电网架空线路防直击雷反击闪络措施的探讨
- 格式:pdf
- 大小:546.42 KB
- 文档页数:3
架空输电线路的防雷措施浅析【摘要】本文阐述了雷电过电压的形式,雷击对架空输电线路安全运行的危害,以及一些常见的架空输电线路的防雷措施。
由于在雷击经常造成线路跳闸事故,通过介绍架空输电线路有针对性地进行防雷的一些实例做法,统计和分析了相关措施的实效性。
【关键词】架空输电线路;雷击;防范1.引言110kv及以上架空输电线路路径多建于空旷地带或山上,在雷电活动极为频繁的地区,一直受到雷击故障的困扰。
尤其是雷雨季节,雷击跳闸率长期居高不下,严重地影响了架空输电线路的安全、可靠运行。
我国电网故障分类统计数据表明,多雷地区线路雷击跳闸次数占总跳闸次数的40%~70%。
因此,如何切实有效地制定及改善架空输电线路的防雷措施,已经成为确保线路安全、可靠运行的重要工作之一。
2.雷击的型式及危害输电线路雷害的形式有两种,一是感应雷,二是直击雷。
实际运行经验表明:110kv及以上电压等级的输电线路雷害的原因则主要是根据经验和故障现象,因而比较难做出准确判断,这对于有针对性地采取防雷对策,十分不利。
郊外线路因地面附近的空间电场受山坡地形等影响,其绕击率约为平原线路的3倍,或相当于保护角增大8°。
雷电对电力设备绝缘危害最大的是直击雷过电压,直击雷过电压的峰值很高,破坏性很强,在输电线路上可能引起绝缘子闪络、烧伤或击穿;重者击断导线造成停电事故。
3.防雷措施3.1运行管理3.1.1加强对防雷设备、设施的定期巡视。
架空输电线路的防雷设备大多都位于野外,经常遭受等外力破坏,这其中有人为(如盗窃)的因素也有自然的因素。
因此,只有加强对防雷设备的巡视检查,及时掌握其运行状态,才能使防雷设备真正地起到防雷的效果。
3.1.2定期对防雷设备、设施进行测试。
结合线路工作,每年至少记录一次线路避雷器记数的动作情况。
线路避雷器运行2~3年应停电检查一次。
线路避雷器运行5年应停电进行直流1ma参考电压及75%参考电压下泄漏电流试验,检查避雷器本体是否有劣化现象。
从绕击和反击“聊”架空输电线路防雷1.前⾔▲讨论部分截图2.绕击&反击根据过电压形成的物理过程,雷电过电压可以分为两种:直击雷过电压,是雷电直接击中杆塔、避雷线或导线引起的线路过电压;感应雷过电压,是雷击线路附近⼤地,由于电磁感应在导线上产⽣的过电压。
按照雷击线路部位的不同直击雷过电压⼜分为两种情况:⼀种是雷击线路杆塔或避雷线时,雷电流通过雷击点阻抗使该点对地电位⼤⼤升⾼,当雷击点与导线之间的电位差超过绝缘的冲击放电电压时,会对导线发⽣闪络,使导线出现过电压。
因为杆塔或避雷线的电位(绝缘值)⾼于导线,故通常称为反击。
另⼀种是雷电直接击中导线(⽆避雷线时)或绕过避雷线(屏蔽失效)击于导线,直接在导线上引起过电压。
后者通常称之为绕击。
▲绕击和反击⽰意图3.讨论⼩编根据群聊顺序将与其内容⽆关部分删除后将原⽂字内容与⼤家分享,因是聊天过程,可能存在跳跃性,有问题可以加微信群与原⼤家讨论。
下⾯分享具体的聊天交流内容(其名字为化名)。
年年防雷来来来,群⾥各位⼤佬,雷⾬季节今年提前了,出来聊⼀聊雷击中的绕击和反击?群班长@年年防雷 绕击⼟点讲就是绕开避雷线保护⾓外劈您没被保护到的导线没商量的技术雷呀。
@年年防雷 反击⼟点讲就是劈您避雷线或铁塔都能使避雷线铁塔电位升⾼⾄击穿绝缘⼦串组的暴⼒雷。
川藏线路刘这两种雷多不多见群班长@川藏线路刘 多。
morty多国⽹绘制的图都是群班长我们的定义⽐⽓象系统有点乱,其实我们是把直击雷、感应雷劈到有架设避雷线的线路导线为定义为绕击,劈到没避雷线的线路导线为直击,劈到铁塔或避雷线后防雷接地装置泄流不⾜使铁塔电位升⾼⾄击穿绝缘⼦串组绝缘为反击,就这么简单。
很多论⽂都是乱七⼋糟写的复杂的很。
真要学习雷击得先学⽓象⽅⾯的,如下:对了,劈到避雷线保护⾓内的也称为直击。
被绕击雷劈概率最⾼的是⽔库旁等有⽔的⼭脚和⼭坡的杆塔。
雷电劈中杆塔远⾼于避雷线。
跟多的知识可以看看之前发过的浙江应伟国专家的ppt,他有带清华⽣在电科院搞过专题研究,否定了⼀⼤堆乱七⼋糟的新防雷东西,但课件不会体现,⽼板和⼚家不⼲避雷线和铁塔加装避雷针防雷原理与避雷针⼀样,与地⾯形成等电位差,利⽤⾃⾝的⾼度,使电场强度增加到极限值的雷电云电场发⽣畸变,开始电离并下⾏先导放电;避雷针或铁塔塔顶塔材在强电场作⽤下产⽣尖端放电,形成向上先导放电;两者会合形成雷电通路,随之泻⼊⼤地,达到避雷效果。
浅谈架空输电线路的防雷保护措施摘要:随着人们生活水平的提高,供电需求不断上涨,电力系统运行面临诸多的挑战。
架空输电线路作为电能传输的重要部分,对电力企业供电质量与服务水平有着重要作用。
作为电力供应最长使用的一种输电方式,长期暴露在室外环境下,特别容易受到气候条件、自然因素的影响,造成雷击或跳闸现象。
本文主要对架空输电线路防雷与接地设计进行探讨,提出合理的设计措施,希望能够提高电力系统的运行水平,为人们提供更加安全可靠的用电条件。
关键词:架空;输电线路;防雷;保护措施1 前言我国幅员辽阔,人口众多,地质地形复杂,容易受到寒潮、沙尘暴、内涝、雷电等自然灾害的影响,并且自然灾害影响程度大,较大程度的损害了人民生命财产安全。
气象部门和专家应该从我国实际情况出发制定相关策略将雷电灾害尤其是高压架空输电线路遭受的雷电危害程度减少到最低。
进一步加深对雷电灾害的认识与了解,做到知己知彼,只有这样才能减少雷电灾害的影响,更好的了解自然,认识自然,与大自然和谐相处。
2 架空输电线路受雷击跳闸的因素分析2.1线路设计因素线路设计是输电线路得以正常运行的首要条件,选择最佳的线路路径不仅可以提高电力传输效率,还能降低安全故障的发生。
线路路径充分论证了导线、地线、绝缘、防雷设计等各方面的正确性,合理选择塔杆及基础形式,确保各种电气设备之间的有效距离,加强通信保护设计是促进架空输电线路安全有效运行的关键所在。
随着电网建设的不断完善,线路设计逐渐呈现时间紧、工作量大的状态,由于线路通过的地理地形和土壤结构比较复杂,给线路设计工作带来很大影响。
由于电力工作人员没有结合现场情况对塔杆接地合理设计,就会影响架空输电线路对雷击的耐受性,从而产生跳闸故障。
2.2自然因素架空输电线路处于室外的露天环境中,容易受到各种自然环境的影响,我国是一个地大物博的国家,各地区自然环境差异也有很大不同,针对不同区域的架空输电线路所面临的环境特点、地质条件也不尽相同。
关于架空输电线路有效防雷措施的探讨摘要:架空输电线路主要由接地装置、绝缘子串、杆塔、架空地线以及导线等部分组成,在我国电力系统中承担着传输电能的重任。
架空输电线路在长期的运行过程中,很容易遭受雷击故障,造成大范围的停电事故,严重影响人们的正常用电和电力系统的安全稳定运行,因此必须采取有效的防雷措施,提高架空输电线路的安全性和稳定性。
本文分析了架空输电线路雷击跳闸故障,阐述了架空输电线路的有效防雷措施。
关键词:架空输电线路;防雷措施由于架空输电线路长时间暴露在自然环境中,很容易受到外界自然因素的损害和影响。
一旦架空输电线路遭受雷击,会严重影响整个线路的安全供电,因此相关电力部门应高度重视雷击危害,有针对性的采取措施,防止架空输电线路发生雷击跳闸,保障电网的供电可靠性和稳定性。
1 架空输电线路雷击跳闸故障分析雷击活动、地形地貌、接地电阻、绝缘强度、线路塔型等因素和架空输电线路雷击跳闸有着直接的关系。
在架空输电线路的运行过程中,一旦架空输电线路遭受雷击,大量的雷电电流会通过架空输电线路流入大地,大量的雷电电流使输电线路电压大幅度升高,降低输电线路的绝缘性能,损害架空输电线路的电力设备,并且容易发生闪络现象,导致架空输电线路跳闸和大范围停电事故。
架空输电线路从电厂将电能输送到电力终端,在这个过程中需要面对各种复杂的气候、地质和地形条件,根据相关数据统计,70%以上的架空输电线路雷击事故都发生山区。
并且雷击事故还和架空输电线杆塔的位置、高度和地面坡度有着直接的关系[1],杆塔高度越高,电感越大,雷击电流流过输电线路的电压幅值越高,当架空输电线杆塔沿着山坡架设时,雷电绕击次数明显增多。
架空输电线路发生雷击跳闸主要有两种表现形式:直接雷击形式和绕击雷或感应雷击形式。
直接雷击是指架空输电线路的杆塔或者线路直接被雷电击中,导致架空输电线路发生雷击跳闸故障;绕击雷或感应雷击是指当雷击在架空输电线路杆塔或者附件地面时,在电磁感应的作用下,雷电绕过避雷装置冲击输电线路,引起架空输电线路发生雷击跳闸故障。
架空输电线路的防雷及运维措施摘要:架空输电线路的防雷及运维是电力系统正常稳定运行的重要保障。
相关部门应积极引进先进的运维管理技术和运维方法,提高架空输电线路的防雷技术水平,保障架空输电线路的正常稳定运行。
关键词:架空输电线路;防雷措施;运维措施引言电力产业是我国国民经济中的重要基础性产业,随着社会经济的发展,社会的用电需求也显著增加,在增加电力系统供电量的同时,也要保障社会供电的稳定性和可靠性。
本文对架空输电线路的防雷及运维措施进行了探讨。
1架空输电线路防雷措施常用的防雷设备有避雷针、架空地线、避雷器等,可降低被保护设备所受的雷过电压,减少因绝缘被损坏而引起的跳闸危险,其中接地装置就是把雷电流引入大地的设备。
1.1避雷线(架空地线)的布设布设避雷线作为一种传统的防雷保护措施,其可有效避免雷电直击并将雷电流进行合理疏导,进而为架空线路导线构建一层屏蔽层。
通常来讲,架空地线材料造价成本较低,主要采用钢绞线和铝包钢绞线(带通讯功能)或其他小线径导线制作。
针对部分山区地段的雷击事故多发区,若输电线路电压超过110kV,则一般采用构建全线双线避雷线进行防雷;若输电线路电压在35kV及以下,则一般采用单线全线架空地线或只需将架空地线布设于变电站附近2公里内的区域即可。
当然,以上布设方式多出于工程经济性方面考虑,若想进一步增强整体线路避雷效果,则可根据实际情况重新调整线路布设方案。
此外,架空地线保护角大小是防止线路直接遭受雷击的关键所在,雷击导线的概率随着保护角减小而降低,导线悬挂点与架空地线两者间所设置的保护角越小,防直击雷的效果越高。
保护角的大小,通常取决于导线横担与地线横担之间的设计结构,大部分输电线路会将保护角的角度设定在10-25。
范围内。
对于110kV-220kV高压线路防雷,通常会布设双避雷线并将保护角的角度设定为不大于20。
,而针对超过500kV的超高压、特高压的架空线路,通常保护角的角度不高于15。
10kV架空配电线路防雷研究1.10kV架空配电线路防雷存在的问题1.1感应雷过电压对10kV架空配电线路的影响根据直击雷的放电机理,直击雷一次只能袭击一、两处小范围的目标,而一次雷闪击却可以在较大范围内的多个局部同时激发感应雷的过电压现象,并且这种感应高电压可以通过电力线传输到很远致使雷害范围扩大,因此,感应雷过电压导致的故障比例超过90%,远大于直击雷。
感应雷过电压主要是针对架空线路作用,由于城市高层建筑可对配电线路起到屏蔽作用,因此10kV架空配电线路的防雷保护主要针对城乡结合地区。
1.2四会市大沙镇10kV架空配电线路的雷击跳闸现状肇庆四会市大沙镇位于广东中部,每年5至8月雷雨季节,线路跳闸次数多,重合成功率低,不但损坏设备,还造成抢修工作量的急剧增加。
根据统计, 2015年四会市大沙供电所营业区10kV线路雷击跳闸次数偏多,且重合成功率不高。
为了减少雷击跳闸次数,提高重合成功率,提出以下几点防雷措施。
2.10kV架空配电线路的防雷措施2.1减少直击雷次数采用避雷线可以防直击雷、限制感应过电压幅值、并在击杆时分流。
但是由于线路绝缘水平较低,直击雷易造成反击,且采用避雷线线路投资大而供电可靠性低,因此,对于10kV架空配电线路一般不全线架设避雷线,只在经常发生雷击故障的杆塔和线路处架设。
采用避雷针引雷。
由于肇庆市雷击率偏高,对于高杆塔、铁横担、终端杆等绝缘较薄弱的地方可加装避雷针构成引雷塔用以引雷,从而减少10kV架空配电线路的雷击次数。
需要提到的是,与普通避雷针相比,采用新型避雷针:如NCL无晕接闪器(无晕避雷针),在直流高压电场下无电晕电流,且接闪次数可以大大提高。
2.2降低雷击闪络率提高配电线路绝缘水平。
造成绝缘子闪络的因素,除了绝缘子放电电压水平外,还与绝缘子的日常运行维护有很大关系。
大沙镇作为工业区,是四会市经济发展的主力军,在整个四会市是重污秽地区。
在雨季,当线路遭受雷害时,加在绝缘子上的电压可达到几百千伏。
探析 10kV架空线路雷击跳闸原因与防雷措施摘要:10kV架空线路雷击危害事故频繁发生,严重威胁到10kV配电网供电的安全性、可靠性和经济性,直接影响到广大人民群众的正常生产、生活用电。
结合经验,对10kV架空线路运行时发生雷击危害的主要原因进行归纳总结,分析探讨了10kV架空线路的雷电综合防护措施,具有非常重要的工程实践应用意义。
关键词:10kV架空线路;雷击危害;防雷保护引言:10kV属于中压配电网络,是我国城市主干配电网络。
由于受当时技术水平和综合投资资金等因素的制约,10kV网络在当时规划建设过程中,其网状结构和配电网绝缘水平普遍偏低,尤其是在环境较为复杂地区,易受到雷电危害。
据一些统计文献资料表明,雷击架空线路跳闸事故是10kV架空线路常见故障,其占配电网故障比例一直居高不下,约80%以上的故障是由于雷击危害引起。
架空线路雷击危害常发生在配电变压器、柱上断路器以及隔离开关等设备处,也时常引起架空线路绝缘子发生闪络,在很大程度上影响了配电网供电可靠性和供电公司电网运营经济效益。
一、雷击跳闸原因分析(一)避雷设备质量问题线路所用避雷器质量不达标,避雷器方波电流达不到国家标准,当发生雷电时避雷器易被击爆,进而引起线路跳闸。
(二)避雷针设置点不合理按现有模式,避雷针设置选点主要是事后处理原则,没有结合开平地区雷区分布整体考虑,避雷针设置位置不够全面,当发生新一轮雷电天气时,未设置避雷针的配电线路无法受到有效保护,进而引发配电线路雷击跳闸。
(三)避雷器结构问题我市部分避雷器为跌落式结构,因跌落式避雷器的结构特点,避雷器与接地体通过可卸的活动连接口中的一个小铁片互相接触,无法通过强大的雷电流,其泄流能力不强,不能有效泄流,容易造成线路残压过高,击爆设备。
同时,这些避雷器在遭受雷击时自动脱扣,可有效降低线路单相接地可能性,但是对于雷击密度较高的地方来说,下一个雷电再次影响线路时因没有避雷器保护就会造成线路雷击跳闸。
10kV架空线路雷击跳闸原因与防雷措施探讨摘要:10kV架空线路雷击危害事故频繁发生,严重威胁到10kV配电网供电的安全性、可靠性和经济性,直接影响到广大人民群众的正常生产、生活用电。
结合经验,对10kV架空线路运行时发生雷击跳闸的原因进行归纳总结,分析探讨了10kV架空线路的雷电综合防护措施,具有非常重要的工程实践应用意义。
关键词:10kV架空线路;雷击危害;防雷保护引言对于架空输电线路来说,其本身因为工作的环境相比较其他电路而言更为恶劣,所以受到雷击的现象时有发生,由此一来,架空输电线路的防雷措施的研究成为了电力方面的主要研究内容之一。
到目前为止,我国部分地区的10kV电网因雷击造成的故障占我国整体的线路雷击故障的较大比例。
对于这类故障来说,其根本的原因是在雷击过后其本身的工频续流线路绝缘子等线路因素造成了损害,因此导致线路跳闸现象。
在我国高压输电线路中,架空输电线路受到雷击造成线路跳闸停电现象屡见不鲜,由此文章展开10kV架空线路雷击跳闸原因与防雷措施的研究,具体如下。
一、10kV架空线路雷击跳闸原因探讨(一)感应过电压引起的跳闸从电压数值上来说10kV相对于城市市区的110kV或者更高的电压较小,这是因为10kV架空线路用于城市郊区的远距离输电。
架空线路的杆塔绝大多数远离市区,位于相对偏远的城市郊区,如郊区的水田附近等地区。
由于架空线路在远离市中心的郊区,其防雷措施没有市区完善,还有线路的杆塔在水田附近,土壤较为湿润,众所周知,水是导电的物质,导电性能比湿润的土壤要强大得很多,在雷电天气下,线路会遭到雷击,从而引起感应雷电过电压引起的线路跳闸事件。
(二)绝缘水平不匹配引起跳闸事故10kV架空线路绝缘水平与电气设备绝缘水平之间存在不配合问题,是导致配电网发生雷击跳闸事故的主要原因之一。
10kV架空线路由于受当时建设制造水平、设计方案以及后期运行维护措施等因素的影响,很多线路在耐张杆塔上直接采用两片LXY1-70型玻璃绝缘子串,而其跳线绝缘子则采用SC-210型瓷瓶。