹣(x﹣2)|=3,不等式|x+1|+|x﹣2|≥m+4解集是R,∴m+4≤3,m的取值X围是(﹣∞,﹣1].。
2016年某某省某某市东北育才学校高考数学模拟试卷(文科)(八)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A.50 B.45 C.40 D.202.若命题p:∃x0∈R,x02+1>3x0,则¬p是()A.∃x0∈R,x02+1≤3x0B.∀x∈R,x2+1≤3xC.∀x∈R,x2+1<3x D.∀x∈R,x2+1>3x3.设z=1+i(是虚数单位),则+=()A.1 B.﹣1 C.i D.﹣i4.已知集合A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N},则A∩B=()A.{0,2} B.{0,1,2} C.{﹣2,0,1,2} D.{﹣2,﹣1,0,1,2}5.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.36.执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤97.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)8.如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有40粒落入半径为1的圆内,则该多边形的面积约为()A.4πB.5πC.6πD.7π9.已知不等式组的解集记为D,则对∀(x,y)∈D使得2x﹣y取最大值时的最优解是()A.(2,1)B.(2,2)C.3 D.410.若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为()A.B.C.1 D.211.tan20°+4sin20°的值为()A.B.C.D.12.已知A,B分别为椭圆的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当取最小值时,椭圆C的离心率为()A.B.C.D.二.填空题:本大题共4小题,每小题5分.13.过原点作曲线y=e x的切线,则切线方程为.14.某一简单几何体的三视图如图,则该几何体的外接球的表面积为.15.在△ABC中,内角A、B、C的对边分别为a、b、c,且a=4,b=3,c=2,若点D为线段BC上靠近B的一个三等分点,则AD=.16.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,则实数a的取值X 围是.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程和演算步骤17.设数列{a n}的前n项和为S n,且2a n=S n+2.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列b n=,其前n项和为T n,求T n.18.在某学校一次考试的语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;语文成绩的频数分布表:语文成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]频数(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为x i,y i(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:=x i=86, =y i =64,(x i﹣)(y i ﹣)=4698,(x i﹣)2=5524,≈0.85.①求y关于x的线性回归方程;②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:==, =﹣.19.如图,在四棱锥P ﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=,CD=4,AD=.(Ⅰ)若∠ADE=,求证:CE⊥平面PDE;(Ⅱ)当点A到平面PDE的距离为时,求三棱锥A﹣PDE的侧面积.20.已知椭圆C: =1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2﹣1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.(1)求椭圆C的方程;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.(i)求k1k2的值;(ii)求OB2+OC2的值.21.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值X围.请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-1:几何证明选讲]22.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,切点为A,PB交AC于点E,交⊙O于点D,PA=PE,∠ABC=45°,PD=1,DB=8.(1)求△ABP的面积;(2)求弦AC的长.[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.[选修4-5:不等式选讲]24.已知函数f(x)=|x+2|﹣|x﹣1|.(Ⅰ)试求f(x)的值域;(Ⅱ)设若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,试某某数a的取值X围.2016年某某省某某市东北育才学校高考数学模拟试卷(文科)(八)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.为了解某高级中学学生的体重状况,打算抽取一个容量为n的样本,已知该校高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,那么样本容量n为()A.50 B.45 C.40 D.20【考点】分层抽样方法.【分析】利用分层抽样性质求解.【解答】解:∵高一、高二、高三学生的数量之比依次为4:3:2,现用分层抽样的方法抽出的样本中高三学生有10人,∴由分层抽样性质,得:,解得n=45.故选:B.2.若命题p:∃x0∈R,x02+1>3x0,则¬p是()A.∃x0∈R,x02+1≤3x0B.∀x∈R,x2+1≤3xC.∀x∈R,x2+1<3x D.∀x∈R,x2+1>3x【考点】命题的否定.【分析】直接利用特称命题的否定是全称命题写出结果即可.【解答】解:因为特称命题的否定是全称命题.所以,命题p:∃x0∈R,x02+1>3x0,则¬p 是∀x∈R,x2+1≤3x,故选B.3.设z=1+i(是虚数单位),则+=()A.1 B.﹣1 C.i D.﹣i【考点】复数代数形式的乘除运算.【分析】利用复数的除法运算法则化简复数为a+bi的形式即可.【解答】解:z=1+i(是虚数单位),则+===1.故选:A.4.已知集合A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N},则A∩B=()A.{0,2} B.{0,1,2} C.{﹣2,0,1,2} D.{﹣2,﹣1,0,1,2}【考点】交集及其运算.【分析】求出B中x的值确定出B,找出A与B的交集即可.【解答】解:∵A={﹣2,﹣1,0,1,2},B={x|x=(﹣1)n+n,n∈N}={0,1,2,…},∴A∩B={0,1,2},故选:B.5.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一.”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3【考点】排序问题与算法的多样性.【分析】由题意,圆柱体底面的圆周长20尺,高4尺,利用圆堡瑽(圆柱体)的体积V=×(底面的圆周长的平方×高),求出V,再建立方程组,即可求出圆周率π的取值.【解答】解:由题意,圆柱体底面的圆周长20尺,高4尺,∵圆堡瑽(圆柱体)的体积V=×(底面的圆周长的平方×高),∴V=×=,∴∴π=3,R=,故选:A.6.执行如图所示的程序框图,如果输出S=3,那么判断框内应填入的条件是()A.k≤6 B.k≤7 C.k≤8 D.k≤9【考点】程序框图.【分析】根据程序框图,写出运行结果,根据程序输出的结果是S=3,可得判断框内应填入的条件.【解答】解:根据程序框图,运行结果如下:S k第一次循环 log23 3第二次循环 log23•log34 4第三次循环 log23•log34•log45 5第四次循环 log23•log34•log45•log56 6第五次循环 log23•log34•log45•log56•log67 7第六次循环 log23•log34•log45•log56•log67•log78=log28=3 8故如果输出S=3,那么只能进行六次循环,故判断框内应填入的条件是k≤7.故选B.7.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数 D.f(x)的值域为[﹣1,+∞)【考点】函数的值域;函数单调性的判断与证明;函数奇偶性的判断.【分析】根据函数的性质分别进行判断即可.【解答】解:当x≤0时,f(x)=cos2x不是单调函数,此时﹣1≤cos2x≤1,当x>0时,f(x)=x4+1>1,综上f(x)≥﹣1,即函数的值域为[﹣1,+∞),故选:D8.如图,在一个不规则多边形内随机撒入200粒芝麻(芝麻落到任何位置的可能性相等),恰有40粒落入半径为1的圆内,则该多边形的面积约为()A.4πB.5πC.6πD.7π【考点】几何概型.【分析】由几何概型概率计算公式,以面积为测度,可求该阴影部分的面积.【解答】解:设该多边形的面积为S,则,∴S=5π,故选B.9.已知不等式组的解集记为D,则对∀(x,y)∈D使得2x﹣y取最大值时的最优解是()A.(2,1)B.(2,2)C.3 D.4【考点】简单线性规划.【分析】作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.【解答】解:作出不等式组对应的平面区域如图:(阴影部分ABC).设z=2x﹣y,则y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.即,即C(2,1),故使得2x﹣y取最大值时的最优解是(2,1),故选:A.10.若等比数列的各项均为正数,前4项的和为9,积为,则前4项倒数的和为()A.B.C.1 D.2【考点】等比数列的前n项和.【分析】设此等比数列的首项为a1,公比为q,前4项之和为S,前4项之积为P,前4项倒数之和为M,由等比数列性质推导出P2=()4,由此能求出前4项倒数的和.【解答】解:∵等比数列的各项均为正数,前4项的和为9,积为,∴设此等比数列的首项为a1,公比为q前4项之和为S,前4项之积为P,前4项倒数之和为M,若q=1,则,无解;若q≠1,则S=,M==,P=a14q6,∴()4=(a12q3)4=a18q12,P2=a18q12,∴P2=()4,∵,∴前4项倒数的和M===2.故选:D.11.tan20°+4sin20°的值为()A.B.C.D.【考点】三角函数的化简求值.【分析】首先利用弦切互化公式及正弦的倍角公式对原式进行变形,再两次运用和差化积公式,同时结合正余弦互化公式,转化为特殊角的三角函数值,则问题解决.【解答】解:tan20°+4sin20°========2sin60°=.故选B.12.已知A,B分别为椭圆的左、右顶点,不同两点P,Q在椭圆C上,且关于x轴对称,设直线AP,BQ的斜率分别为m,n,则当取最小值时,椭圆C的离心率为()A.B.C.D.【考点】椭圆的简单性质.【分析】设P(x0,y0),则Q(x0,﹣y0),=.A(﹣a,0),B(a,0),利用斜率计算公式肯定:mn=,=++=,令=t>1,则f(t)=+﹣2lnt.利用导数研究其单调性即可得出.【解答】解:设P(x0,y0),则Q(x0,﹣y0),=.A(﹣a,0),B(a,0),则m=,n=,∴mn==,∴=++=,令=t>1,则f(t)=+﹣2lnt.f′(t)=+1+t﹣=,可知:当t=时,函数f(t)取得最小值=++﹣2ln=2+1﹣ln2.∴=.∴=.故选:D.二.填空题:本大题共4小题,每小题5分.13.过原点作曲线y=e x的切线,则切线方程为y=ex .【考点】利用导数研究曲线上某点切线方程.【分析】欲求切点的坐标,先设切点的坐标为( x0,e x0),再求出在点切点( x0,e x0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=x0处的导函数值,再结合导数的几何意义即可求出切线的斜率.最后利用切线过原点即可解决问题.【解答】解:y′=e x设切点的坐标为(x0,e x0),切线的斜率为k,则k=e x0,故切线方程为y﹣e x0=e x0(x﹣x0)又切线过原点,∴﹣e x0=e x0(﹣x0),∴x0=1,y0=e,k=e.则切线方程为y=ex故答案为y=ex.14.某一简单几何体的三视图如图,则该几何体的外接球的表面积为25π.【考点】由三视图求面积、体积.【分析】几何体为底面为正方形的长方体,底面对角线为4,高为3.则长方体的对角线为外接球的直径.【解答】解:几何体为底面为正方形的长方体,底面对角线为4,高为3,∴长方体底面边长为2.则长方体外接球半径为r,则2r==5.∴r=.∴长方体外接球的表面积S=4πr2=25π.故答案为:25π.15.在△ABC中,内角A、B、C的对边分别为a、b、c,且a=4,b=3,c=2,若点D为线段BC上靠近B的一个三等分点,则AD=.【考点】解三角形.【分析】利用余弦定理求出cosB,再利用余弦定理解出AD.【解答】解:在△ABC中,由余弦定理得cosB==.在△ABD中,BD==.由余弦定理得:AD2=BD2+AB2﹣2BD•AB•cosB=.∴AD=.故答案为:.16.已知函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,若∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,则实数a的取值X 围是.【考点】函数奇偶性的性质.【分析】根据函数的奇偶性求出g(x),h(x)的表达式,然后将不等式恒成立进行参数分离,利用基本不等式进行求解即可得到结论.【解答】解:∵函数F(x)=e x满足F(x)=g(x)+h(x),且g(x),h(x)分别是R上的偶函数和奇函数,∴e x=g(x)+h(x),e﹣x=g(x)﹣h(x),∴g(x)=,h(x)=.∵∀x∈(0,2]使得不等式g(2x)﹣ah(x)≥0恒成立,即﹣a•≥0恒成立,∴a≤==(e x﹣e﹣x)+,设t=e x﹣e﹣x,则函数t=e x﹣e﹣x在(0,2]上单调递增,∴0<t≤e2﹣e﹣2,此时不等式t+≥2,当且仅当t=,即t=时,取等号,∴a≤2,故答案为:.三、解答题:本大题共5小题,共70分.解答应写出文字说明,证明过程和演算步骤17.设数列{a n}的前n项和为S n,且2a n=S n+2.(Ⅰ)求{a n}的通项公式;(Ⅱ)设数列b n=,其前n项和为T n,求T n.【考点】数列的求和;数列递推式.【分析】(Ⅰ)运用n=1时,a1=S1,当n≥2时,a n=S n﹣S n﹣1,结合等比数列的通项公式,计算即可得到所求;(Ⅱ)求得b n=﹣,运用数列的求和方法:裂项相消求和,化简整理即可得到所求和.【解答】解:(Ⅰ)当n=1时,由2a1=S1+2=a1+2,得a1=2.当n≥2时,由,以及a n=S n﹣S n﹣1,两式相减可得,则数列{a n}是首项为2,公比为2的等比数列,故;(Ⅱ)由(Ⅰ)可得,故其前n项和化简可得T n =﹣.18.在某学校一次考试的语文与历史成绩中,随机抽取了25位考生的成绩进行分析,25位考生的语文成绩已经统计在茎叶图中,历史成绩如下:(Ⅰ)请根据数据在茎叶图中完成历史成绩统计;(Ⅱ)请根据数据完成语文成绩的频数分布表及语文成绩的频率分布直方图;语文成绩的频数分布表:语文成绩分组[50,60)[60,70)[70,80)[80,90)[90,100)[100,110)[110,120]频数(Ⅲ)设上述样本中第i位考生的语文、历史成绩分别为x i,y i(i=1,2,…,25).通过对样本数据进行初步处理发现:语文、历史成绩具有线性相关关系,得到:=x i=86, =y i=64,(x i ﹣)(y i ﹣)=4698,(x i ﹣)2=5524,≈0.85.①求y关于x的线性回归方程;②并据此预测,当某考生的语文成绩为100分时,该生历史成绩.(精确到0.1分)附:回归直线方程的斜率和截距的最小二乘法估计公式分别为:==, =﹣.【考点】线性回归方程;茎叶图.【分析】(Ⅰ)根据所给数据,可得历史成绩的茎叶图;(Ⅱ)根据所给数据,可得语文成绩的频数分布表及语文成绩的频率分布直方图;(Ⅲ)求出a,b,可得y关于x的线性回归方程,并据此预测当某考生的语文成绩为100分时,该考生的历史成绩.【解答】解:(Ⅰ)根据题意,在茎叶图中完成历史成绩统计,如图所示;(Ⅱ)语文成绩的频数分布表;语文成绩分组[50,60﹚[60,70﹚[70,80﹚[80,90﹚[90,100﹚[100,110﹚[110,120]频数 1 2 3 7 6 5 1 语文成绩的频率分布直方图:;(Ⅲ)由已知得b=0.85,a=64﹣0.85×86=﹣9.1,∴y=0.85x﹣9.1,∴x=100时,y=75.9≈76,预测当某考生的语文成绩为100分时,该考生的历史成绩为76分.19.如图,在四棱锥P﹣ABCD中,底面ABCD为矩形,PD⊥底面ABCD,E是AB上一点.已知PD=,CD=4,AD=.(Ⅰ)若∠ADE=,求证:CE⊥平面PDE;(Ⅱ)当点A到平面PDE的距离为时,求三棱锥A﹣PDE的侧面积.【考点】直线与平面垂直的判定;棱柱、棱锥、棱台的体积.【分析】(Ⅰ)在Rt△DAE中,求出BE=3.在Rt△EBC中,求出∠CEB=.证明CE⊥DE.PD ⊥CE.即可证明CE⊥平面PDE.(Ⅱ)证明平面PDE⊥平面ABCD.过A作AF⊥DE于F,求出AF.证明BA⊥平面PAD,BA⊥PA.然后求出三棱锥A﹣PDE的侧面积S侧=++.【解答】(本小题满分12分)解:(Ⅰ)在Rt△DAE中,AD=,∠ADE=,∴AE=AD•tan∠ADE=•=1.又AB=CD=4,∴BE=3.在Rt△EBC中,BC=AD=,∴tan∠CEB==,∴∠CEB=.又∠AED=,∴∠DEC=,即CE⊥DE.∵PD⊥底面ABCD,CE⊂底面ABCD,∴PD⊥CE.∴CE⊥平面PDE.…(Ⅱ)∵PD⊥底面ABCD,PD⊂平面PDE,∴平面PDE⊥平面ABCD.如图,过A作AF⊥DE于F,∴AF⊥平面PDE,∴AF就是点A到平面PDE的距离,即AF=.在Rt△DAE中,由AD•AE=AF•DE,得AE=•,解得AE=2.∴S△APD=PD•AD=××=,S△ADE=AD•AE=××2=,∵BA⊥AD,BA⊥PD,∴BA⊥平面PAD,∵PA⊂平面PAD,∴BA⊥PA.在Rt△PAE中,AE=2,PA===,∴S△APE=PA•AE=××2=.∴三棱锥A﹣PDE的侧面积S侧=++.…20.已知椭圆C: =1(a>b>0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x+y+2﹣1=0与以椭圆C的右焦点为圆心,椭圆的长半轴为半径的圆相切.(1)求椭圆C的方程;(2)设点B,C,D是椭圆上不同于椭圆顶点的三点,点B与点D关于原点O对称,设直线CD,CB,OB,OC的斜率分别为k1,k2,k3,k4,且k1k2=k3k4.(i)求k1k2的值;(ii)求OB2+OC2的值.【考点】直线与圆锥曲线的综合问题.【分析】(1)设出椭圆右焦点坐标,由题意可知,椭圆右焦点F2到直线x+y+2﹣1=0的距离为a,再由椭圆C的两焦点与短轴的一个端点的连线构成等边三角形得到a,b,c的关系,结合焦点F2到直线x+y+2﹣1=0的距离为a可解得a,b,c的值,则椭圆方程可求;(2)(i)由题意设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),由两点求斜率公式可得是,把纵坐标用横坐标替换可得答案;(ii)由k1k2=k3k4.得到.两边平方后用x替换y可得.结合点B,C在椭圆上得到.则OB2+OC2的值可求.【解答】解:(1)设椭圆C的右焦点F2(c,0),则c2=a2﹣b2(c>0),由题意,以椭圆C的右焦点为圆心,以椭圆的长半轴长为半径的圆的方程为(x﹣c)2+y2=a2,∴圆心到直线x+y+2﹣1=0的距离①,∵椭圆C的两焦点与短轴的一个端点的连线构成等边三角形,∴,a=2c,代入①式得,,故所求椭圆方程为;(2)(i)设B(x1,y1),C(x2,y2),则D(﹣x1,﹣y1),于是=;(ii)由(i)知,,故.∴,即,∴.又=,故.∴OB2+OC2=.21.设函数f(x)=lnx+,m∈R.(Ⅰ)当m=e(e为自然对数的底数)时,求f(x)的极小值;(Ⅱ)讨论函数g(x)=f′(x)﹣零点的个数;(Ⅲ)若对任意b>a>0,<1恒成立,求m的取值X围.【考点】利用导数研究函数的极值;函数恒成立问题;函数的零点.【分析】(Ⅰ)m=e时,f(x)=lnx+,利用f′(x)判定f(x)的增减性并求出f(x)的极小值;(Ⅱ)由函数g(x)=f′(x)﹣,令g(x)=0,求出m;设φ(x)=m,求出φ(x)的值域,讨论m的取值,对应g(x)的零点情况;(Ⅲ)由b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;即h (x)=f(x)﹣x在(0,+∞)上单调递减;h′(x)≤0,求出m的取值X围.【解答】解:(Ⅰ)当m=e时,f(x)=lnx+,∴f′(x)=;∴当x∈(0,e)时,f′(x)<0,f(x)在(0,e)上是减函数;当x∈(e,+∞)时,f′(x)>0,f(x)在(e,+∞)上是增函数;∴x=e时,f(x)取得极小值为f(e)=lne+=2;(Ⅱ)∵函数g(x)=f′(x)﹣=﹣﹣(x>0),令g(x)=0,得m=﹣x3+x(x>0);设φ(x)=﹣x3+x(x>0),∴φ′(x)=﹣x2+1=﹣(x﹣1)(x+1);当x∈(0,1)时,φ′(x)>0,φ(x)在(0,1)上是增函数,当x∈(1,+∞)时,φ′(x)<0,φ(x)在(1,+∞)上是减函数;∴x=1是φ(x)的极值点,且是极大值点,∴x=1是φ(x)的最大值点,∴φ(x)的最大值为φ(1)=;又φ(0)=0,结合y=φ(x)的图象,如图;可知:①当m>时,函数g(x)无零点;②当m=时,函数g(x)有且只有一个零点;③当0<m<时,函数g(x)有两个零点;④当m≤0时,函数g(x)有且只有一个零点;综上,当m>时,函数g(x)无零点;当m=或m≤0时,函数g(x)有且只有一个零点;当0<m<时,函数g(x)有两个零点;(Ⅲ)对任意b>a>0,<1恒成立,等价于f(b)﹣b<f(a)﹣a恒成立;设h(x)=f(x)﹣x=lnx+﹣x(x>0),则h(b)<h(a).∴h(x)在(0,+∞)上单调递减;∵h′(x)=﹣﹣1≤0在(0,+∞)上恒成立,∴m≥﹣x2+x=﹣+(x>0),∴m≥;对于m=,h′(x)=0仅在x=时成立;∴m的取值X围是[,+∞).请从下面所给的22、23、24三题中选定一题作答,并用2B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分.[选修4-1:几何证明选讲]22.如图,△ABC是⊙O的内接三角形,PA是⊙O的切线,切点为A,PB交AC于点E,交⊙O于点D,PA=PE,∠ABC=45°,PD=1,DB=8.(1)求△ABP的面积;(2)求弦AC的长.【考点】与圆有关的比例线段.【分析】(1)利用圆的切线的性质,结合切割线定理,求出PA,即可求△ABP的面积;(2)由勾股定理得AE,由相交弦定理得EC,即可求弦AC的长.【解答】解:(1)因为PA是⊙O的切线,切点为A,所以∠PAE=∠ABC=45°,…又PA=PE,所以∠PEA=45°,∠APE=90°…因为PD=1,DB=8,所以由切割线定理有PA2=PD•PB=9,所以EP=PA=3,…所以△ABP的面积为BP•PA=…(2)在Rt△APE中,由勾股定理得AE=3…又ED=EP﹣PD=2,EB=DB﹣DE=8﹣2=6,所以由相交弦定理得EC•EA=EB•ED=12 …所以EC==2,故AC=5…[选修4-4:坐标系与参数方程]23.在直角坐标系xOy中,圆C的参数方程(φ为参数).以O为极点,x轴的非负半轴为极轴建立极坐标系.(Ⅰ)求圆C的极坐标方程;(Ⅱ)直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.【考点】简单曲线的极坐标方程;直线与圆的位置关系.【分析】(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简即可得到此圆的极坐标方程.(II)由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.分别与圆的方程联立解得交点,再利用两点间的距离公式即可得出.【解答】解:(I)圆C的参数方程(φ为参数).消去参数可得:(x﹣1)2+y2=1.把x=ρcosθ,y=ρsinθ代入化简得:ρ=2cosθ,即为此圆的极坐标方程.(II)如图所示,由直线l的极坐标方程是ρ(sinθ+)=3,射线OM:θ=.可得普通方程:直线l,射线OM.联立,解得,即Q.联立,解得或.∴P.∴|PQ|==2.[选修4-5:不等式选讲]24.已知函数f(x)=|x+2|﹣|x﹣1|.(Ⅰ)试求f(x)的值域;(Ⅱ)设若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,试某某数a的取值X围.【考点】函数恒成立问题;函数的值域.【分析】(1)将含有绝对值的函数转化为分段函数,再求分段函数的值域;(2)恒成立问题转化成最小值最大值问题,即g(x)min≥f(x)max.【解答】解:(Ⅰ)函数可化为,∴f(x)∈[﹣3,3](Ⅱ)若x>0,则,即当ax2=3时,,又由(Ⅰ)知∴f(x)max=3若对∀s∈(0,+∞),∀t∈(﹣∞,+∞),恒有g(s)≥f(t)成立,即g(x)min≥f(x)max,∴,∴a≥3,即a的取值X围是[3,+∞).。
(第4题)2016年数学全真模拟试卷三试题Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1.已知集合A ={-1,0,2},B ={x |x =2n -1,n ∈Z },则A ∩B = ▲ . 【答案】{-1}2. 设1e ,2e 是平面内两个不共线的向量,123 ()x x =-∈R ae e ,122=+be e .若//a b ,则x的值为 ▲ . 【答案】-63. 从集合{1,2,3}中随机取一个元素,记为a ,从集合{2,3,4}中随机取一个元素,记为b ,则a ≤b 的概率为 ▲ . 【答案】894. 如图,是某铁路客运部门设计的甲、乙两地之间旅客托运 行李的费用c (单位:元)与行李重量w (单位:千克) 之间的流程图.假定某旅客的托运费为10元,则该旅客托运的行李重量为 ▲ 千克. 【答案】20 5. 函数0 0 ()10x f x x x x =⎧⎪=⎨-≠⎪⎩,,,的零点个数为 ▲ .【答案】36. 在平面直角坐标系xO y 中,曲线ln yx x=在ex =处的切线与两坐标轴围成的三角形的面积是 ▲ . 【答案】2e 47. 如图,是某班一次竞赛成绩的频数分布直方图,利用组中值可估计其的平均分为 ▲ . 【答案】62 8. 若函数()sin ()f x A x ωϕ=+(0 0 )A ωϕπ>><2,,的图象关于坐标原点中心对称,且在y轴右侧的第一个极值点为x π=3,则函数()f x 的最小正周期为 ▲ .【答案】43π9. 关于定义在R 上的函数()f x ,给出下列三个命题:①若(1)(1)f f =-,则()f x 不是奇函数;②若(1)(1)f f >-,则()f x 在R 上不是单调减函数;③若(1)(1)f x f x +=-对任意的x ∈R 恒成立,则()f x 是周期函数.其中所有正确的命题序号是 ▲ . 【答案】②③10.已知数列{}n a 的前n 项和 1 ()nn S kk =-∈R ,且{}n a 既不是等差数列,也不是等比数列,则k 的取值集合是 ▲ .【答案】{}0. 【解析】. 11.如果将直线l :20x y c ++=向左平移1个单位,再向下平移2个单位,所得直线l '与圆C :22240x yx y ++-=相切,则实数c 的值构成的集合为 ▲ .【答案】{3-,13-} 【解析】易得直线l ':(1)2(2)0x y c ++++=,即250x y c +++=,圆C:22(1)(2)5x y ++-=的圆心(1 2)-,到直线l ':250x y c +++==,解得3c=-或13c =-.12.已知正数x ,y 满足3x y x yx y-=+,则y 的最大值为 ▲ .【答案】13【解析】由2223x y x y x y-=+,得2112322x y xy xyy x-+==-,所以113222y x yx-=+=≥,从而23210y y +-≤,解得13y ≤.13.考察下列等式: 11ππc o si sin i 44a b +=+, ()222ππco s i sini44a b +=+,()333ππco s i sini44a b +=+,……()ππco s i sini44nn n a b +=+,其中i 为虚数单位,a n ,b n (n *∈N )均为实数.由归纳可得,a 2015+b 2015的值为 ▲ . 【答案】0【解析】通过归纳可得, ()ππππco s i sinco s i sin 4444nnn +=+,从而a 2015+b 20152015πc o s4=2015πs in4+=0. 14.在△ABC 中,13A EA B =,23A FA C =.设B F ,C E 交于点P ,且E PE Cλ=,F PF Bμ=(λ,μ∈R),则λμ+的值为 ▲ .【答案】57【解析】不妨考虑等腰直角三角形ABC ,设AB 3=,3A C=,以AB ,A C 分别为x 轴,y 轴建立平面直角坐标系xO y , 则A (0 0),,(3 0)B ,,(0 3)C ,,(1 0)E ,,(0 2)F ,, 直线B F 的方程为:132y x +=,①直线C E 的方程为:13y x +=,②由①②得,37x =,127y=,所以()312 77P ,, 代入E P E C λ=,F PF B μ=得,31(01)7λ-=-,30(30)7μ-=-,解得47λ=,17μ=,故λμ+=57.ABCP(第16题)D二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知△ABC 内接于单位圆(半径为1个单位长度的圆),且(1tan )(1tan )2A B ++=.(1)求角C 的大小; (2)求△ABC 面积的最大值. (1)由(1tan )(1tan )2A B ++=得tantan 1tan tan A B A B+=-,所以ta n ta n ta n ()11ta n ta n A BAB A B++==-,(4分) 故△ABC 中,A B π+=4,C3π=4(6分)(2)由正弦定理得2s inc =3π4,即c=(8分)由余弦定理得2222co sab a b 3π=+-4,即222abb=++,(10分)由2222abb a b b=+++≥得2a b -≤(当且仅当a b=时取等号)(12分) 所以13s in 2S a b π=4≤(14分)16.(本题满分14分)如图,在四棱锥PA B C D-中,锐角三角形PAB 所在的平面与底面A B C D 垂直,P B C B A D ∠=∠90=.(1)求证:B C⊥平面PAB ; (2)求证://A D平面P B C .证明:(1)在平面PAB 内过点P 作PH AB⊥于H ,因为平面PAB⊥平面A B C D ,平面PAB 平面A B C DA B=,P H⊂平面PAB,所以P H ⊥平面A B C D ,(4分)而B C⊂平面A B C D ,所以P H ⊥B C,ABCD由90P B C ∠=得P B⊥B C,又P H P B P =, P H ,P B ⊂平面PAB ,所以B C ⊥平面PAB ,(8分) (2)因为AB⊂平面PAB ,故B C⊥A B,由90B A D∠=得A DA B⊥,故在平面A B C D 中,//A D B C,(11分)又A D⊄平面P B C ,B C⊂平面P B C ,所以//A D 平面PBC .(14分)17.(本题满分14分)某公司设计如图所示的环状绿化景观带,该景观带的内圈..由两条平行线段(图中的AB ,DC )和两个半圆构成,设AB = x m ,且80x ≥.(1)若内圈周长为400 m ,则x 取何值时,矩形ABCD 的面积最大? (2)若景观带的内圈所围成区域的面积为22500πm 2,则x 取何值时,内圈周长最小?【解】设题中半圆形半径为r (m ),矩形ABCD 的面积为S (m 2), 内圈周长为c (m ).(1)由题意知:2Srx=,且22π400x r +=,即π200x r +=,于是()22000022π2(π)ππ2πx rS rx x r +==⋅⋅=≤(m 2)当且仅当π100xr ==(m )时,等号成立.答:当x = 100(m )时,矩形ABCD 的面积最大.(6分) (2)由题意知:2225002ππr xr+=,于是22500π2π2xr r=-⋅, 从而 ()22500π22π22π2π2cx r r r r=+=-⋅+22500ππr r =+.(8分)因为80x ≥,所以22500π802π2r r-⋅≥,即()2π160π225000r r +⋅-≤,解得250π90r -≤≤,所以900πr <≤,(10分)故221π8100r≥.因为2222500225001π16πππ<0ππ81009c r'=-⋅+-⋅+=-≤,(12分)所以关于r 的函数22500ππcrr =+在(900π⎤⎥⎦,上是单调减函数.故当90πr=即22500π90802902πx=-⋅=⨯(m )时,内圈周长c 取得最小值,且最小值为225009034090+=(m ).(14分)18.(本题满分16分)在平面直角坐标系xO y 中,设椭圆C :22221(0)y x a b ab+=>>的焦距为.(1)求椭圆C 的方程;(2)设点P 是椭圆C 上横坐标大于2的一点,过点P 作圆22(1)1x y-+=的两条切线分别与y轴交于点A ,B ,试确定点P 的坐标,使得△PAB 的面积最大.解:(1)由题意得,2c =22251ab+=,(2分)又222c a b =-,故212a =,26b =,所以椭圆C 的方程为221126y x+=;(5分)(2)设点00( )P x y ,,其中(2 x ∈,,且2201126x y +=,又设(0 )A m ,,(0 )B n ,,不妨mn>,则直线P A 的方程为:000()0y m x x y x m --+=,则圆心(1 0),到直线P A 1=,化简得2000(2)20x my m x -+-=,(8分)同理,200(2)20x ny n x -+-=,所以m ,n 为方程200(2)20x xy y x -+-=的两根,则()()220002024(2)(2)y x x m n x +--=-,(10分)又△PAB 的面积为S01()2m n x =-,所以222000020(2)(2)y x x Sx x +-=-220020(2)82(2)x x x -+=-,(12分)令(020 2t x ⎤=-∈-⎦,,记222(8)(2)()2t t f t t ++=,则324(2)(16)()0t t t f t t+-'=>在(0 2⎤⎦,恒成立,所以()f t在(0 2⎤-⎦,上单调递增,故2t=,即0x =时,()f t 最大,此时△PAB 的面积最大.(16分)19.(本题满分16分) 已知函数1()ln f x a x x=+,a ∈R .(1)若()f x 有极值,求a 的取值范围;(2)若()f x 有经过原点的切线,求a 的取值范围及切线的条数,并说明理由.解:(1)易得2211()(0)a a x f x x x x x -'=-=>,(2分) 若0a ≤,则()0f x '<,从而()f x 无极值; 若a > 0,则当1xa<时,()0f x '<;1xa>时,()0f x '>,此时()f x 有极小值()1fa . 综上,a 的取值范围是(0)+∞,.(4分)(2)设P (x 0,y 0) 是经过原点的切线与函数()f x 图象的切点,则切线方程为()00211ln ()aya x x x x x x --=--,(6分) 因为切线过点(0,0),于是00011ln a x a x x --=-+,即()0021ln a x x =-,因为0a≠,所以0002ln x x x a=-,设()ln g x x x x=-,则()1ln 10g x x '=--=,得1x=,(8分)故当21a >,即02a <<时,不存在切线;当21a=或2a<,即2a=或a <0时,有且仅有一条切线,当21a<<,即2a >时,存在两条切线,(12分)下证:对任意的(01)m ∈,,ln x x x m-=在(0,1)内一定有一解,其中2ma=.⇔证明11lnmx x+=在(0,1) 内有一解,⇔证明1ln tm t+=在(1)t ∈+∞,内有一解.令()1ln h t m t t =--,则h (1) =m – 1<0,(2)21ln 2nnh m n =⋅--⋅21nm n>⋅--(11)1nm n=⋅+--(1)112n n m n n +⎡⎤>++--⎢⎥⎣⎦,这是关于n 的二次函数,所以当n 充分大时,一定取得正值, 由介值定理知,()h t 在(1)+∞,内有唯一解,即证.(16分)20.(本题满分16分)已知数列{}n a 的通项公式2(1)nnna =--,*n ∈N .设1n a ,2n a ,…,tn a (其中1n <2n <…tn <,*t ∈N)成等差数列.(1)若3t =.①当1n ,2n ,3n 为连续正整数时,求1n 的值; ②当11n =时,求证:32n n -为定值;(2)求t 的最大值.解:(1)①依题意,1n a ,11na +,12na +成等差数列,即111122nn na a a ++=+,从而111111112222(1)2(1)2(1)n n nn n n ++++⎡⎤--=--+--⎣⎦,当1n 为奇数时,解得124n =-,不存在这样的正整数1n ;当1n 为偶数时,解得124n=,所以12n =.(3分)②依题意,1a ,2n a ,3n a 成等差数列,即2312nna a a =+,从而332222(1)32(1)n n nn ⎡⎤--=+--⎣⎦,当2n 3n 均为奇数时,321221n n --=,左边为偶数,故矛盾; 当2n3n 均为偶数时,3221221n n---=,左边为偶数,故矛盾; 当2n 为偶数,3n 奇数时,321225n n +-=,左边为偶数,故矛盾; 当2n 为奇数,3n 偶数时,32122n n +-=,即321n n -=.(8分)(2)设s a ,r a ,t a (sr t<<)成等差数列,则2rs ta a a =+,即22(1)2(1)2(1)rrsstt⎡⎤--=--+--⎣⎦,整理得,1222(1)(1)2(1)s tr str++-=-+---,若1t r =+,则2(1)3(1)s sr=-+--,因为22s ≥,所以(1)3(1)s r-+--只能为2或4,所以s 只能为1或2;(12分) 若2t r +≥,则12142222222221st rsr r++++-+-+-=≥≥,(1)(1)st-+-2(1)r--4≤,故矛盾,综上,只能1a ,r a ,1r a +成等差数列或2a ,r a ,1r a +成等差数列,其中r 为奇数,从而t 的最大值为3.(16分)试题Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作..................答..若 多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .(几何证明选讲)如图,已知△ABC 的内角A 的平分线交BC 于点D , 交其外接圆于点E . 求证:AB ⋅AC =AD ⋅AE .证明:连结EC ,易得∠B =∠E ,(2分) 由题意,∠BAD =∠CAE , 所以△ABD ∽△AEC ,(6分) 从而A B A DA E A C=,所以AB ⋅AC =AD ⋅AE .(10分)B .(矩阵与变换) 求矩阵M0001⎡⎤=⎢⎥⎣⎦的特征值和特征向量.解:矩阵M 的特征多项式为()(1)1f λλλλλ==--,(2分)令()0f λ=,解得M 的特征值1λ=,21λ=.(4分)将1λ=代入二元一次方程组00 0(1)0 x y x y λλ-⋅=⎧⎨-⋅+-=⎩,,解得 0 0 x x y ∈≠⎧⎨=⎩R ,且,,所以矩阵M 的属于特征值0的一个特征向量为10⎡⎤⎢⎥⎣⎦;(7分)同理,将21λ=代入①解得0 0 x y x =⎧⎨∈≠⎩R ,,且, 所以矩阵M 的属于特征值1的一个特征向量为01⎡⎤⎢⎥⎣⎦.(10分)C .(极坐标与参数方程)ABCD E(第21—A 题)在极坐标系中,已知A ( 1,π3 ),B ( 9,π3 ),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及△ABC 的面积.解:易得线段AB 的中点坐标为(5,π3),(2分)设点P (ρ,θ)为直线l 上任意一点, 在直角三角形OMP 中,ρcos(θ-π3)=5,所以,l 的极坐标方程为ρcos(θ-π3)=5,(6分)令θ=0,得ρ=10,即C (10,0).(8分)所以,△ABC 的面积为:12×(9-1)×10×sin π3=203.(10分)D .(不等式选讲) 已知x ,0y>,求证:22x y x y++证明:因为x ,0y >,且2()0xy -≥,(当且仅当xy=时“=”成立)所以222x y x y x y +++≥, ① (4分)又2x y +≥,(当且仅当xy=时“=”成立)② (8分)由①②得22x y x y++≥x y=时“=”成立).(10分)【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.如图,在正四棱柱1111A B C D A B C D -中,1AB =,1A A h=.(1)若2h=,求1A C 与平面1A B D 所成角的正弦值;(2)若二面角1A B D C--的大小为34π,求h 的值.解:如图,以点A 为坐标原点,A B ,A D ,1A A 分别 为x ,y ,z 轴,建立空间直角坐标系Ox y z-,AD1A1B1D1C(1)当2h=时,(1 0 0)B ,,,(0 1 0)D ,,,1(0 0 2)A ,,,1(1 1 2)C ,,, 则1(1 1 2)A C=,,,1(1 0 2)A B=-,,,1(0 1 2)A D =-,,,设平面1A B D 的法向量( )a b c =,,n ,则由110 0A B A D ⎧⋅=⎪⎨⋅=⎪⎩,n n 得,20 20 a c b c -=⎧⎨-=⎩,,不妨取1c =,则2a b ==,此时(2 2 1)=,,n,(3分)故111c o s3A C A C A C ⋅<===⋅,nn >n,所以1A C 与平面1A B D 3;(5分)(2)由1(0 0 )A h ,,得,1(1 0 )A Bh =-,,,1(0 1 )A D h =-,,,设平面1A B D 的法向量( )x y z =,,m ,则由110 0A B A D ⎧⋅=⎪⎨⋅=⎪⎩,m m 得,0 0 x z h y z h -=⎧⎨-=⎩,,不妨取1z =,则x y h ==,此时( 1)h h =,,m,(7分)又平面C B D 的法向量1(0 0 )A Ah =,,,故111c o s2A A A A A A ⋅<===⋅,m m >m解得2h =.(10分)23.设n 为给定的不小于3的正整数.数集P={}xx n x ∈*N≤,,记数集P的所有(1 )k k n k ∈*N ≤≤,元子集的所有元素的和为k P . (1)求1P ,2P ; (2)求12nP P P ++⋅⋅⋅+.(第22题)解:(1)易得数集P ={}1 2 3 n ⋅⋅⋅,,,,,则1(1)1232n n P n +=+++⋅⋅⋅+=,(2分)数集P 的2元子集中,每个元素均出现1n -次, 故2(1)(1)(1)(123)2n n n P n n +-=-+++⋅⋅⋅+=,(4分)(2)易得数集P 的k (1 )k n k ∈*N ≤≤,元子集中,每个元素均出现11C k n --次, 故1111(1)C (123)C 2k k kn n n n P n ----+=⋅+++⋅⋅⋅+=,(6分)所以12n P P P ++⋅⋅⋅+=1211111(1)(C C C C )2n n n n n n n -----++++⋅⋅⋅+1(1)22n n n -+=⋅2(1)2n n n -=+⋅.(10分)。