案例分析_计量经济学 (1)
- 格式:doc
- 大小:335.89 KB
- 文档页数:8
计量经济学教学案例案例一 简单线性回归模型一、主题与背景用真实数据进行简单线性回归分析,应用Eviews6.0分析软件进行操作,与课本内容相对应,分析模型的截距、斜率以及可决系数,引导学生熟悉Eviews6.0的基本操作,能够解读分析报告,并尝试进行被解释变量的预测,体会变量测度单位的改变和函数形式变化给OLS 估计结果和统计特征的影响。
二、情景描述对于由CEO 构成的总体,令y 代表年薪(salary),单位为千美元。
令x 表示某个CEO 所在公司在过去三年的平均股本回报率(roe ,股本回报率定义为净收入占普通股价的百分比)。
为研究该公司业绩指标和CEO 薪水之间的关系,可以定义以下模型:Salary=0β+1βroe + u . 斜率参数1β衡量当股本回报率增长一个单位(一个百分点)时CEO 年薪的变化量,由于更高的股本回报率预示更高的CEO 年薪,所以,1β>0。
三、教学过程设计(一)数据说明数据集CEOSAL1.RAW 包含1990年209位CEO 的相关信息,该数据来自《商业周刊》(5/6/91),该样本中CEO 年薪的平均值为$1,281,120,最低值和最高值分别为$223,000和$14,822,000,1988、1989和1990年的平均股本回报率是17.18%。
(二)操作建议1:在 eviews6.0命令输入窗口定义变量:data salary roe2、用 edit+/- 编辑数据3、描述统计分析过程:view---descriptive stats---common sample4、画散点图:Scat roe salary5、在eviews6.0命令输入窗口运行简单线性回归 Ls salary c roe6、用resids 观测残差7、产生新序列:S eries lsalary =log(salary)8、改变函数形式:Ls lsalary c lsales9、改变变量测度单位:Ls salary*1000 c roe四、教学研究(一)案例结论1、回归结果估计出的回归线为:salˆary = 963.191 + 18.501 roe(1)截距和斜率保留了3位小数,回归结果显示,如果股本回报率为0,年薪的预测值为截距963.191千美元,可以把年薪的预测变化看做股本回报率变化的函数:∆salˆary = 18.501 (∆roe),这意味着当股本回报率增加1个百分点,即∆roe =1,则年薪的预测变化就是18.5千美元,在线性方程中,估计的变化与初始年薪无关。
计量经济学模型案例计量经济学是经济学的一个重要分支,它运用数理统计和经济理论来研究经济现象。
在实际应用中,计量经济学模型可以帮助我们分析经济数据,预测经济变化,评估政策效果等。
下面我们将通过几个实际案例来展示计量经济学模型的应用。
首先,我们来看一个关于劳动力市场的案例。
假设我们想要研究教育水平对个体工资收入的影响。
我们可以建立一个计量经济学模型,以教育水平作为自变量,工资收入作为因变量,控制其他可能影响工资收入的因素,如工作经验、性别、地区等。
通过对大量的劳动力市场数据进行回归分析,我们可以得出教育水平对工资收入的影响程度,进而评估教育政策对经济的影响。
其次,我们来考虑一个关于消费行为的案例。
假设我们想要研究收入水平对消费支出的影响。
我们可以建立一个消费函数模型,以收入水平作为自变量,消费支出作为因变量,控制其他可能影响消费支出的因素,如家庭规模、价格水平、偏好等。
通过对消费者调查数据进行计量经济学分析,我们可以得出收入水平对消费支出的弹性,从而预测未来的消费趋势,指导政府制定经济政策。
最后,我们来看一个关于市场竞争的案例。
假设我们想要研究市场结构对企业利润的影响。
我们可以建立一个产业组织模型,以市场结构(如垄断、寡头、完全竞争)作为自变量,企业利润作为因变量,控制其他可能影响企业利润的因素,如生产成本、市场需求、技术创新等。
通过对不同产业的数据进行计量经济学分析,我们可以得出不同市场结构下的企业利润水平,为政府监管和产业政策提供依据。
通过以上案例的介绍,我们可以看到计量经济学模型在实际经济分析中的重要作用。
它不仅可以帮助我们理解经济现象的规律,还可以指导政策制定和企业决策。
当然,计量经济学模型的建立和分析也需要注意数据的质量、模型的假设条件等问题,只有在严谨的理论基础和丰富的实证分析基础上,我们才能得出可靠的经济结论。
综上所述,计量经济学模型在经济学研究中具有重要的地位和作用,它为我们提供了一种强大的工具来分析经济现象,预测经济变化,评估政策效果。
二、均值分析1、分性别对身高进行的比较假设男女身高相等,否定假设可认为男生身高明显高于女生。
2、分南北地区进行比较(1)身高假设两者均值相等,检验结果不能否定原假设,因而不能认为南北方身高有显著差异。
(2)体重通过假设两者均值相等,检验结果无法否定原假设,因而认为南北方体重没有明显差异。
3、分出生年份月份进行比较年份性别身高体重84 男均值172.00 56.00N 1 1总计均值172.00 56.00N 1 185 男均值180.33 70.67N 3 3女均值161.00 51.00N 2 2总计均值172.60 62.80N 5 586 男均值174.20 65.40N 20 20女均值162.11 52.28N 18 18总计均值168.47 59.1887 男均值178.50 66.58N 6 6女均值164.83 52.83N 18 18总计均值168.25 56.27N 24 2488 男均值170.50 65.00N 2 2女均值167.00 53.50N 2 2总计均值168.75 59.25N 4 489 女均值165.00 50.00N 1 1总计均值165.00 50.00N 1 1总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表可看出,各年份出生的人身高体重无显著性差异。
总计均值171.00 64.00N 6 6 3 男均值174.50 69.50N 4 4 女均值160.25 50.75N 4 4 总计均值167.38 60.13N 8 8 4 男均值181.25 68.50N 4 4 女均值162.25 52.00N 4 4 总计均值171.75 60.25N 8 8 5 男均值169.50 65.25N 2 2 女均值156.00 43.00N 1 1 总计均值165.00 57.83N 3 3 6 男均值175.00 63.00N 1 1 女均值171.50 57.50N 4 4 总计均值172.20 58.60N 5 5 7 男均值171.00 64.33N 3 3 女均值167.00 50.50N 2 2 总计均值169.40 58.80N 5 5 8 男均值179.20 64.90N 5 5 女均值161.50 52.50N 2 2 总计均值174.14 61.36N 7 7 9 男均值171.67 58.00N 3 3 女均值163.33 54.33N 3 3 总计均值167.50 56.1710 男均值174.67 61.83N 3 3总计均值174.67 61.83N 3 311 女均值162.50 51.67N 12 12总计均值162.50 51.67N 12 1212 男均值171.00 66.50N 2 2女均值167.00 57.00N 1 1总计均值169.67 63.33N 3 3总计男均值175.28 65.80N 32 32女均值163.56 52.46N 41 41总计均值168.70 58.31N 73 73ANOVA 表由表同样可得出,各月出生的人身高体重无显著性差异。
美股行情对A股的影响性分析——标普500与沪深300相关性分析摘要:本文主要通过分析标准普尔500指数与沪深300指数的相关性,以标普500指数为解释变量,以沪深300指数为被解释变量,利用Eviews软件,使用其中的最小二乘法对其进行线性回归分析,最终得出方程。
并对其进行显著性检验(F,t)、异方差检验、自相关性检验来验证方程的可靠性。
然后解释方程的经济意义,并利用软件对未来指数变动进行预测。
最后在未来几天比较预测结果与实际两个指数的变化情况,验证实际应用情况。
关键词:标普500、沪深300、Eviews、显著性检验、异方差检验、自相关性检验。
一、研究背景1.全球化大环境在经济全球化不断深入发展的今天,全球资本市场,尤其是中美两个超级大国之间的资本流通,早已彼此嵌入,密不可分。
全世界早有不少学者对中美资本流通做了深入研究。
但美国股市发展早于中国十几年,其内部的资金也远远超过中国股市,美国股市的资本流动势必会对中国股市产生一定影响,这种影响不仅体现在情绪面,更反映在指数变动方向上。
2.对外开放资本市场的QFII政策Qualified Foreign Institutional Investor,作为一种过渡性制度安排,QFII制度是在资本项目尚未完全开放的国家和地区,实现有序、稳妥开放证券市场的特殊通道。
外资对中国股市的影响早已不可忽视,而美国市场的变动也一定程度会影响在中国股市外资的操作行为。
所以研究两个指数的变动是很有意义的。
二、数据1.数据选择沪深两个市场各自均有独立的综合指数和成份指数,这些指数不能用来反映沪深两市的整体情况,而沪深300指数则同时考虑了两市的交易情况,是中国A股市场的“晴雨表”。
标准普尔500指数英文简写为S&P 500 Index,是记录美国500家上市公司的一个股票指数。
与道琼斯指数等其他指数相比,标准普尔500指数包含的公司更多,因此风险更为分散,能够反映更广泛的市场变化。
计量经济学建模案例计量经济学是经济学的一个重要分支,它运用数理统计、数学经济学和经济计量学的方法,对经济现象进行定量分析和研究。
计量经济学建模是计量经济学的一个重要环节,通过建立合适的模型来对经济现象进行描述、预测和政策分析。
本文将通过一个实际的案例,介绍计量经济学建模的基本步骤和方法。
首先,我们需要确定研究的目的和问题。
在实际研究中,我们通常会针对某一经济现象或政策进行研究,比如通货膨胀对经济增长的影响。
在确定研究问题后,我们需要收集相关的数据,这些数据通常包括宏观经济指标、产业数据、企业调查数据等。
在收集数据时,我们需要注意数据的质量和可靠性,确保数据的准确性和完整性。
接下来,我们需要对收集的数据进行描述性统计分析。
描述性统计分析可以帮助我们了解数据的分布特征、相关性和变化趋势,为后续的建模分析提供基础。
在描述性统计分析的基础上,我们可以利用计量经济学的方法,建立相应的经济模型。
比如,我们可以运用回归分析的方法,来探讨通货膨胀率对经济增长的影响,建立相应的经济增长模型。
建立模型后,我们需要进行模型的估计和检验。
模型的估计可以通过最小二乘法等方法来进行,通过估计得到的参数,我们可以对模型的拟合效果进行评估。
同时,我们还需要对模型的假设进行检验,确保模型的有效性和可靠性。
在估计和检验的基础上,我们可以对模型进行修正和改进,以提高模型的解释能力和预测精度。
最后,我们需要对建立的模型进行政策分析和预测。
通过建立的模型,我们可以对不同政策措施的影响进行评估和预测,为政策制定提供决策支持。
比如,我们可以利用建立的经济增长模型,来评估不同通货膨胀率下的经济增长效果,为货币政策的制定提供参考。
综上所述,计量经济学建模是一个系统的过程,需要从确定研究问题、数据收集、描述性统计分析、模型建立、模型估计和检验、政策分析和预测等多个环节进行。
通过本文的案例介绍,希望读者能够对计量经济学建模有一个清晰的认识,为实际研究和应用提供参考。
计量经济学案例计量经济学是经济学的一个重要分支,它运用数理统计和数学工具来分析经济现象,验证经济理论和检验经济政策的有效性。
在实际应用中,计量经济学常常通过案例研究来展示其理论和方法在解决实际问题中的应用。
下面,我们将通过一个实际的案例来说明计量经济学的应用。
某国家的一家汽车制造商希望了解汽车价格与销量之间的关系,以便制定合理的定价策略。
为了研究这一问题,他们收集了过去几年的汽车价格和销量数据,并进行了分析。
首先,他们利用计量经济学中的回归分析方法,建立了汽车价格和销量之间的数学模型。
在这个模型中,销量是因变量,而价格是自变量。
通过回归分析,他们得到了汽车价格对销量的影响程度,以及其他可能影响销量的因素。
接着,他们进行了统计检验,验证了他们建立的数学模型的有效性。
通过检验结果,他们确认了汽车价格对销量的影响,并排除了其他因素对销量的影响。
这为他们制定合理的定价策略提供了重要的依据。
最后,他们利用建立的数学模型,进行了一系列的预测和模拟。
他们可以通过调整汽车价格,来预测不同定价策略对销量的影响,以及对企业利润的影响。
这些预测和模拟结果为企业提供了重要的决策参考。
通过这个案例,我们可以看到计量经济学在实际应用中的重要性和价值。
它不仅可以帮助企业了解市场和消费者行为,还可以为企业决策提供科学的依据。
当然,计量经济学的方法和工具不仅局限于汽车制造业,它在其他行业和领域也有着广泛的应用。
总之,计量经济学案例的研究对于理论的验证和实证分析都具有重要的意义。
通过实际案例的研究,我们可以更好地理解计量经济学的方法和工具,以及它们在解决实际问题中的应用。
希望这个案例能够给大家带来一些启发,也希望大家能够更加重视计量经济学的学习和研究。
计量经济学案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长, 而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展, 人民生活水平不断提高, 居民的消费水平也不断增长。
但是在看到这个整体趋势的同时, 还应看到全国各地区经济发展速度不同, 居民消费水平也有明显差异。
例如, 2002年全国城市居民家庭平均每人每年消费支出为6029.88元, 最低的黑龙江省仅为人均4462.08元, 最高的上海市达人均10464元, 上海是黑龙江的2.35倍。
为了研究全国居民消费水平及其变动的原因, 需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多, 例如, 居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素, 并分析影响因素与消费水平的数量关系, 可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费, 由于各地区的城市与农村人口比例及经济结构有较大差异, 最具有直接对比可比性的是城市居民消费。
而且, 由于各地区人口和经济总量不同, 只能用“城市居民每人每年的平均消费支出”来比较, 而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异, 并不是城市居民消费在不同时间的变动, 所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种, 但从理论和经验分析, 最主要的影响因素应是居民收入, 其他因素虽然对居民消费也有影响, 但有的不易取得数据, 如“居民财产”和“购物环境”;有的与居民收入可能高度相关, 如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大, 如“零售物价指数”、“利率”。
《计量经济学》典型综合案例导引及分析1.如果有人准备对公司首席执行官(CEO)的年薪(salary)进行经验研究,请写出这种研究可能的动机是什么?2.其在研究过程中所设立的各种计量模型的共同特点有哪些?3. 如果某人首先设立的模型为:u roe salary +⋅+=10ββ(1)其中,salary 代表CEO 的年薪,以千美元为单位;roe 代表CEO 所在的公司在过去三年里的平均净资产回报率,净资产回报率被定义为公司的纯收入占普通净资产的百分比;参数0β和1β为未知的常数;u 为一随机变量。
请说明模型(1)属于何种回归模型?模型(1)中的参数0β、1β有什么特性?0β、1β的经济含义是什么?4.你对1β的取值范围有什么样的理论预期,为什么?5.如果模型(1)的设定是正确的,该模型必需满足的具有明确经济含义的核心条件是什么?这一核心条件必须用什么样的数学约束条件来保证?6.如果你希望利用OLS对模型(1)做出正确的估计,则该模型(除了第5题的答案外)还必需满足哪些前提条件?7. 利用美国1990年209家公司CEO 的样本信息,采用OLS 估计方法,对模型(1)的估计结果如下:0132.0209501.18191.963ˆ2==⋅+=R n roeary l sa (2)该估计结果使用的是什么类型的样本数据?8. 写出得出回归方程(2)的各个估计值的计算公式(要以样本的变量符号为基础)。
9. 根据回归方程(2)的估计结果,如果有人说这意味着501.181=β,请 说明这一结论的对错及理由。
10.在回归方程(2)的估计结果中,你对2R值的经济解释是什么?根据方程(2)中的2R的数值大小,你能做出哪些合理的推断?11. 利用相同的样本信息(下同),利用OLS 还得到了如下的估计结果: 020.0,029.0,209)08.11()0089.0()9.223(63.190163.063.830ˆ22===⋅+⋅+=R R n roe sales ary l sa (3)其中,sales 为公司的年销售额,单位千美元,括号中的数字为标准误。
计量经济模型案例
计量经济学是经济学的一个重要分支,它旨在利用数理统计和经济理论工具来分析经济现象。
计量经济模型是计量经济学研究的核心内容之一,它通过建立数学模型来描述经济现象,并对其进行定量分析。
接下来,我们将通过一个实际的案例来介绍计量经济模型的应用。
假设我们想要研究教育水平对个体收入的影响。
我们可以建立一个计量经济模型来分析这一问题。
首先,我们需要收集个体的教育水平、工作经验、行业、地区等信息作为自变量,收入作为因变量。
然后,我们可以运用多元线性回归模型来估计教育水平对收入的影响。
在模型估计之后,我们可以进行假设检验来验证教育水平对收入是否显著影响,同时还可以计算教育水平对收入的弹性系数,以衡量其影响程度。
通过上述案例,我们可以看到计量经济模型的应用过程。
首先,我们需要明确研究的问题,然后选择合适的模型来进行分析。
在模型估计之后,我们需要进行统计推断来验证模型的有效性,最后对结果进行解释和政策建议。
除了多元线性回归模型,计量经济学还有许多其他重要的模型,如时间序列模型、面板数据模型等,它们都在不同的经济领域有着重要的应用。
例如,时间序列模型可以用来分析经济增长、通货膨胀等宏观经济问题,面板数据模型可以用来分析企业的生产效率、市场竞争等微观经济问题。
总之,计量经济模型是计量经济学研究的重要工具,它通过建立数学模型来描述经济现象,并进行定量分析。
通过上述案例,我们可以看到计量经济模型在实际问题中的应用,它为我们提供了一种有效的分析经济现象的方法,对于经济政策制定和实践具有重要的意义。
希望本文对您有所帮助,谢谢阅读!。
计量经济学建模案例计量经济学是经济学的一个重要分支,它运用数理统计和数学方法对经济现象进行定量分析和预测。
建立经济模型是计量经济学的核心内容之一,通过建模可以更好地理解经济现象和规律,为政策制定和经济决策提供依据。
下面我们通过一个实际的案例来介绍计量经济学建模的过程和方法。
首先,我们需要选择合适的经济理论模型来描述我们所研究的经济现象。
在选择模型时,需要考虑到数据的可获得性、模型的适用性以及研究的具体目的。
比如,如果我们想研究劳动力市场的供求关系,可以选择使用经典的供求模型来建立我们的经济模型。
其次,我们需要收集相关的经济数据,这些数据可以是时间序列数据,也可以是截面数据,甚至是面板数据。
在收集数据时,需要注意数据的质量和完整性,确保数据的可靠性和准确性。
同时,还需要对数据进行预处理,包括去除异常值、缺失值处理、变量转换等工作,以确保数据的可用性。
接下来,我们可以利用计量经济学的方法对数据进行分析。
比如,我们可以利用最小二乘法对模型进行估计,得到模型的参数估计值和统计显著性检验结果。
同时,还可以利用计量经济学的工具来检验模型的拟合度和稳健性,比如残差分析、异方差性检验等。
最后,我们可以利用建立好的经济模型进行政策效果评估或者预测分析。
比如,我们可以利用模型来评估提高最低工资标准对就业的影响,或者利用模型来预测未来经济增长的趋势。
通过这些分析,我们可以更好地理解经济现象,为政策制定和经济决策提供科学依据。
综上所述,建立经济模型是计量经济学研究的核心内容之一,它可以帮助我们更好地理解经济现象和规律,为政策制定和经济决策提供依据。
在建模过程中,我们需要选择合适的理论模型,收集和处理好相关的经济数据,利用计量经济学的方法进行分析,最终得到可靠的模型结果。
希望通过本文的介绍,能够帮助读者更好地理解计量经济学建模的过程和方法。
【精品】计量经济学案例【案例一:经济增长与劳动力市场】计量经济学在劳动经济学中有着广泛的应用。
为了评估经济增长与劳动力市场之间的关系,可以使用生产函数模型,这一模型包括了劳动和资本等投入变量,以及一个因变量,即经济产出。
假设我们有一份涵盖了各个国家历年的GDP和劳动力人口的数据集,我们可以将数据设定为面板数据,并进行固定效应模型估计。
首先,我们需要对数据进行平稳性检验以避免伪回归。
我们可以用单位根检验,如ADF检验或IPS检验等来进行检查。
如果数据是平稳的,我们可以进行下一步,也就是估计生产函数模型。
如果我们发现劳动力和经济增长之间存在正相关关系,那么我们可能会得出结论:增加劳动力可以促进经济增长。
另一方面,如果资本和经济增长之间存在更强的关系,那么我们可能会建议政策制定者通过增加投资来刺激经济增长。
【案例二:价格与需求】计量经济学也被广泛应用于研究价格与需求之间的关系。
例如,在商品市场中,价格和需求之间存在负相关关系。
为了验证这一点,我们可以使用OLS估计法进行回归分析。
假设我们有一份包含各种商品价格和销售量的数据集。
我们可以将价格作为自变量,销售量作为因变量进行回归。
如果回归结果的斜率是负的,说明价格和销售量之间存在负相关关系,即当价格上升时,销售量会下降。
如果回归结果的斜率是正的,那么我们可能需要进一步检查数据是否存在异常值或者是否存在其他因素影响了结果。
通过这种分析,我们可以更好地理解价格和需求之间的关系,从而帮助政策制定者做出更好的决策。
例如,如果一个公司想要提高其产品的销售量,它可能需要考虑降低价格或者提供其他形式的促销活动。
【案例三:教育投资与经济增长】计量经济学也被广泛应用于研究教育投资与经济增长之间的关系。
一些研究表明,教育投资可以促进经济增长。
为了验证这一点,我们可以使用时间序列数据集进行回归分析。
假设我们有一份包含了各个国家历年的教育投资和GDP数据的时间序列数据集。
我们可以将教育投资作为自变量,GDP作为因变量进行回归。
计量经济学案例分析一、问题提出国内生产总值(GDP)指一个国家或地区所有常住单位在一定时期内(通常为1 年)生产活动的最终成果,即所有常住机构单位或产业部门一定时期内生产的可供最终使用的产品和劳务的价值,包括全部生产活动的成果,是一个颇为全面的经济指标。
对国内生产总值的分析研究具有极其重要的作用和意义,可以充分地体现出一个国家的综合实力和竞争力。
因此,运用计量经济学的研究方法具体分析国内生产总值和其他经济指标的相关关系。
对预测国民经济发展态势,制定国家宏观经济政策,保持国民经济平稳地发展具有重要的意义。
二、模型变量的选择模型中的被解释变量为国内生产总值Y。
影响国内生产总值的因素比较多,根据其影响因素的大小和资料的可比以及预测模型的要求等方面原因, 文章选择以下指标作为模型的解释变量:固定资产投资总量(X1 ) 、财政支出总量(X2 )、城乡居民储蓄存款年末余额(X3 )、进出口总额(X4 )、上一期国内生产总值(X5)、职工工资总额(X6)。
其中,固定资产投资的增长是国内生产总值增长的重要保障,影响效果显著;财政支出是扩大内需的保证,有利于国内生产总值的增长;城乡居民储蓄能够促进国内生产总值的增长,是扩大投资的重要因素,但是过多的储蓄也会减缓经济的发展;进出口总额反映了一个国家或地区的经济实力;上期国内生产总值是下期国内生产总值增长的基础;职工工资总额是国内生产总值规模的表现。
三、数据的选择文中模型样本观测数据资料来源于2006 年《中国统计年鉴》,且为当年价格。
固定资产投资总量1995-2005 年的数据取自2006 年统计年鉴,1991-1994 年的为搜集自其他年份统计年鉴。
详细数据见表1。
表1四、模型的建立通过散点图可以发现,被解释变量Y与解释变量:X1、X2、X3、X4、X5、X6 之间大致存在线性相关关系。
于是可以设该模型的理论方程:Y =β0 +β1X1 +β2 X2 +β3 X3 +β4 X4+β5 X5 +β6X6+u (1)五、模型的参数估计对于理论模型运用OLS进行参数估计,再用Eviews软件进行运算,得到的结果如下:Y(^)=-2343.173-0.232209X1+0.285821X2-0.090052X3+0.265575X4+0.653820X5 +3.810634X6 (2)t =(-0.867663)(-0.663590)(0.569626)(-0.295743)(1.144851)(3.051578)(3.743547)R²=0.999342 D.W.=2.181505 F=2023.923六、模型的检验1、经济意义检验上面模型(2)可以看出β1<0,这表明随着固定资产投资总额的增加,国内生产总值反而减少,这是不符合实际的,因此不能通过经济意义检验,把此变量剔除。
计量经济学思政案例计量经济学是运用统计和数学方法来研究经济现象的一门学科。
它在解决经济问题和制定政策方面起着重要的作用。
本文将以计量经济学思政案例为题,列举一些实际应用和案例,来说明计量经济学在解决社会问题和指导政策制定方面的重要性。
1. 政府决策中的计量经济学分析政府在制定经济政策时,需要对影响经济发展的因素进行分析。
例如,政府希望了解货币供应对通货膨胀的影响程度,可以利用计量经济学的方法,通过收集相关数据进行实证分析,从而制定出合理的货币政策。
2. 经济增长的计量经济学研究经济增长是一个国家经济发展的重要指标。
计量经济学可以通过分析不同因素对经济增长的影响,帮助政府制定出促进经济增长的政策。
例如,通过对教育投资、技术进步等因素的计量经济学分析,政府可以了解到这些因素对经济增长的贡献程度,从而制定出相应的政策。
3. 劳动力市场的计量经济学研究劳动力市场是一个国家就业和收入分配的重要领域。
计量经济学可以帮助政府了解劳动力市场的运行机制和影响因素,从而制定出合理的就业政策。
例如,政府可以利用计量经济学的方法,分析教育水平、技能水平等因素对就业率的影响,从而制定出提高就业率的政策。
4. 社会保障制度的计量经济学分析社会保障制度是保障公民基本生活的重要组成部分。
计量经济学可以通过分析社会保障制度的运行情况和影响因素,帮助政府进行改革和完善。
例如,政府可以利用计量经济学的方法,分析不同社会保障政策对贫困人口的影响,从而制定出更加有效的社会保障政策。
5. 环境经济学的计量经济学研究环境问题是当前全球面临的重大挑战之一。
计量经济学可以通过分析环境问题的成因及其影响因素,帮助政府制定出合理的环境保护政策。
例如,政府可以利用计量经济学的方法,分析经济增长对环境污染的影响程度,从而制定出促进经济增长和环境保护的政策。
6. 金融市场的计量经济学分析金融市场是一个国家经济运行的重要组成部分。
计量经济学可以通过分析金融市场的运行机制和影响因素,帮助政府制定出合理的金融政策。
《计量经济学》实验报告实验课题:各章节案列分析姓名:茆汉成班级:会计学12-2班学号: **********指导老师:***报告日期: 2015.06.18目录第二章简单线性回归模型案例 (1)1 问题引入 (1)2 模型设定 (1)3 估计参数 (3)4 模型检验 (3)第三章多元线性回归模型案例 (5)1 问题引入 (5)2 模型设定 (5)3 估计参数 (6)4 模型检验 (6)第四章多重线性案例 (8)1 问题引入 (8)2 模型设定 (8)3 参数估计 (8)4 对多重共线性的处理 (9)第五章异方差性案例 (11)1 问题引入 (11)2 模型设定 (11)3 参数估计 (11)4 异方差检验 (12)5 异方差性的修正 (14)第六章自相关案例 (15)1 问题引入 (15)2 模型设定 (15)3 用OLS估计 (15)4 自相关其他检验 (16)5 消除自相关 (17)第七章分布滞后模型与自回归模型案例 (19)7.2案例1 (19)1 问题引入 (19)2 模型设定 (19)3 参数估计 (19)7.3案例2 (21)1 问题引入 (21)2 模型设定 (21)3、回归分析 (21)4模型检验 (23)第八章虚拟变量回归案例 (24)1 问题引入 (24)2 模型设定 (24)3 参数估计 (26)4 模型检验 (27)第二章简单线性回归模型案例1、问题引入居民消费在社会经济的持续发展中有着重要的作用。
适度的居民消费规模和合理的消费模型是人民生活水平的具体体现,有利于经济持续健康的增长。
随着社会信息化程度和居民的收入水平的提高,计算机的运用越来越普及,作为居民耐用消费品重要代表的计算机已经为众多的城镇居民家庭所拥有。
研究中国各地区城镇居民计算机拥有量与居民收入水平的数量关系。
影响居民计算机拥有量的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入水平。
从理论上说居民收入水平越高,居民计算机拥有量越多。
案例分析1— 一元回归模型实例分析依据1996-2005年《中国统计年鉴》提供的资料,经过整理,获得以下农村居民人均消费支出和人均纯收入的数据如表2-5:表2-5 农村居民1995-2004人均消费支出和人均纯收入数据资料 单位:元 年度 1995199619971998199920002001200220032004人均纯收入1577.7 1926.1 2090.1 2161.1 2210.3 2253.4 2366.4 2475.6 2622.2 2936.4人均消费支出1310.4 1572.1 1617.2 1590.3 1577.4 1670.1 1741.1 1834.3 1943.3 2184.7一、建立模型以农村居民人均纯收入为解释变量X ,农村居民人均消费支出为被解释变量Y ,分析Y 随X 的变化而变化的因果关系。
考察样本数据的分布并结合有关经济理论,建立一元线性回归模型如下:Y i =β0+β1X i +μi根据表2-5编制计算各参数的基础数据计算表。
求得:082.1704035.2262==Y X∑∑∑∑====3752432495.1986.788859011.516634423.1264471222ii i i iX y x y x 根据以上基础数据求得:623865.0423.126447986.788859ˆ21===∑∑iii xyx β8775.292035.2262623865.0082.1704ˆˆ10=⨯-=-=X Y ββ 样本回归函数为:ii X Y 623865.08775.292ˆ+= 上式表明,中国农村居民家庭人均可支配收入若是增加100元,居民们将会拿出其中的62.39元用于消费。
二、模型检验1.拟合优度检验952594.0011.516634423.1264471986.788859))(()(22222=⨯==∑∑∑iii i yx y x r2.t 检验525164.3061 210423.12644710.623865011.166345 2ˆˆ222122=-⨯-=--=∑∑n x y iiβσ049206.0423.1264471525164.3061ˆ)ˆ()ˆ(2211====∑ie xVar S σββ6717.112525164.3061423.126447110137.52432495ˆ)ˆ()ˆ(22200=⨯===∑∑σββii e xn X Var S 在显著性水平α=0.05,n-2=8时,查t 分布表,得到:306.2)2(2=-n t α提出假设,原假设H 0:β1=0,备择假设H 1:β1≠067864.12049206.0623865.0)ˆ(ˆ)ˆ(111==-=ββββe S t)2(67864.12)ˆ(21->=n t t αβ,差异显著,拒绝β1=0的假设。
齐齐哈尔大学计量经济学案例分析题目1994-2011年出口货物总额差异原因专业班级信科172学号学生姓名成绩一、研究的目的要求随着全球经济一体化进程深入推进,加强对外贸易是必不可少的。
面对当今世界复杂多变的经济形式,出口作为国民经济指标之一,受到多种因素的影响。
“工业增加值”,“人民币汇率”“经济增长”“商品结构”等因素。
我们本题选择“工业增加值”,“人民币汇率”等变量进行研究。
为研究影响1994-2011年每年年出口货物总额差异的主要原因,分析1994-2011年每年出口货物总额增长的数量规律,预测每年出口货物总额的增长趋势,需要建立计量经济模型。
二、模型设定为了探究影响1994-2011年每年年出口货物总额差异的主要原因,选择年出口货物总额为解释变量,工业增加值,人民币汇率为解释变量。
首先,建立工作文件,选择数据类型“Annual”“Start date”中输入1994,“End date”中输入“2011”.在EViews命令框中直接输入“data Y X1 X2”,在对应的“Y X1 X2”下粘贴数据。
探索将模型设定为线性回归模型形式建立出口货物总额计量经济模型:三、数据收集四、参数估计(1)绘制散点图在命令框输入“scat X1 Y”“scat X2 Y”得到:上图为解释变量工业增加值和被解释变量出口货物总额的散点图,由图可知,大多数散点分布在一条直线左右,可以认为X1和Y之间呈高度线性相关。
上图为解释变量人民币汇率和被解释变量出口货物总额的散点图,由图可知,大多数散点分布在一条直线左右,可以认为X1和Y之间呈线性相关。
(2)对于计量经济模型:在命令框输入“LS Y C X1 X2”回车即可出现下面的回归结果:根据数据,模型估计的结果写为:(8638.216) (0.012799) (9.776181)t=(-2.110573) (10.58454) (1.928512)R2=0.985838 F=522.0976 n=18五、模型检验1.经济意义检验(1)对于计量经济模型:(2)模型估计结果说明,在假定其他变量不变的情况下,工业增加值每增加1亿元,平均说来出口货物总额将增加0.135474亿元,(3)人民币汇率每增加100美元,平均说来出口货物总额将增加18.85348亿元,这与理论分析和经验判断相一致。
计量经济学操作实验及案例分析引言计量经济学是经济学研究中的一种重要分支,通过运用统计学和经济学的方法,对经济现象进行度量和分析。
在计量经济学研究中,操作实验是一种常用的方法,通过实验设计、数据采集和分析,可以验证经济理论、评估政策效果、预测经济变量等。
本文将介绍计量经济学操作实验的基本原理和步骤,并通过实际案例的分析,展示其应用的价值。
计量经济学操作实验的基本原理计量经济学操作实验是指利用实验方法进行经济变量的观测和处理,以获取对经济理论和政策效果的更准确的估计。
它可以通过控制其他变量的影响,研究某一特定变量对经济现象的影响。
操作实验的基本原理包括以下几点:1.随机分配:在操作实验中,实验对象被随机分配到不同的处理组,以保证实验结果的可靠性和有效性。
随机分配可以消除实验组与对照组之间的差异,使得实验结果更具说服力。
2.处理变量:在操作实验中,需要选择一个或多个处理变量,即研究者要考察的变量。
处理变量的选择应当具有经济实际意义,并能够反映出研究目的所涉及的经济现象。
3.控制变量:除了处理变量之外,还需要控制其他可能对实验结果产生影响的变量,以确保实验所获得的差异是由处理变量引起的。
控制变量的选择和设置要根据具体情况进行,以保证实验结果的有效性。
4.数据采集和处理:在操作实验中,需要采集关于实验对象和处理变量的数据,并进行相应的数据处理和分析。
数据采集可以通过问卷调查、实地访谈、实验观测等方式进行,数据处理可以使用统计学方法进行。
计量经济学操作实验的步骤进行计量经济学操作实验需要经过以下几个步骤:1.研究问题的确定:确定需要研究的经济问题,并明确研究目的和假设。
2.实验设计的制定:根据研究问题和假设,设计实验的具体方案,包括实验对象的选择、实验组和对照组的划分、处理变量和控制变量的设定等。
3.数据采集和处理:根据实验设计的方案,采集相关数据,并进行数据处理和分析。
数据处理的方法可以包括描述统计分析、方差分析、回归分析等。
案例分析1一、研究的目的要求居民消费在社会经济的持续发展中有着重要的作用。
居民合理的消费模式和居民适度的消费规模有利于经济持续健康的增长,而且这也是人民生活水平的具体体现。
改革开放以来随着中国经济的快速发展,人民生活水平不断提高,居民的消费水平也不断增长。
但是在看到这个整体趋势的同时,还应看到全国各地区经济发展速度不同,居民消费水平也有明显差异。
为了研究全国居民消费水平及其变动的原因,需要作具体的分析。
影响各地区居民消费支出有明显差异的因素可能很多,例如,居民的收入水平、就业状况、零售物价指数、利率、居民财产、购物环境等等都可能对居民消费有影响。
为了分析什么是影响各地区居民消费支出有明显差异的最主要因素,并分析影响因素与消费水平的数量关系,可以建立相应的计量经济模型去研究。
二、模型设定我们研究的对象是各地区居民消费的差异。
居民消费可分为城市居民消费和农村居民消费,由于各地区的城市与农村人口比例及经济结构有较大差异,最具有直接对比可比性的是城市居民消费。
而且,由于各地区人口和经济总量不同,只能用“城市居民每人每年的平均消费支出”来比较,而这正是可从统计年鉴中获得数据的变量。
所以模型的被解释变量Y 选定为“城市居民每人每年的平均消费支出”。
因为研究的目的是各地区城市居民消费的差异,并不是城市居民消费在不同时间的变动,所以应选择同一时期各地区城市居民的消费支出来建立模型。
因此建立的是2002年截面数据模型。
影响各地区城市居民人均消费支出有明显差异的因素有多种,但从理论和经验分析,最主要的影响因素应是居民收入,其他因素虽然对居民消费也有影响,但有的不易取得数据,如“居民财产”和“购物环境”;有的与居民收入可能高度相关,如“就业状况”、“居民财产”;还有的因素在运用截面数据时在地区间的差异并不大,如“零售物价指数”、“利率”。
因此这些其他因素可以不列入模型,即便它们对居民消费有某些影响也可归入随即扰动项中。
为了与“城市居民人均消费支出”相对应,选择在统计年鉴中可以获得的“城市居民每人每年可支配收入”作为解释变量X。
从2012年《中国统计年鉴》中得到数据:表2.52012年中国各地区城市居民人均年消费支出和可支配收入地区城市居民家庭平均每人每年消费支出(元)Y 城市居民人均年可支配收入(元)X北京天津24,045.920,024.236,468.829,626.4河北山西内蒙古辽宁吉林黑龙江上海江苏浙江安徽福建江西山东河南湖北湖南广东广西海南重庆四川贵州云南西藏陕西甘肃青海宁夏新疆12,531.112,211.517,717.116,593.614,613.512,983.626,253.518,825.321,545.215,011.718,593.212,775.715,778.213,733.014,496.014,609.022,396.414,244.014,456.616,573.115,049.512,585.713,883.911,184.315,332.812,847.112,346.314,067.213,891.720,543.420,411.723,150.323,222.720,208.017,759.840,188.329,677.034,550.321,024.228,055.219,860.425,755.220,442.620,839.621,318.830,226.721,242.820,917.722,968.120,307.018,700.521,074.518,028.320,733.917,156.917,566.319,831.417,920.7作城市居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)的散点图,如图2.12:图2.12从散点图可以看出居民家庭平均每人每年消费支出(Y)和城市居民人均年可支配收入(X)大体呈现为线性关系,所以建立的计量经济模型为如下线性模型:12i i i Y X u ββ=++三、估计参数假定所建模型及随机扰动项i u 满足古典假定,可以用OLS 法估计其参数。
运用计算机软件EViews 作计量经济分析十分方便。
利用EViews 作简单线性回归分析的步骤如下: 1、建立工作文件首先,双击EViews 图标,进入EViews 主页。
在菜单一次点击File\New\Workfile ,出现对话框“Workfile Range ”。
在“Workfile frequency ”中选择数据频率:Annual (年度) Weekly ( 周数据 )Quartrly (季度) Daily (5 day week ) ( 每周5天日数据 ) Semi Annual (半年) Daily (7 day week ) ( 每周7天日数据 ) Monthly (月度) Undated or irreqular (未注明日期或不规则的) 在本例中是截面数据,选择“Undated or irreqular ”。
并在“Start date ”中输入开始时间或顺序号,如“1”在“end date ”中输入最后时间或顺序号,如“31”点击“ok ”出现“Workfile UNTITLED ”工作框。
其中已有变量:“c ”—截距项 “resid ”—剩余项。
在“Objects ”菜单中点击“New Objects”,在“New Objects”对话框中选“Group”,并在“Name for Objects”上定义文件名,点击“OK ”出现数据编辑窗口。
若要将工作文件存盘,点击窗口上方“Save ”,在“SaveAs ”对话框中给定路径和文件名,再点击“ok ”,文件即被保存。
2、输入数据在数据编辑窗口中,首先按上行键“↑”,这时对应的“obs”字样的空格会自动上跳,在对应列的第二个“obs”有边框的空格键入变量名,如“Y ”,再按下行键“↓”,对因变量名下的列出现“NA ”字样,即可依顺序输入响应的数据。
其他变量的数据也可用类似方法输4000600080001000012000400060008000100001200014000XY入。
也可以在EViews 命令框直接键入“data X Y ”(一元时) 或 “data Y 1X 2X … ”(多元时),回车出现“Group ”窗口数据编辑框,在对应的Y 、X 下输入数据。
若要对数据存盘,点击 “fire/Save As”,出现“Save As ”对话框,在“Drives ”点所要存的盘,在“Directories ”点存入的路径(文件名),在“Fire Name ”对所存文件命名,或点已存的文件名,再点“ok ”。
若要读取已存盘数据,点击“fire/Open”,在对话框的“Drives”点所存的磁盘名,在“Directories”点文件路径,在“Fire Name”点文件名,点击“ok”即可。
3、估计参数方法一:在EViews 主页界面点击“Quick ”菜单,点击“Estimate Equation ”,出现“Equation specification ”对话框,选OLS 估计,即选击“Least Squares”,键入“Y C X ”,点“ok ”或按回车,即出现如表2.6那样的回归结果。
表2.6在本例中,参数估计的结果为:^282.24340.758511i i Y X =+ (287.2649) (0.036928) t=(0.982520) (20.54026)20.935685r = F=421.9023 df=29方法二:在EViews 命令框中直接键入“LS Y C X ”,按回车,即出现回归结果。
若要显示回归结果的图形,在“Equation ”框中,点击“Resids ”,即出现剩余项(Residual )、实际值(Actual )、拟合值(Fitted )的图形,如图2.13所示。
图2.13四、模型检验1、经济意义检验所估计的参数^20.758511β=,说明城市居民人均年可支配收入每相差1元,可导致居民消费支出相差0.758511元。
这与经济学中边际消费倾向的意义相符。
2、拟合优度和统计检验用EViews 得出回归模型参数估计结果的同时,已经给出了用于模型检验的相关数据。
拟合优度的度量:由表2.6中可以看出,本例中可决系数为0.935685,说明所建模型整体上对样本数据拟合较好,即解释变量“城市居民人均年可支配收入”对被解释变量“城市居民人均年消费支出”的绝大部分差异作出了解释。
对回归系数的t 检验:针对01:0H β=和02:0H β=,由表2.6中还可以看出,估计的回归系数^1β的标准误差和t 值分别为:^1()287.2649SE β=,^1()0.982520t β=;^2β的标准误差和t 值分别为:^2()0.036928SE β=,^2()20.54026t β=。
取0.05α=,查t 分布表得自由度为2312n -=-=的临界值0.025(29)2.045t =。
因为^10.025()0.982520(29)2.045t t β=<=,所以不能拒绝01:0H β=;因为^20.025()20.54026(29) 2.045t t β=>=,所以应拒绝02:0H β=。
这表明,城市人均年可支配收入对人均年消费支出有显著影响。
五、回归预测由表2.5中可看出,2002年中国西部地区城市居民人均年可支配收入除了西藏外均在8000以下,人均消费支出也都在7000元以下。
在西部大开发的推动下,如果西部地区的城市居民人均年可支配收入第一步争取达到1000美元(按现有汇率即人民币8270元),第二步再争取达到1500美元(即人民币12405元),利用所估计的模型可预测这时城市居民可能达到的人均年消费支出水平。
可以注意到,这里的预测是利用截面数据模型对被解释变量在不同空间状况的空间预测。
用EViews 作回归预测,首先在“Workfile ”窗口点击“Range ”,出现“Change Workfile Range ”窗口,将“End data”由“31”改为“33”,点“OK ”,将“Workfile ”中的“Range ”扩展为1—33。
在“Workfile ”窗口点击“sampl”,将“sampl”窗口中的“1 31”改为“1 33”,点“OK ”,将样本区也改为1—33。
为了输入18270f X =,212405f X =在EViews 命令框键入data x /回车, 在X 数据表中的“32”位置输入“8270”,在“33”的位置输入“12405”,将数据表最小化。
然后在“E quation ”框中,点击“Forecast ”,得对话框。