2018届高三数学每天一练半小时:第47练 不等式中的易错题 Word版含答案
- 格式:doc
- 大小:278.00 KB
- 文档页数:6
1.(2016·潍坊模拟)不等式|x -2|-|x -1|>0的解集为( ) A .(-∞,32)B .(-∞,-32)C .(32,+∞)D .(-32,+∞)2.(2016·皖南八校联考)若不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .[-2,5]D .(-∞,-1]∪[4,+∞)3.对任意x ,y ∈R ,|x -1|+|x |+|y -1|+|y +1|的最小值为( ) A .1 B .2 C .3 D .44.已知函数f (x )=|x +a |+|x -2|,当a =-3时,不等式f (x )≥3的解集为( ) A .[-1,4] B .(-∞,1]C .[1,4]D .(-∞,1]∪[4,+∞)5.(2016·长沙一模)设f (x )=|x -a |,a ∈R .若对任意x ∈R ,f (x -a )+f (x +a )≥1-2a 都成立,则实数a 的最小值是( ) A .0 B.14 C.12D .16.对于实数x ,y ,若|2x +1|≤lg 4,|2y -1|≤lg 5,则|x -2y +2|的最大值是( ) A.12 B .1 C.32 D .2二、填空题7.设f (x )=log 2(|x -1|+|x -5|-a ),当函数f (x )的定义域为R 时,实数a 的取值范围是________.8.不等式|x +log 3x |<|x |+|log 3x |的解集为________.9.若不等式|3x -b |<4的解集中的整数有且仅有1,2,3,则b 的取值范围是________. 10.已知不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立,则a 的取值范围是________. 三、解答题11.已知实数a ,b ,c ,d ,e 满足a +b +c +d +e =8,a 2+b 2+c 2+d 2+e 2=16,试确定e 的最大值.12.已知x ,y ∈R ,且|x +y |≤16,|x -y |≤14,求证:|x +5y |≤1.答案精析1.A [原不等式等价于|x -2|>|x -1|,则(x -2)2>(x -1)2,解得x <32.]2.A [由绝对值的几何意义知,|x +3|+|x -1|的最小值为4,所以不等式|x +3|+|x -1|≥a 2-3a 对任意实数x 恒成立,只需a 2-3a ≤4,解得-1≤a ≤4.]3.C [|x -1|+|x |+|y -1|+|y +1|≥|x -1-x |+|y -1-(y +1)|=1+2=3.] 4.D [当a =-3时,f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤2,1,2<x <3,2x -5,x ≥3.当x ≤2时,由f (x )≥3,得-2x +5≥3,解得x ≤1;当2<x <3时,f (x )≥3无解;当x ≥3时,由f (x )≥3,得2x -5≥3,解得x ≥4.所以f (x )≥3的解集为{x |x ≤1或x ≥4},故选D.]5.B [f (x -a )+f (x +a )=|x -2a |+|x |≥|(x -2a )-x |=2|a |,当且仅当(x -2a )x ≤0时取等号.解不等式2|a |≥1-2a ,得a ≥14.故实数a 的最小值为14.]6.C [|x -2y +2|=12|2x -4y +4|=12|2x +1-4y +2+1|≤12(|2x +1|+2|2y -1|+1)≤12×(lg 4+2lg 5+1)=32,故选C.] 7.(-∞,4)解析 由题意知函数f (x )的定义域满足|x -1|+|x -5|-a >0,即|x -1|+|x -5|>a 恒成立.设g (x )=|x -1|+|x -5|,则g (x )=⎩⎪⎨⎪⎧2x -6(x ≥5),4(1<x <5),6-2x (x ≤1),所以g (x )min =4.由|x -1|+|x -5|-a >0恒成立,得a <4,故实数a 的取值范围是(-∞,4). 8.{x |0<x <1}解析 由对数函数的定义得x >0,又由绝对值不等式的性质知,|x +log 3x |≤|x |+|log 3x |,当且仅当x 与log 3x 异号时等号不成立,∵x >0,∴log 3x <0, 即0<x <1,故原不等式的解集为{x |0<x <1}. 9.(5,7) 10.[-1,2]解析 设y =2x -1,x ∈[2,6],则y ′=-2(x -1)2<0, 则y =2x -1在区间[2,6]上单调递减,则y min =26-1=25,故不等式2x -1≥15|a 2-a |对于x ∈[2,6]恒成立等价于15|a 2-a |≤25恒成立,化简得⎩⎪⎨⎪⎧a 2-a -2≤0,a 2-a +2≥0,解得-1≤a ≤2,故a 的取值范围是[-1,2].11.解 由已知得⎩⎪⎨⎪⎧a +b +c +d =8-e ,a 2+b 2+c 2+d 2=16-e 2,由柯西不等式知(a 2+b 2+c 2+d 2)(12+12+12+12)≥(a +b +c +d )2, 故4(16-e 2)≥(8-e )2,解得0≤e ≤165,当且仅当a =b =c =d =65时,e 取得最大值165.12.证明 因为|x +5y |=|3(x +y )-2(x -y )|,所以|x +5y |=|3(x +y )-2(x -y )|≤|3(x +y )|+|2(x -y )|=3|x +y |+2|x -y |≤3×16+2×14=1, 即|x +5y |≤1.。
训练目标(1)了解不等式概念及应用方法;(2)掌握不等式的性质,提高综合应用能力. 训练题型 (1)利用比较法判断不等关系;(2)运用不等式的性质判断不等关系;(3)将不等式概念及性质与函数知识结合判断不等关系.解题策略(1)作差比较;(2)作商比较;(3)利用不等式的性质化简变形,合理放大或缩小;(4)借助基本函数单调性比较大小. 1.(2015·金华十校联考)设a ,b 是实数,则“a >b >1”是“a +1a >b +1b”的________条件. 2.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是________.①1x 2+1>1y 2+1;②ln(x 2+1)>ln(y 2+1);③sin x >sin y ;④x 3>y 3. 3.已知0<a <1b ,且M =11+a +11+b ,N =a 1+a +b 1+b,则M ,N 的大小关系是________. 4.设点A 与平面α的距离为d ,B 为平面α上的任意一点,则d 与AB 的大小关系为________. 5.已知a >0,b >0,记M =a 2b +b 2a,N =a +b ,则M 与N 的大小关系为________. 6.(2015·江西南昌八中上学期第三次月考)已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b+1c,则T 与0的大小关系是________. 7.若存在x 使不等式x -m ex >x 成立,则实数m 的取值范围为________. 8.若1≤a ≤5,-1≤b ≤2,则a -b 的取值范围是________.9.已知a ,b ,c ∈R ,给出下列命题:①若a >b ,则ac 2>bc 2;②若ab ≠0,则a b +b a≥2; ③若a >b >0,n ∈N *,则a n >b n ;④若log a b <0(a >0,a ≠1),则(a -1)(b -1)<0.其中真命题的个数为________.10.已知0<a <b ,且a +b =1,则下列不等式中,正确的是________.①log 2a >0;②2a -b <12;③log 2a +log 2b <-2;④2a b +b a <12. 11.已知a 1≤a 2,b 1≥b 2,则a 1b 1+a 2b 2与a 1b 2+a 2b 1的大小关系是__________________.12.如下图所示的两种广告牌,其中图(1)是由两个等腰直角三角形构成的,图(2)是一个矩形,则这两个广告牌面积的大小关系可用含字母a ,b (a ≠b )的不等式表示为__________________.13.设a>0且a≠1,则log a(a3+1)与log a(a2+1)的大小关系为____________________.14.已知a,b,c∈{正实数},且a2+b2=c2,当n∈N,n>2时,c n与a n+b n的大小关系为________.答案解析1.充分不必要解析 方法一 因为a +1a -(b +1b )=(a -b )(ab -1)ab, 所以若a >b >1,显然a +1a -(b +1b )=(a -b )(ab -1)ab>0,则充分性成立; 当a =12,b =23时, 显然不等式a +1a >b +1b成立,但a >b >1不成立, 所以必要性不成立.方法二 令函数f (x )=x +1x, 则f ′(x )=1-1x 2=x 2-1x 2, 可知f (x )在(-∞,-1),(1,+∞)上为增函数,在(-1,1)上为减函数,所以“a >b >1”是“a +1a >b +1b”的充分不必要条件. 2.④解析 因为0<a <1,a x <a y ,所以x >y .采用赋值法判断,①中,当x =1,y =0时,12<1,①不成立;②中,当x =0,y =-1时,ln 1<ln 2,②不成立;③中,当x =0,y =-π时,sin x =sin y =0,③不成立;④中,因为函数y =x 3在R 上是增函数,④成立.3.M >N解析 ∵0<a <1b,∴1+a >0,1+b >0,1-ab >0, ∴M -N =1-a 1+a +1-b 1+b =2-2ab (1+a )(1+b )>0,∴M >N . 4.d ≤AB5.M ≥N解析 a 2b +b 2a -(a +b )=a 3+b 3-a 2b -ab 2ab=a 2(a -b )+b 2(b -a )ab =(a -b )2(a +b )ab≥0.故M ≥N . 6.T <0解析 由a +b +c =0,abc >0,知三数中一正两负,不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc=ab +c (b +a )abc =ab -c 2abc. ∵ab <0,-c 2<0,abc >0,∴T <0.7.(-∞,0)解析 由x -m e x >x 得:-m >e x ×x -x (x >0), 令f (x )=e x ×x -x (x >0),则-m >f (x )min .f ′(x )=e x ×x +e x ×12x-1≥2×e x -1>0(x >0), 所以f (x )为(0,+∞)上的增函数,所以f (x )≥f (0)=0,-m >0,m <0.8.[-1,6]解析 ∵-1≤b ≤2,∴-2≤-b ≤1,又1≤a ≤5.∴-1≤a -b ≤6.9.2解析 当c =0时,ac 2=bc 2=0,所以①为假命题;当a 与b 异号时,a b <0,b a<0,所以②为假命题; ③为真命题;若log a b <0(a >0,a ≠1),则有可能a >1,0<b <1或0<a <1,b >1,即(a -1)(b -1)<0,所以④是真命题.综上,真命题有2个.10.③解析 若0<a <1,此时log 2a <0,①错误;a -b <0,此时2a -b <1,②错误;由a b +b a >2a b ·b a =2,2a b +b a>22=4,④错误; 由a +b =1>2ab ,即ab <14, 因此log 2a +log 2b =log 2(ab )<log 214=-2.故③正确. 11.a 1b 1+a 2b 2≤a 1b 2+a 2b 1解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1)=(a 1-a 2)(b 1-b 2),因为a 1≤a 2,b 1≥b 2,所以a 1-a 2≤0,b 1-b 2≥0,于是(a 1-a 2)(b 1-b 2)≤0,故a 1b 1+a 2b 2≤a 1b 2+a 2b 1.12.12(a 2+b 2)>ab (a ≠b ) 解析 图(1)所示广告牌的面积为12(a 2+b 2),图(2)所示广告牌的面积为ab ,显然不等式可表示为12(a 2+b 2)>ab (a ≠b ). 13.log a (a 3+1)>log a (a 2+1)解析 (a 3+1)-(a 2+1)=a 2(a -1),①当0<a <1时,a 3+1<a 2+1,∴log a (a 3+1)>log a (a 2+1);②当a >1时,a 3+1>a 2+1,∴log a (a 3+1)>log a (a 2+1),∴总有log a (a 3+1)>log a (a 2+1).14.c n >a n +b n解析 ∵a ,b ,c ∈{正实数},∴a n ,b n ,c n >0.而a n +b n c n =(a c )n +(b c)n . ∵a 2+b 2=c 2,则(a c )2+(b c)2=1, ∴0<a c <1,0<b c<1.∵n ∈N ,n >2, ∴(a c )n <(a c )2,(b c )n <(b c)2. ∴a n +b n c n =(a c )n +(b c )n <a 2+b 2c 2=1. ∴a n +b n <c n .。
1.已知集合P ={x |x 2-x -2≤0},Q ={x |log 2(x -1)≤1},则(∁R P )∩Q 等于( ) A .[2,3] B .(-∞,-1]∪[3,+∞) C .(2,3]D .(-∞,-1]∪(3,+∞)2.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,由点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是( ) A .2 2 B .2 3 C .4 2D .4 33.已知f (x )=x +1x-2(x <0),则f (x )有( )A .最大值0B .最小值0C .最大值-4D .最小值-44.对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是( ) A .(32,152)B .[2,8]C .[2,8)D .[2,7)5.(2016·潍坊联考)已知不等式x +2x +1<0的解集为{x |a <x <b },点A (a ,b )在直线mx +ny +1=0上,其中mn >0,则2m +1n的最小值为( )A .4 2B .8C .9D .12二、填空题6.(2016·山西大学附中检测)已知函数f (x )=|lg x |,a >b >0,f (a )=f (b ),则a 2+b 2a -b的最小值为________.7.(2017·宁德质检)设P 是不等式组⎩⎪⎨⎪⎧y ≥0,x -2y ≥-1,x +y ≤3表示的平面区域内的任意一点,向量m =(1,1),n =(2,1).若OP →=λm +μn (λ,μ∈R ),则μ的最大值为________.8.(2015·山东)定义运算“⊗”:x ⊗y =x 2-y 2xy(x ,y ∈R ,xy ≠0),当x >0,y >0时,x ⊗y +(2y )⊗x的最小值为________. 三、解答题9.(2016·福建长乐二中等五校期中联考)某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x )万元,当年产量不足80千件时,C (x )=13x 2+10x (万元);当年产量不少于80千件时,C (x )=51x +10 000x-1 450(万元).通过市场分析,若每件售价为500元时,该厂一年内生产的商品能全部销售完. (1)写出年利润L (万元)关于年产量x (千件)的函数解析式; (2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?10.(2016·海口一模)已知函数f (x )=x +m x+2(m 为实常数).(1)若函数f (x )图象上动点P 到定点Q (0,2)的距离的最小值为2,求实数m 的值; (2)若函数y =f (x )在区间[2,+∞)上是增函数,试用函数单调性的定义求实数m 的取值范围;(3)设m <0,若不等式f (x )≤kx 在x ∈[12,1]时有解,求k 的取值范围.答案精析1.C [依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则(∁R P )∩Q =(2,3],故选C.] 2.D [由|OA →|=|OB →|=OA →·OB →=2知〈OA →,OB →〉=π3.设OA →=(2,0),OB →=(1,3), OP →=(x ,y ),则⎩⎨⎧x =2λ+μ,y =3μ,解得⎩⎪⎨⎪⎧μ=y 3,λ=12⎝⎛⎭⎪⎫x -y 3.由|λ|+|μ|≤1得|3x -y |+|2y |≤2 3. 作出可行域,如图所示.则所求面积S =2×12×4×3=4 3.]3.C [∵x <0,∴f (x )=-[(-x )+1?-x ?]-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时取等号.]4.C [由4[x ]2-36[x ]+45<0得32<[x ]<152,又因为[x ]表示不大于x 的最大整数,所以2≤x <8.故选C.]5.C [易知不等式x +2x +1<0的解集为(-2,-1),所以a =-2,b =-1,2m +n =1,2m +1n=(2m +n )(2m +1n )=5+2m n +2n m ≥5+4=9(当且仅当m =n =13时取等号),所以2m +1n 的最小值为9.] 6.2 2解析 由函数f (x )=|lg x |,a >b >0,f (a )=f (b ),可知a >1>b >0,所以lg a =-lg b ,b =1a ,a -b =a -1a >0,则a 2+b2a -b=a 2+(1a)2a -1a=a -1a +2a -1a ≥22(当且仅当a -1a =2a -1a,即a =2+62时,等号成立).7.3解析 设P 的坐标为(x ,y ),因为OP →=λm +μn ,所以⎩⎪⎨⎪⎧x =λ+2μ,y =λ+μ,解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分, 由图可知,当目标函数μ=x -y 过点G (3,0)时,μ取得最大值3-0=3. 8. 2解析 由题意,得x ⊗y +(2y )⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 9.解 (1)当0<x <80,x ∈N *时,L (x )=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L (x )=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-(x +10 000x),∴L (x )=⎩⎪⎨⎪⎧-13x 2+40x -250?0<x <80,x ∈N *?,1 200-(x +10 000x)??x ≥80,x ∈N *?.(2)当0<x <80,x ∈N *时,L (x )=-13(x -60)2+950,∴当x =60时,L (x )取得最大值L (60)=950. 当x ≥80,x ∈N *时,L (x )=1 200-(x +10 000x)≤1 200-2x ·10 000x=1 200-200=1 000,∴当x =10 000x,即x =100时,L (x )取得最大值L (100)=1 000>950.综上所述,当x =100时,L (x )取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. 10.解 (1)设P (x ,y ),则y =x +mx+2,PQ 2=x 2+(y -2)2=x 2+(x +mx )2=2x 2+m 2x2+2m ≥22|m |+2m =2,当m >0时,解得m =2-1; 当m <0时,解得m =-2-1. 所以m =2-1或m =-2-1.(2)由题意知,任取x 1,x 2∈[2,+∞),且x 1<x 2, 则f (x 2)-f (x 1)=x 2+mx 2+2-(x 1+m x 1+2)=(x 2-x 1)·x 1x 2-mx 1x 2>0. 因为x 2-x 1>0,x 1x 2>0, 所以x 1x 2-m >0,即m <x 1x 2. 由x 2>x 1≥2,得x 1x 2>4,所以m ≤4. 所以m 的取值范围是(-∞,4]. (3)由f (x )≤kx ,得x +m x+2≤kx . 因为x ∈[12,1],所以k ≥m x 2+2x+1.令t =1x,则t ∈[1,2],所以k ≥mt 2+2t +1.令g (t )=mt 2+2t +1,t ∈[1,2],于是,要使原不等式在x ∈[12,1]时有解,当且仅当k ≥[g (t )]min (t ∈[1,2]).因为m <0,所以g (t )=m (t +1m )2+1-1m的图象开口向下,对称轴为直线t =-1m>0.因为t ∈[1,2],所以当0<-1m ≤32,即m ≤-23时,g (t )min =g (2)=4m +5;当-1m >32,即-23<m <0时,g (t )min =g (1)=m +3.综上,当m ≤-23时,k ∈[4m +5,+∞);当-23<m <0时,k ∈[m +3,+∞).。
不等式易错题及错解分析一、选择题:1.设()lg ,f x x =若0<a<b<c,且f(a)>f(b)>f(c),则下列结论中正确的是A (a-1)(c-1)>0B ac>1C ac=1D ac>1错解原因是没有数形结合意识,正解是作出函数()lg f x x =的图象,由图可得出选D. 2.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1 错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
3.不等式(0x -≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。
正确答案为D 。
4.某工厂第一年的产量为A ,第二年的增长率为a,第三年的增长率为b ,这两年的平均增长率为x,则A 2a b x +=B 2a b x +≤C 2a b x +>D 2a bx +≥ 错解:对概念理解不清,不能灵活运用平均数的关系。
正确答案为B 。
5.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22- 错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b的范围,扩大了范围。
正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。
6.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21B a <21C -21≤a ≤21D a ≥ 21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。
训练目标 (1)数列知识的深化应用;(2)易错题目矫正练.训练题型 数列中的易错题.解题策略 (1)通过S n 求a n ,要对n =1时单独考虑;(2)等比数列求和公式应用时要对q=1,q ≠1讨论;(3)使用累加、累乘法及相消求和时,要正确辨别剩余项,以免出错.1.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( )A .S 7B .S 8C .S 13D .S 152.已知等差数列:1,a 1,a 2,9;等比数列:-9,b 1,b 2,b 3,-1.则b 2(a 2-a 1)的值为( )A .8B .-8C .±8 D.893.已知函数y =f (x ),x ∈R ,数列{a n }的通项公式是a n =f (n ),n ∈N *,那么“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件4.(2017·抚州月考)设S n 为等差数列{a n }的前n 项和,(n +1)S n <nS n +1(n ∈N *).若a 8a 7<-1,则( )A .S n 的最大值是S 8B .S n 的最小值是S 8C .S n 的最大值是S 7D .S n 的最小值是S 7 5.(2016·湖北黄冈中学等八校联考)已知实数等比数列{a n }的前n 项和为S n ,则下列结论一定成立的是( )A .若a 3>0,则a 2 013<0B .若a 4>0,则a 2 014<0C .若a 3>0,则S 2 013>0D .若a 4>0,则S 2 014>06.已知数列{a n }满足:a n =⎩⎪⎨⎪⎧ (3-a )n -3,n ≤7,a n -6,n >7(n ∈N *),且{a n }是递增数列,则实数a 的取值范围是( ) A .(94,3)B .[94,3)C .(1,3)D .(2,3)7.(2016·江南十校联考)已知数列{a n }的通项公式为a n =log 3n n +1(n ∈N *),则使S n <-4成立的最小自然数n 为( )A .83B .82C .81D .808.数列{a n }满足a 1=1,a n +1=r ·a n +r (n ∈N *,r ∈R 且r ≠0),则“r =1”是“数列{a n }为等差数列”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.若数列{a n }的前n 项和S n =n 2-2n -1,则数列{a n }的通项公式为________________.10.(2016·辽宁五校联考)已知数列{a n }满足a n =1+2+3+…+n n ,则数列{1a n a n +1}的前n 项和为________. 11.已知数列{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是________.12.在数列{a n }中,a 1=1,a 2=2,数列{a n a n +1}是公比为q (q >0)的等比数列,则数列{a n }的前2n 项和S 2n =____________.答案精析1. C [∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数.∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数.] 2.B [a 2-a 1=d =9-13=83, 又b 22=b 1b 3=(-9)×(-1)=9,因为b 2与-9,-1同号,所以b 2=-3.所以b 2(a 2-a 1)=-8.]3.A [由题意,函数y =f (x ),x ∈R ,数列{a n }的通项公式是a n =f (n ),n ∈N *.若“函数y =f (x )在[1,+∞)上递增”,则“数列{a n }是递增数列”一定成立;若“数列{a n }是递增数列”,则“函数y =f (x )在[1,+∞)上递增”不一定成立,现举例说明,如函数在[1,2]上先减后增,且在1处的函数值小.综上,“函数y =f (x )在[1,+∞)上递增”是“数列{a n }是递增数列”的充分不必要条件,故选A.]4.D [由(n +1)S n <nS n +1,得(n +1)·n (a 1+a n )2<n ·(n +1)(a 1+a n +1)2, 整理得a n <a n +1,所以等差数列{a n }是递增数列,又a 8a 7<-1,所以a 8>0,a 7<0,所以数列{a n }的前7项为负值,即S n 的最小值是S 7.]5.C [设a n =a 1qn -1, 因为q 2 010>0,所以A ,B 不成立.对于C ,当a 3>0时,a 1>0,因为1-q 与1-q 2 013同号,所以S 2 013>0,选项C 正确,对于D ,取数列:-1,1,-1,1,…,不满足结论,D 不成立,故选C.]6.D [根据题意,a n =f (n )=⎩⎪⎨⎪⎧ (3-a )n -3,n ≤7,a n -6,n >7,n ∈N *,要使{a n }是递增数列,必有⎩⎪⎨⎪⎧ 3-a >0,a >1,(3-a )×7-3<a 8-6,解得2<a <3.] 7.C [∵a n =log 3n n +1=log 3n -log 3(n +1),∴S n =log 31-log 32+log 32-log 33+…+log 3n -log 3(n +1)=-log 3(n +1)<-4, 解得n >34-1=80.故最小自然数n 的值为81.]8.A [当r =1时,易知数列{a n }为等差数列;由题意易知a 2=2r ,a 3=2r 2+r ,当数列{a n }是等差数列时,a 2-a 1=a 3-a 2,即2r -1=2r 2-r .解得r =12或r =1, 故“r =1”是“数列{a n }为等差数列”的充分不必要条件.]9.a n =⎩⎪⎨⎪⎧ -2,n =1,2n -3,n ≥2解析 当n =1时,a 1=S 1=-2;当n ≥2时,a n =S n -S n -1=2n -3,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧ -2,n =1,2n -3,n ≥2.10.2n n +2解析 a n =1+2+3+…+n n =n +12, 则1a n a n +1=4(n +1)(n +2)=4(1n +1-1n +2), 所以所求的前n 项和为4[(12-13)+(13-14)+…+(1n +1-1n +2)]=4(12-1n +2)=2n n +2. 11.(-3,+∞)解析 因为数列{a n }是单调递增数列,所以a n +1-a n >0 (n ∈N *)恒成立.又a n =n 2+λn (n ∈N *),所以(n +1)2+λ(n +1)-(n 2+λn )>0恒成立,即2n +1+λ>0. 所以λ>-(2n +1) (n ∈N *)恒成立.而n ∈N *时,-(2n +1)的最大值为-3(n =1时),所以λ的取值范围为(-3,+∞).12.⎩⎪⎨⎪⎧ 3(1-q n )1-q,q >0且q ≠1,3n ,q =1解析 ∵数列{a n a n +1}是公比为q (q >0)的等比数列, ∴a n +1a n +2a n a n +1=q ,即a n +2a n=q , 这表明数列{a n }的所有奇数项成等比数列, 所有偶数项成等比数列,且公比都是q , 又a 1=1,a 2=2,∴当q ≠1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n ) =a 1(1-q n )1-q +a 2(1-q n )1-q =3(1)1n q q--; 当q =1时,S 2n =a 1+a 2+a 3+a 4+…+a 2n -1+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+a 6+…+a 2n ) (1111)(2222)3n n n =+++++++++=K K 1442443144424443个个 综上所述:S 2n =⎩⎪⎨⎪⎧ 3(1-q n )1-q,q >0且q ≠1,3n ,q =1.。
【高中数学】数学高考《不等式》复习资料一、选择题1.已知不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则实数a 的取值范围是( ) A .(,5]-∞ B .[5,)+∞C .(,4]-∞D .[4,)+∞【答案】C 【解析】若不等式240x ax -+≥对于任意的[1,3]x ∈恒成立,则4a x x≤+对于任意的[1,3]x ∈恒成立,∵当[1,3]x ∈时,4[4,5]x x+∈,∴4a ≤,即实数a 的取值范围是(,4]-∞,故选C .【方法点晴】本题主要考查利用导数求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 本题是利用方法 ① 求得a 的取值范围的.2.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .42B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.3.某企业生产甲、乙两种产品需用到A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用总量如下表所示.若生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得的最大利润为( )甲乙每天原料的可用总量A(吨)3212B(吨)128A.12万元B.16万元C.17万元D.18万元【答案】D【解析】【分析】根据条件列可行域与目标函数,结合图象确定最大值取法,即得结果.【详解】设每天甲、乙产品的产量分别为x吨、y吨由已知可得3212,28,0,0,x yx yxy+≤⎧⎪+≤⎪⎨≥⎪⎪≥⎩目标函数34z x y=+,作出约束条件表示的可行域如图中阴影部分所示,可得目标函数在点P处取得最大值,由28,3212,x yx y+=⎧⎨+=⎩得()2,3P,则max324318z=⨯+⨯=(万元).选D.【点睛】线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.4.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b +∴=+≥≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为5.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤2n ; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3 C .4 D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.6.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A.[;B .(,-∞C .)+∞D.(,)-∞⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--,当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭,当且仅当13a =时等号成立; 当10a <时,111133232222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭,当且仅当13a =-时等号成立;∴实数d 的取值范围为(,3][3,)-∞-⋃+∞.故选:D. 【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.7.设变量,x y 满足约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩,则目标函数5z x y =+的最大值为( )A .2B .3C .4D .5【答案】D 【解析】 【分析】由约束条件画出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组得到最优解的坐标,代入目标函数得到答案. 【详解】根据约束条件0211x y x y x y -≥⎧⎪+≥⎨⎪+≤⎩画出可行域如图:目标函数z =5x +y 可化为y =-5x +z ,即表示斜率为-5,截距为z 的动直线,由图可知,当直线5z x y =+过点()1,0A 时,纵截距最大,即z 最大,由211x y x y +=⎧⎨+=⎩得A (1,0) ∴目标函数z =5x +y 的最小值为z =5 故选D【点睛】本题主要考查线性规划中利用可行域求目标函数的最值,求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.8.已知x,y满足约束条件1,22,326,x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22x y z+≥恒成立,则实数z的最大值为()A.22B.25C.12D.2【答案】C【解析】【分析】画出约束条件所表示的平面区域,根据22x y+的几何意义,结合平面区域求得原点到直线10x y+-=的距离的平方最小,即可求解.【详解】由题意,画出约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的平面区域,如图所示,要使得22x y z+≥恒成立,只需()22minz x y≥+,因为22x y+表示原点到可行域内点的距离的平方,结合平面区域,可得原点到直线10x y+-=的距离的平方最小,其中最小值距离为2212211d-==+,则212d=,即12z≤所以数z的最大值12.故选:C.本题主要考查了简单的线性规划的应用,其中解答中正确作出约束条件所表示的平面区域,结合22x y +的几何意义求解是解答的关键,着重考查了数形结合思想,以及计算能力.9.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .10.已知实数x 、y 满足约束条件103300x y x y y -+≥⎧⎪--≤⎨⎪≥⎩,则2z x y =+的最大值为( )A .1-B .2C .7D .8【答案】C 【解析】 【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点C 时,z 取得最大值.【详解】解:作出约束条件表示的可行域是以(1,0),(1,0),(2,3)-为顶点的三角形及其内部,如下图表示:当目标函数经过点()2,3C 时,z 取得最大值,最大值为7.故选:C.本题主要考查线性规划等基础知识;考查运算求解能力,数形结合思想,应用意识,属于中档题.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( ) A.23-B.3-C.1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号. 所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知,x y 满足33025010x y x y x y -+≥⎧⎪+≥⎨⎪+-≤⎩,则36y z x -=-的最小值为( )A .157B .913C .17D .313【答案】D 【解析】 【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.13.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.14.已知2(0,0)x y xy x y +=>>,则2x y +的最小值为( ) A .10 B .9C .8D .7【答案】B 【解析】 【分析】 由已知等式得到211x y +=,利用()2122x y x y x y ⎛⎫+=++ ⎪⎝⎭可配凑出符合基本不等式的形式,利用基本不等式求得最小值. 【详解】 由2x y xy +=得:211x y+= ()212222225529x y x yx y x y x y y x y x ⎛⎫∴+=++=++≥+⋅= ⎪⎝⎭(当且仅当22x y y x =,即x y =时取等号) 2x y ∴+的最小值为9故选:B 【点睛】本题考查利用基本不等式求解和的最小值的问题,关键是能够灵活对等于1的式子进行应用,配凑成符合基本不等式的形式.15.若集合()(){}130M x x x =+-<,集合{}1N x x =<,则M N ⋂等于( ) A .()1,3B .(),1-∞-C .()1,1-D .()3,1- 【答案】C【解析】【分析】解一元二次不等式求得M ,然后求两个集合的交集.【详解】由()()130x x +-<解得13x -<<,故()1,1M N ⋂=-,故选C.【点睛】本小题主要考查集合交集的概念以及运算,考查一元二次不等式的解法,属于基础题.16.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( )A .169πB .89πC .1627πD .827π 【答案】A【解析】【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-, ∴圆柱的体积为23()(3)(02)2V r r r r π=-<<, 则33333163331616442()(3)()9442939r r r V r r r r πππ++-=-=g g g g …. 当且仅当33342r r =-,即43r =时等号成立. ∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.17.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( )A .1(1,)2-B .1(,1)(,)2-∞-+∞UC .1(,1)2-D .1(,)(1,)2-∞-⋃+∞ 【答案】B【解析】【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2x x f x e e x -=-+,定义域为R ,且满足()()sin 2x x f x e e x --=-+- ()()sin2x x e e x f x -=--+=-,∴()f x 为R 上的奇函数;又()'2cos222cos20x x f x e e x x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>, 得()()()221f x f x f x ->-=-,∴221x x ->-,即2210x x +->,解得1x <-或12x >,所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞⎪⎝⎭. 故选B .【点睛】 本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥20.若,,则( ) A .B .C .D .【答案】C 【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B错误,,选项D错误,因为选项C正确,故选C.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.。
数学《不等式》高考知识点一、选择题1.已知函数24,0()(2)1,0x x f x xx x ⎧+>⎪=⎨⎪+-≤⎩,若方程()20f x m -=恰有三个不同的实数根,则实数m 的取值范围是( )A .(2,)+∞B .(4,)+∞C .(2,4)D .(3,4)【答案】A 【解析】 【分析】画出函数()f x 的图象,再根据基本不等式求解4y x x=+的最小值,数形结合求解即可. 【详解】画出函数()f x 的图象,如图所示.当0x >时,4()4f x x x=+….设()2g x m =,则方程()20f x m -=恰有三个不同的实数根,即()f x 和()2g x m =的图象有三个交点.由图象可知,24m >,即2m >,故实数m 的取值范围是(2,)+∞.故选:A 【点睛】本题考查分段函数的性质和图象以及函数的零点,考查数形结合以及化归转化思想.2.关于x 的不等式0ax b ->的解集是(1,)+∞,则关于x 的不等式()(3)0ax b x +->的解集是( ) A .(,1)(3,)-∞-+∞U B .(1,3)- C .(1,3) D .(,1)(3,)-∞+∞U【答案】A 【解析】 【分析】由0ax b ->的解集,可知0a >及1ba=,进而可求出方程()()30ax b x +-=的解,从而可求出()()30ax b x +->的解集.由0ax b ->的解集为()1,+?,可知0a >且1ba=, 令()()30ax b x +-=,解得11x =-,23x =,因为0a >,所以()()30ax b x +->的解集为()(),13,-∞-+∞U , 故选:A. 【点睛】本题考查一元一次不等式、一元二次不等式的解集,考查学生的计算求解能力与推理能力,属于基础题.3.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.4.设实数满足条件则的最大值为( ) A .1 B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.5.已知函数())22log 1f x x x =+,若对任意的正数,a b ,满足()()310f a f b +-=,则31a b+的最小值为( )A .6B .8C .12D .24【答案】C 【解析】 【分析】先确定函数奇偶性与单调性,再根据奇偶性与单调性化简方程得31a b +=,最后根据基本不等式求最值. 【详解】 2210,x x x x x x +≥-=所以定义域为R ,因为()2log f x =,所以()f x 为减函数 因为()2log f x =,())2log f x x -=,所以()()()f x f x f x =--,为奇函数,因为()()310f a f b +-=,所以()()1313f a f b a b =-=-,,即31a b +=, 所以()3131936b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,因为96b a a b +≥=, 所以3112a b +≥(当且仅当12a =,16b =时,等号成立),选C. 【点睛】本题考查函数奇偶性与单调性以及基本不等式求最值,考查基本分析求解能力,属中档题.6.已知α,β均为锐角,且满足()sin 2cos sin αβαβ-=,则αβ-的最大值为( )A .12πB .6π C .4π D .3π 【答案】B 【解析】 【分析】利用两角差的正弦公式,将已知等式化简得到tan 3tan αβ=,由α,β均为锐角,则,22ππαβ⎛⎫-∈- ⎪⎝⎭,要求出αβ-的最大值,只需求出tan()αβ-的最大值,利用两角差的正切公式,将tan()αβ-表示为tan β的关系式,结合基本不等式,即可求解. 【详解】 由()sin 2cos sin αβαβ-=整理得()sin 2cos sin αβαβ-=,即sin cos cos sin 2cos sin αβαβαβ-=,化简得sin cos 3cos sin αβαβ=,则tan 3tan αβ=, 所以()2tan tan 2tan 2tan 11tan tan 13tan 3tan tan αββαβαββββ--===+++,又因为β为锐角,所以tan 0β>,根据基本不等式213tantanββ≤=+当且仅当tanβ=时等号成立,因为,22ππαβ⎛⎫-∈-⎪⎝⎭,且函数tany x=在区间,22ππ⎛⎫-⎪⎝⎭上单调递增,则αβ-的最大值为6π.故选:B.【点睛】本题考查两角差最值,转化为求三角函数最值是解题的关键,注意应用三角恒等变换、基本不等式求最值,考查计算求解能力,属于中档题.7.已知x、y满足约束条件122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩,若22z x y=+,则实数z的最小值为()A.2B.25C.12D.2【答案】C【解析】【分析】作出不等式组所表示的可行域,利用目标函数的几何意义求出22x y+的最小值,进而可得出实数z的最小值.【详解】作出不等式组122326x yx yx y+≥⎧⎪-≥-⎨⎪+≤⎩所表示的可行域如下图所示,22z x y =+表示原点到可行域内的点(),x y 的距离的平方,原点到直线10x y +-=的距离的平方最小,()222min212x y+==⎝⎭. 由于22z x y =+,所以,min 12z =. 因此,实数z 的最小值为12. 故选:C. 【点睛】本题考查线性规划中非线性目标函数最值的求解,考查数形结合思想的应用,属于中等题.8.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A .855B .8C .515D .163【答案】D 【解析】 【分析】222424512x y x y ----=+222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=+,所以24x y --可看作为可行域内的动点到直线240x y--=的距离的5倍,如图所示,点44(,)33A到直线240x y--=的距离d最小,此时224424333512d-⨯-==+所以24x y--的最小值为1653d=.故选:D.【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.9.若x,y满足约束条件40,20,20,x yxx y-+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y=+的最大值为26a+,则a的取值范围是()A.[1,)-+∞B.(,1]-∞-C.(1,)-+∞D.(,1)-∞-【答案】A【解析】【分析】画出约束条件的可行域,利用目标函数的最值,判断a的范围即可.【详解】作出约束条件表示的可行域,如图所示.因为z ax y=+的最大值为26a+,所以z ax y=+在点(2,6)A处取得最大值,则1a-≤,即1a≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.10.已知,x y 满足约束条件24030220x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩则目标函数22x y z -=的最大值为( ).A .128B .64C .164D .1128【答案】B 【解析】 【分析】画出可行域,再求解2x y -的最大值即可. 【详解】不等式组表示的平面区域如下图阴影部分所示.设2x y μ=-,因为函数2xy =是增函数,所以μ取最大值时,z 取最大值.易知2x y μ=-在A 点处取得最大值.联立220,30x y x y +-=⎧⎨+-=⎩解得4,1.x y =⎧⎨=-⎩即(4,1)A -.所以max 42(1)6μ=-⨯-=,所以6max 264z ==.故选:B 【点睛】本题考查线性规划,考查化归与转化思想以及数形结合思想.11.设x ∈R ,则“|1|1x -<”是“220x x --<”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A 【解析】1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.12.已知,x y满足33025010x yx yx y-+≥⎧⎪+≥⎨⎪+-≤⎩,则36yzx-=-的最小值为()A.157B.913C.17D.313【答案】D【解析】【分析】画出可行域,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率,根据图像得到答案.【详解】画出可行域如图中阴影部分所示,目标函数36yzx-=-的几何意义是可行域内的点与定点(6,3)P连接的斜率.直线330x y-+=与直线10x y+-=交于点13(,)22A-,由图可知,当可行域内的点为A时,PAk最小,故min333211362z-==--.故选:D.【点睛】本题考查了线性规划问题,画出图像是解题的关键.13.已知直线22+=mx ny()0,0m n>>过圆()()22125x y-+-=的圆心,则11m n+的最小值为()A.1 B.2 C.3 D.4【答案】D【解析】【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.14.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 112A A -=-,即cos 1A A =-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为(43,423]+.故选:C【点睛】本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.15.在区间[]0,1内随机取两个数m、n,则关于x的方程20x nx m-+=有实数根的概率为()A.18B.17C.16D.15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m-+=有实数根,则40n m∆=-≥.如图,400101n mmn-≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101mn≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118SPS⨯⨯===⨯阴影正方形.故选:A.【点睛】本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.16.若均不为1的实数a、b满足0a b>>,且1ab>,则()A.log3log3a b>B.336a b+>C.133ab a b++>D.b aa b>【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =; 因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.17.设集合{}20,201x M xN x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.18.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.19.已知x>0,y>0,x+2y+2xy=8,则x+2y 的最小值是A .3B .4C .92D .112 【答案】B【解析】【详解】解析:考察均值不等式2228(2)82x y x y x y +⎛⎫+=-⋅≥- ⎪⎝⎭,整理得2(2)4(2)320x y x y +++-≥即(24)(28)0x y x y +-++≥,又x+2 y>0,24x y ∴+≥20.若,,则( ) A .B .C .D . 【答案】C 【解析】【分析】【详解】试题分析:用特殊值法,令,,得,选项A 错误,,选项B 错误,,选项D 错误,因为选项C 正确,故选C .【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.。
1.已知函数f (x )=⎩⎪⎨⎪⎧-x +1,x <0,x -1,x ≥0,则不等式x +(x +1)·f (x +1)≤1的解集是( ) A .{x |-1≤x ≤2-1} B .{x |x ≤1}C .{x |x ≤2-1}D .{x |-2-1≤x ≤2-1}2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( )A .0B .-2C .-52D .-33.已知a ,b 都是正实数,且满足log 4(2a +b )=log 2ab ,则2a +b 的最小值为( ) A .12 B .10 C .8D .64.若a ,b 是常数,a >0,b >0,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥?a +b ?2x +y ,当且仅当ax =b y 时取等号.利用以上结论,可以得到函数f (x )=3x +41-3x (0<x <13)的最小值为( ) A .5 B .15 C .25D .25.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11.则z =10x +10y 的最大值是( )A .80B .85C .90D .1006.已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )A .2B .4C .6D .87.函数y =x 2+7x +10x +1(x >-1)的最小值为( )A .2B .7C .9D .108.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2 D .23-2二、填空题9.已知x >0,y >0,lg 2x +lg 8y=lg 2,则1x +13y的最小值是________.10.对于0≤m ≤4的任意m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是________________.11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z取得最大值时,2x +1y -2z的最大值为________.12.某运输公司接受了向一地区每天至少运送180 t 物资的任务,该公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的费用为A 型卡车320元,B 型卡车504元,则公司如何调配车辆,才能使公司所花的费用最低,最低费用为________元.答案精析1.C [由题意得不等式x +(x +1)f (x +1)≤1等价于⎩⎪⎨⎪⎧x +1<0,x +(x +1)[-(x +1)+1]≤1,①或⎩⎪⎨⎪⎧x +1≥0,x +(x +1)[(x +1)-1]≤1,②解不等式组①得x <-1; 解不等式组②得-1≤x ≤2-1.故原不等式的解集是{x |x ≤2-1},故选C.]2.C [因为x ∈⎝ ⎛⎦⎥⎤0,12,且x 2+ax +1≥0,所以a ≥-⎝ ⎛⎭⎪⎫x +1x ,所以a ≥-⎝⎛⎭⎪⎫x +1x max .又y =x +1x 在⎝ ⎛⎦⎥⎤0,12内是单调递减的,所以a ≥-⎝ ⎛⎭⎪⎫x +1x max =-(12+112)=-52.] 3.C [由题意log 4(2a +b )=log 4ab , 可得2a +b =ab ,a >0,b >0,所以2a +b =12·2a ·b ≤12·(2a +b )24,所以2a +b ≥8,当且仅当2a =b 时取等号, 所以2a +b 的最小值为8,故选C.]4.C [由题意可得f (x )=3x +41-3x =323x +221-3x ≥?3+2?23x +?1-3x ?=25,当且仅当33x =21-3x ,即x =15时取等号,故最小值为25.]5.C [如图,作出可行域,由z =10x +10y ⇒y =-x +z 10,它表示斜率为-1,纵截距为z10的平行直线系, 要使z =10x +10y 取得最大值,当直线z =10x +10y 通过A (112,92)时z 取得最大值.因为x ,y ∈N *,故A 点不是最优整数解. 于是考虑可行域内A 点附近的整点(5,4),(4,4), 经检验直线经过点(5,4)时,z max =90.]6.B [不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y≥9对任意正实数x ,y 恒成立,则1+a +y x +ax y≥a +2a +1≥9,所以a ≥2或a ≤-4(舍去).所以正实数a 的最小值为4.]7.C [y =x 2+7x +10x +1=(x +1)2+5(x +1)+4x +1=(x +1)+4x +1+5, 当x >-1,即x +1>0时,y ≥2(x +1)×4x +1+5=9(当且仅当x =1时取“=”).故选C.]8.D [由a (a +b +c )+bc =4-23, 得(a +c )·(a +b )=4-2 3. ∵a 、b 、c >0. ∴(a +c )·(a +b )≤⎝⎛⎭⎪⎫2a +b +c 22(当且仅当a +c =b +a ,即b =c 时取“=”),∴2a +b +c ≥24-23=2(3-1)=23-2.] 9.4解析 由x >0,y >0,lg 2x+lg 8y=lg 2, 得lg 2x 8y=lg 2,即2x +3y=2,所以x +3y =1,故1x +13y =(1x +13y )(x +3y ) =2+3y x +x3y≥2+23y x ·x3y=4, 当且仅当3y x =x 3y ,即x =12,y =16时取等号,所以1x +13y 的最小值为4.10.(-∞,-1)∪(3,+∞)解析 不等式可化为m (x -1)+x 2-4x +3>0在0≤m ≤4时恒成立. 令f (m )=m (x -1)+x 2-4x +3.则⎩⎪⎨⎪⎧f ?0?>0,f ?4?>0,⇒⎩⎪⎨⎪⎧x 2-4x +3>0,x 2-1>0,⇒⎩⎪⎨⎪⎧x <1或x >3,x <-1或x >1,即x <-1或x >3. 11.1解析 由x 2-3xy +4y 2-z =0, 得z =x 2-3xy +4y 2, ∴xy z =xy x 2-3xy +4y 2=1x y +4yx-3 ≤124-3=1,当且仅当x =2y 时取等号. 此时z =2y 2,∴2x +1y -2z =22y +1y -22y2 =-(1y )2+2y =-(1y-1)2+1≤1.12.2 560解析 设每天调出A 型卡车x 辆,B 型卡车y 辆,公司所花的费用为z 元,则目标函数z =320x +504y (x ,y ∈N ).由题意可得,⎩⎪⎨⎪⎧0≤x ≤8,x ∈N ,0≤y ≤4,x ∈N ,x +y ≤10,4x ×6+3y ×10≥180.作出上述不等式组所确定的平面区域即可行域,如图中阴影部分所示.结合图形可知,z=320x+504y在可行域内经过的整数点中,点(8,0)使z=320x+504y取得最小值,z min=320×8+504×0=2 560.故每天调出A型卡车8辆,公司所花费用最低为2 560元.。
【高中数学】数学《不等式》高考复习知识点一、选择题1.已知x ,y 满足约束条件02340x y x y y -≥⎧⎪+≤⎨⎪≥⎩,若z ax y =+的最大值为4,则a =( )A .2B .12C .-2D .12-【答案】A 【解析】 【分析】由约束条件可得到可行域,根据图象可知最优解为()2,0A ,代入可构造方程求得结果. 【详解】由约束条件可知可行域如下图阴影部分所示:当直线:l y ax z =-+经AOB V 区域时,当l 过点()2,0A 时,在y 轴上的截距最大, 即()2,0A 为最优解,42a ∴=,解得:2a =. 故选:A . 【点睛】本题考查线性规划中的根据目标函数的最值求解参数值的问题,关键是能够通过约束条件准确得到可行域,根据数形结合的方式确定最优解.2.已知点(2,0)M ,点P 在曲线24y x =上运动,点F 为抛物线的焦点,则2||||1PM PF -的最小值为( ) A 3B .51)C .45D .4【答案】D 【解析】 【分析】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则2||4||1PM x PF x=+-,利用均值不等式得到答案. 【详解】如图所示:过点P 作PN 垂直准线于N ,交y 轴于Q ,则11PF PN PQ -=-=,设(),P x y ,0x >,则()()22222224||||44||1x y x x PM P P M x F x Q P x x-+-+====+≥-, 当4x x =,即2x =时等号成立. 故选:D .【点睛】本题考查了抛物线中距离的最值问题,意在考查学生的计算能力和转化能力.3.变量,x y 满足约束条件1{2314y x y x y ≥--≥+≤,若使z ax y =+取得最大值的最优解不唯一,则实数a 的取值集合是( ) A .{3,0}- B .{3,1}-C .{0,1}D .{3,0,1}-【答案】B 【解析】若0a =,结合图形可知不合题设,故排除答案A ,C ,D ,应选答案B .4.在平面直角坐标系中,不等式组20{200x y x y y +-≤-+≥≥,表示的平面区域的面积是( )A .2B .4C .22D .2【答案】B 【解析】试题分析:不等式组表示的平面区域如图所示的三角形ABC 及其内部.可得,A (2,0),B (0,2),C (-2,0),显然三角形ABC 的面积为.故选B .考点:求不等式组表示的平面区域的面积.5.已知等差数列{}n a 中,首项为1a (10a ≠),公差为d ,前n 项和为n S ,且满足15150a S +=,则实数d 的取值范围是( )A .[3,3];B .(,3]-∞C .3,)+∞D .(,3]3,)-∞-⋃+∞【答案】D 【解析】 【分析】由等差数列的前n 项和公式转化条件得11322a d a =--,再根据10a >、10a <两种情况分类,利用基本不等式即可得解. 【详解】Q 数列{}n a 为等差数列,∴1515455102a d d S a ⨯=+=+,∴()151********a S a a d +++==, 由10a ≠可得11322a d a =--, 当10a >时,11111133323222222a a a d a a a ⎛⎫=--=-+≤-⋅=- ⎪⎝⎭13a 时等号成立; 当10a <时,11113332222a a d a a ⎛⎫⎛⎫=--≥-⋅-= ⎪ ⎪⎝⎭⎝⎭13a =-立;∴实数d 的取值范围为(,3]3,)-∞⋃+∞.【点睛】本题考查了等差数列前n 项和公式与基本不等式的应用,考查了分类讨论思想,属于中档题.6.在ABC V 中,,,a b c 分别为A ∠,B Ð,C ∠所对的边,函数32()1f x x bx x =+++的导函数为()f x ',当函数[]()ln ()g x f x '=的定义域为R 时,B Ð的取值范围为( )A .,63ππ⎡⎤⎢⎥⎣⎦B .,6ππ⎡⎫⎪⎢⎣⎭C .2,63ππ⎡⎤⎢⎥⎣⎦D .0,6π⎛⎫⎪⎝⎭【答案】D 【解析】 【分析】首先求出函数的导数,依题意即222()3203a c f x x bx +-'=++>恒成立,所以()222(2)40b a c ∆=-+-<,再结合余弦定理即可求出B 的取值范围;【详解】解:因为32()1f x x bx x =+++,所以222()323a c f x x bx +-'=++,若()g x 的定义域为R ,则有()222(2)40b a c ∆=-+-<,即222a c b +->,结合余弦定理,222cos 22a cb B ac +-=>,故0,6B π⎛⎫∈ ⎪⎝⎭,故选:D. 【点睛】本题考查导数的计算,对数函数的定义域以及不等式恒成立问题,属于中档题.7.已知0a >,0b >,且()122y a b x =+为幂函数,则ab 的最大值为( ) A .18B .14C .12D .34【答案】A 【解析】 【分析】根据()122y a b x =+为幂函数,得到21a b +=,再将ab 变形为ab 122a b =⋅利用基本不【详解】因为()122y a b x =+为幂函数, 所以21a b +=, 又因为0a >,0b >,所以ab 2112122228a b a b +⎛⎫=⋅≤= ⎪⎝⎭,当且仅当21a b +=,2a b =即11,24a b ==取等号. 所以ab 的最大值为 18. 故选:A 【点睛】本题主要考查幂函数的定义和基本不等式的应用,还考查运算求解的能力,属于中档题.8.已知实数,x y 满足线性约束条件1020x x y x y ≥⎧⎪+≥⎨⎪-+≥⎩,则1y x +的取值范围为( )A .(-2,-1]B .(-1,4]C .[-2,4)D .[0,4]【答案】B 【解析】 【分析】 作出可行域,1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,观察可行域可得最小值. 【详解】作出可行域,如图阴影部分(含边界),1y x+表示可行域内点(,)P x y 与定点(0,1)Q -连线斜率,(1,3)A ,3(1)410QA k --==-,过Q 与直线0x y +=平行的直线斜率为-1,∴14PQ k -<≤.故选:B .【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1y x+表示动点(,)P x y 与定点(0,1)Q -连线斜率,由直线与可行域的关系可得结论.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件【答案】C 【解析】 【分析】利用基本不等式和充分,必要条件的判断方法判断. 【详解】22x y +≥Q 且224x y+≤ ,422x y ∴≤≤⇒+≤ , 等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ , 等号成立的条件是x y =,2241x y xy ∴+≤⇒≤,反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件. 故选:C 【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.11.已知函数()2814f x x x =++,()()2log 4g x x =,若[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立,则a 的最大值为( )A .-4B .-3C .-2D .-1【答案】C 【解析】 【分析】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立得:()f x 的值域为()g x 的值域的子集,从而28142a a ++≤,故可求a 的最大值为2-.【详解】由[]()15,4x a a ∀∈-≥-,(]20,1x ∃∈,使得()()12f x g x =成立, 得:()f x 的值域为()g x 的值域的子集,由()()2log 4g x x =(]20,1x ∈()2g x ⇒≤ ,所以(](),2g x ∈-∞ 当43a --≤≤ 时,()21f x-#-,此时()f x 的值域为()g x 的值域的子集成立.当3a >-时,()22814f x a a -≤≤++,须满足()f x 的值域为()g x 的值域的子集,即28142a a ++≤,得62a -≤≤- 所以a 的最大值为2-. 故选:C. 【点睛】本题主要考查恒成立和存在性问题,注意把两类问题转化为函数值域的包含关系,此问题属于中档题目.12.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==, M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.13.已知直线21y kx k =++与直线122y x =-+的交点位于第一象限,则实数k 的取值范围是( )A .12k >B .16k <-或12k > C .62k -<< D .1162k -<< 【答案】D 【解析】 【分析】联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线122y x =-+的交点位于第一象限,可得00x y >⎧⎨>⎩,解得即可. 【详解】解:联立21122y kx k y x =++⎧⎪⎨=-+⎪⎩,解得24216121k x k k y k -⎧=⎪⎪+⎨+⎪=⎪+⎩, Q 直线21y kx k =++与直线122y x =-+的交点位于第一象限, ∴2402161021kk k k -⎧>⎪⎪+⎨+⎪>⎪+⎩,解得:1162k -<<.故选:D . 【点睛】本题考查两直线的交点和分式不等式的解法,以及点所在象限的特征.14.某学生到工厂实践,欲将一个底面半径为2,高为3的实心圆锥体工件切割成一个圆柱体,并使圆柱体的一个底面落在圆锥体的底面内.若不考虑损耗,则得到的圆柱体的最大体积是( ) A .169πB .89π C .1627πD .827π 【答案】A 【解析】 【分析】根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可. 【详解】解:设圆柱的半径为r ,高为x ,体积为V , 则由题意可得323r x -=, 332x r ∴=-,∴圆柱的体积为23()(3)(02)2V r r r r π=-<<,则33333163331616442()(3)()9442939r r rV r r r r πππ++-=-=g g g g ….当且仅当33342r r =-,即43r =时等号成立.∴圆柱的最大体积为169π, 故选:A .【点睛】本题考查圆柱的体积和基本不等式的实际应用,利用条件建立体积函数是解决本题的关键,是中档题.15.数学中的数形结合,也可以组成世间万物的绚丽画面.一些优美的曲线是数学形象美、对称美、和谐美的结合产物,曲线22322():16C x y x y =+恰好是四叶玫瑰线.给出下列结论:①曲线C 经过5个整点(即横、纵坐标均为整数的点);②曲线C 上任意一点到坐标原点O 的距离都不超过2;③曲线C 围成区域的面积大于4π;④方程()223221)60(x y x y xy +=<表示的曲线C 在第二象限和第四象限其中正确结论的序号是( ) A .①③ B .②④ C .①②③ D .②③④【答案】B 【解析】 【分析】利用基本不等式得224x y +≤,可判断②;224x y +=和()3222216x y x y +=联立解得222x y ==可判断①③;由图可判断④.【详解】()2223222216162x y x yx y ⎛⎫++=≤ ⎪⎝⎭, 解得224x y +≤(当且仅当222x y ==时取等号),则②正确;将224x y +=和()3222216x y x y +=联立,解得222x y ==, 即圆224x y +=与曲线C相切于点,(,(,, 则①和③都错误;由0xy <,得④正确.故选:B.【点睛】本题考查曲线与方程的应用,根据方程,判断曲线的性质及结论,考查学生逻辑推理能力,是一道有一定难度的题.16.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.17.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.18.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.19.若圆1C :2224100x y mx ny +---=(m ,0n >)始终平分圆2C :()()22112x y +++=的周长,则12m n +的最小值为( ) A .92B .9C .6D .3 【答案】D【解析】【分析】把两圆的方程相减,得到两圆的公共弦所在的直线l 的方程,由题意知圆2C 的圆心在直线l 上,可得()123,213m n m n +=∴+=,再利用基本不等式可求最小值. 【详解】 把圆2C :()()22112x y +++=化为一般式,得22220x y x y +++=, 又圆1C :2224100x y mx ny +---=(m ,0n >),两圆的方程相减,可得两圆的公共弦所在的直线l 的方程:()()12150m x n y ++++=. Q 圆1C 始终平分圆2C 的周长,∴圆心()21,1C --在直线l 上,()()12150m n ∴-+-++=,即()123,213m n m n +=∴+=. ()112225331212121n m m n m n m n m n m n ⎛⎫⎛⎫∴+=+⨯=+⨯ ⎪ ⎪⎝⎭⎛⎫+=++ ⎪⎝⎝⎭⎭()115522333⎛≥+=+⨯= ⎝. 当且仅当2322m n n m m n +=⎧⎪⎨=⎪⎩即1m n ==时,等号成立. 12m n∴+的最小值为3. 故选:D .【点睛】本题考查两圆的位置关系,考查基本不等式,属于中档题.20.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+…,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭ B .[3,2]-- C .[2,3)- D .[3,2]-【答案】D【解析】【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-…,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围.【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数; 又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称,则()()()222232323f s s f s s f s s -+--+=-+-…,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤.故选:D.【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.。
一、选择题1.设f (x )=⎩⎪⎨⎪⎧ x +2,x >0,x -2,x ≤0,则不等式f (x )<x 2的解集是( )A .(2,+∞)∪(-∞,0]B .RC .[0,2)D .(-∞,0) 2.不等式-x 2-x +2<0的解集为( )A .{x |x <-2或x >1}B .{x |-2<x <1}C .{x |x <-1或x >2}D .{x |-1<x <2}3.若关于x 的不等式ax -b >0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( )A .(-1,3)B .(1,3)C .(-∞,1)∪(3,+∞)D .(-∞,-1)∪(3,+∞)4.设a >0,不等式-c <ax +b <c 的解集是{x |-2<x <1},则a ∶b ∶c 等于( )A .1∶2∶3B .2∶1∶3C .3∶1∶2D .3∶2∶1 5.(2016·许昌模拟)若不等式ax2+bx -2<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ -2<x <14,则ab 等于( ) A .-28B .-26C .28D .266.若不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则实数a 的取值范围为( )A .[-1,4]B .(-∞,-2]∪[5,+∞)C .(-∞,-1]∪[4,+∞)D .[-2,5]7.(2017·南宁调研)已知当a ∈[-1,1]时,不等式x 2+(a -4)x +4-2a >0恒成立,则x的取值范围为( )A .(-∞,2)∪(3,+∞)B .(-∞,1)∪(2,+∞)C .(-∞,1)∪(3,+∞)D .(1,3)8.设定义域为R 的函数f (x )满足下列条件:①对任意的x ∈R ,f (x )+f (-x )=0;②对任意的x 1,x 2∈[-1,1],都有f ?x 2?-f ?x 1?x 2-x 1>0,且f (-1)=-1. 若f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立,则当a ∈[-1,1]时,t 的取值范围是( )A .[-2,2]B .(-∞,-12]∪{0}∪[12,+∞) C .[-12,12] D .(-∞,-2]∪{0}∪[2,+∞)二、填空题9.(2017·合肥质检)已知一元二次不等式f (x )<0的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >12,则f (10x )>0的解集为________________.10.设函数f (x )=x 2-1,对任意x ∈[32,+∞),f (x m)-4m 2·f (x )≤f (x -1)+4f (m )恒成立,则实数m 的取值范围是________________.11.设关于x 的不等式|x 2-2x +3m -1|≤2x +3的解集为A ,且-1∉A,1∈A ,则实数m 的取值范围是________.12.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),若对于任意x ∈[-1,1],不等式f (x )+t ≤2恒成立,则t 的取值范围为____________.答案精析1.A [当x >0时,x +2<x 2,即x 2-x -2>0,解得x >2或x <-1,∴x >2.当x ≤0时,x -2<x 2,即x 2-x +2>0,恒成立.∴x ∈(-∞,0]∪(2,+∞).]2.A [不等式变形为x 2+x -2>0,∴(x +2)(x -1)>0,∴x >1或x <-2,∴不等式的解集为{x |x <-2或x >1}.]3.D [由题意得,关于x 的不等式ax -b >0的解集是(1,+∞),可得b a =1且a >0,又(ax +b )(x -3)>0可化为(x -3)(x +b a )>0,即(x -3)(x +1)>0,所以x <-1或x >3,故选D.]4.B [∵-c <ax +b <c ,又a >0,∴-b +c a <x <c -b a. ∵不等式的解集为{x |-2<x <1}, ∴⎩⎪⎨⎪⎧ -b +c a =-2,c -b a =1,∴⎩⎪⎨⎪⎧ b =a 2,c =32a ,∴a ∶b ∶c =a ∶a 2∶3a 2=2∶1∶3.] 5.C [由题意知-2,14是方程ax 2+bx -2=0的两根,且a >0, ∴⎩⎪⎨⎪⎧ -b a =-2+14,-2a =(-2)×14,解得⎩⎪⎨⎪⎧ a =4,b =7,∴ab =28.]6.A [由题意得,不等式x 2-2x +5=(x -1)2+4≥4,又关于x 的不等式x 2-2x +5≥a 2-3a 对任意实数x 恒成立,则a 2-3a ≤4,即a 2-3a -4≤0,解得-1≤a ≤4,故选A.]7.C [把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +(x 2-4x +4),则由f (a )>0对于任意的a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,且f (1)=x 2-3x +2>0即可,联立方程解得x <1或x >3.]8.D [由题设条件知f (x )是奇函数,在[-1,1]上是增函数,且f (-1)=-1,所以在[-1,1]上,f (x )max =f (1)=-f (-1)=1.f (x )≤t 2-2at +1对所有的x ∈[-1,1]都成立,即t 2-2at ≥0恒成立. 设g (a )=t 2-2at ,a ∈[-1,1],则⎩⎪⎨⎪⎧ g (1)≥0,g (-1)≥0, 即⎩⎪⎨⎪⎧ t 2-2t ≥0,t 2+2t ≥0,解得t ≤-2或t =0或t ≥2.故选D.]9.{x |x <-lg 2}解析 由已知条件得0<10x <12,解得x <lg 12=-lg 2. 10.{m |m ≤-32或m ≥32} 解析 依据题意得x 2m 2-1-4m 2(x 2-1)≤(x -1)2-1+4(m 2-1)在x ∈[32,+∞)上恒成立, 即1m 2-4m 2≤-3x 2-2x +1在x ∈[32,+∞)上恒成立. 当x =32时,函数y =-3x 2-2x +1取得最小值-53, 所以1m 2-4m 2≤-53, 即(3m 2+1)(4m 2-3)≥0,解得m ≤-32或m ≥32. 11.{m |-13<m ≤73} 解析 由-1∉A ,得|(-1)2-2×(-1)+3m -1|>2×(-1)+3,即|3m +2|>1,解得m <-1或m >-13.① 由1∈A ,得|12-2×1+3m -1|≤2×1+3,即|3m -2|≤5,解得-1≤m ≤73.② 故由①②得实数m 的取值范围是{m |-13<m ≤73}. 12.t ≤-10解析 2x 2+bx +c =0的两个实根是x 1=0,x 2=5,所以c =0,b =-10, 不等式2x 2-10x +t ≤2对任意x ∈[-1,1]恒成立,即2x 2-10x +t -2≤0,又f (x )=2x 2-10x 在(-∞,52)上为单调函数, 当x ∈[-1,1]时,有⎩⎪⎨⎪⎧ 2×(-1)2-10×(-1)+t -2≤0,2×12-10×1+t -2≤0,解得t ≤-10.。
高中数学不等式部分错题精选一、选择题:1.设,,1x y R x y ∈+>则使成立的充分不必要条件是A 1x y +≥B 1122x y >>或 C 1x ≥ D x<-1错解:选B,对充分不必要条件的概念理解不清,“或”与“且”概念不清,正确答案为D 。
2.不等式(1)20x x -+≥的解集是A {|1}x x >B {|1}x x ≥C {|21}x x x ≥-≠且D {|21}x x x =-≥或 错解:选B ,不等式的等价转化出现错误,没考虑x=-2的情形。
正确答案为D 。
3.已知1324a b a b -<+<<-<且,则2a+3b 的取值范围是A 1317(,)22-B 711(,)22-C 713(,)22-D 913(,)22-错解:对条件“1324a b a b -<+<<-<且”不是等价转化,解出a,b 的范围,再求2a+3b 的范围,扩大了范围。
正解:用待定系数法,解出2a+3b=52(a+b)12-(a-b),求出结果为D 。
4.若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( )A a ≤-21或a ≥21 B a <21 C -21≤a ≤21 D a ≥21正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。
5.已知函数y=㏒21(3x )52+-ax 在[-1,+∞)上是减函数,则实数a 的取值范围( )A a ≤-6B -60<a <-6C -8<a ≤-6D -8≤a ≤-6正确答案:C 错因:学生忘记考虑定义域真数大于0这一隐含条件。
6.f(x)=︱2x—1|,当a <b <c 时有f(a)>f(c)>f(b)则( ) A a <0,b <0,c <0 B a <0,b >0,c >0 C 2a-<2c D 22+ac <2 正确答案:D 错因:学生不能应用数形结合的思想方法解题。
1.(2016·青岛模拟)设a ,b ∈R ,已知命题p :a 2+b 2≤2ab ;命题q :⎝ ⎛⎭⎪⎫a +b22≤a 2+b22,则p 是q 成立的() A .必要不充分条件 B .充分不必要条件C .充要条件D .既不充分也不必要条件2.若正实数x ,y 满足x +y +1x +1y =5,则x +y 的最大值是( )A .2B .3C .4D .53.(2016·泰安模拟)若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a +b ≥2ab B.1a +1b >2ab C.b a +a b ≥2 D .a 2+b 2>2ab4.当x >1时,不等式x +1x -1≥a 恒成立,则实数a 的取值范围是( )A .(-∞,2]B .[2,+∞)C .[3,+∞)D .(-∞,3]5.若a >b >0,则a 2+1b (a -b )的最小值为( )A .2B .3C .4D .56.已知正项等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m ·a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.256 D .不存在7.若直线ax +by -1=0(a >0,b >0)过曲线y =1+sin πx (0<x <2)的对称中心,则1a +2b的最小值为( ) A.2+1B .4 2C .3+2 2D .68.(2017·郑州质检)已知a ,b 是两个互相垂直的单位向量,且a·c =b·c =1,则对任意的正实数t ,|c +t a +1tb |的最小值是( ) A .2B .2 2C .4D .4 2二、填空题 9.已知x >0,y >0,且1x +2y=1,则x +y 的最小值是________. 10.(2016·长春调研)若两个正实数x ,y 满足2x +1y=1,且x +2y >m 2+2m 恒成立,则实数m 的取值范围是________. 11.函数y =1-2x -3x(x <0)的最小值为________. 12.已知正实数x ,y 满足等式x +y +8=xy ,若对任意满足条件的x ,y ,不等式(x +y )2-a (x +y )+1≥0恒成立,则实数a 的取值范围是________.答案精析1.B [当p 成立的时候,q 一定成立,但当q 成立的时候,p 不一定成立,所以p 是q 的充分不必要条件.]2.C [因为xy ≤?x +y ?24,x >0,y >0,所以1xy ≥4?x +y ?2,x +y xy ≥4x +y, 所以x +y +4x +y ≤5.设x +y =t ,即t +4t ≤5,得到t 2-5t +4≤0,解得1≤t ≤4,所以x +y 的最大值是4.] 3.C [因为ab >0,所以b a >0,a b >0,即b a +a b ≥2b a ·a b =2(当且仅当a =b 时等号成立),所以选C.] 4.D [设f (x )=x +1x -1,因为x >1,所以x -1>0,则f (x )=x -1+1x -1+1≥2(x -1)×1x -1+1=3,所以f (x )min =3,因此要使不等式x +1x -1≥a 恒成立,则a ≤3,所以实数a 的取值范围是(-∞,3],故选D.] 5.C [原式=[(a -b )+b ]2+1b (a -b ) ≥[2(a -b )b ]2+1b (a -b ) =4(a -b )b +1b (a -b ) ≥24(a -b )b ·1b (a -b )=4(当且仅当a =2,b =22时取等号).] 6.A [∵a 7=a 6+2a 5,∴a 5q 2=a 5q +2a 5,又∵{a n }是正项等比数列,∴a 5≠0,且q >0,∴q 2-q -2=0,∴q =2或q =-1(舍去).又a m ·a n =4a 1,∴a m ·a n =16a 21,a 21qm +n -2=16a 21, 又a 21≠0,∴m +n -2=4,∴m +n =6,1m +4n =16(1m +4n)(m +n ) =16(5+4m n +n m) ≥16(5+2 4m n ·n m )=32. 当且仅当4m n =n m, 即m =2,n =4时取等号.]7.C [画出y =1+sin πx (0<x <2)的图象(图略),。
一、选择题.等差数列{}的公差为,前项和为,当首项和变化时,++是一个定值,则下列各数也为定值的是().....已知等差数列:,,;等比数列:-,,,,-.则(-)的值为()..-.±.已知函数=(),∈,数列{}的通项公式是=(),∈*,那么“函数=()在[,+∞)上递增”是“数列{}是递增数列”的().充分而不必要条件.必要而不充分条件.充要条件.既不充分也不必要条件.(·抚州月考)设为等差数列{}的前项和,(+)<+(∈*).若<-,则().的最大值是.的最小值是.的最大值是.的最小值是.(·湖北黄冈中学等八校联考)已知实数等比数列{}的前项和为,则下列结论一定成立的是().若>,则< .若>,则<.若>,则> .若>,则>.已知数列{}满足:=(\\((-(-,≤,-,>))(∈*),且{}是递增数列,则实数的取值范围是().(,) .[,).() .().(·江南十校联考)已知数列{}的通项公式为=(∈*),则使<-成立的最小自然数为() .....数列{}满足=,+=·+(∈*,∈且≠),则“=”是“数列{}为等差数列”的().充分不必要条件.必要不充分条件.充分必要条件.既不充分也不必要条件二、填空题.若数列{}的前项和=--,则数列{}的通项公式为..(·辽宁五校联考)已知数列{}满足=,则数列{}的前项和为..已知数列{}是递增数列,且对于任意的∈*,=+λ恒成立,则实数λ的取值范围是..在数列{}中,=,=,数列{+}是公比为 (>)的等比数列,则数列{}的前项和=.答案精析1.[∵++=(+)+(+)+(+)=+=(+)为常数.∴+为常数.∴=+=(+)也为常数.].[-===,又==(-)×(-)=,因为与-,-同号,所以=-.所以(-)=-.].[由题意,函数=(),∈,数列{}的通项公式是=(),∈*.若“函数=()在[,+∞)上递增”,则“数列{}是递增数列”一定成立;若“数列{}是递增数列”,则“函数=()在[,+∞)上递增”不一定成立,现举例说明,如函数在[]上先减后增,且在处的函数值小.综上,“函数=()在[,+∞)上递增”是“数列{}是递增数列”的充分不必要条件,故选.].[由(+)<+,得(+)·<·,整理得<+,。
高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
训练目标(1)了解不等式概念及应用方法;(2)掌握不等式的性质,提高综合应用能力.训练题型(1)利用比较法判断不等关系;(2)运用不等式的性质判断不等关系;(3)将不等式概念及性质与函数知识结合判断不等关系.解题策略(1)作差比较;(2)作商比较;(3)利用不等式的性质化简变形,合理放大或缩小;(4)借助基本函数单调性比较大小.一、选择题1.(2017·昆明质检)已知a ,b ,c 满足c <b <a ,且ac <0,则下列选项中不一定成立的是()A.c a <ba B.b -ac >0C.b 2c <a 2cD.a -c ac<02.设实数x ,y 满足0<xy <4,且0<2x +2y <4+xy ,则x ,y 的取值范围是()A .x >2且y >2B .x <2且y <2C .0<x <2且0<y <2D .x >2且0<y <23.(2016·济南模拟)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是()A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 34.(2017·南昌月考)已知a ,b ,c ∈R ,a +b +c =0,abc >0,T =1a +1b +1c ,则()A .T >0B .T <0C .T =0D .T ≥05.(2016·北京西城区模拟)设a ,b ∈R ,定义运算“∧”和“∨”如下:a ∧b a ,a ≤b ,b ,a >b ,a ∨b b ,a ≤b ,a ,a >b .若正数a ,b ,c ,d 满足ab ≥4,c +d ≤4,则()A .a ∧b ≥2,c ∧d ≤2B .a ∧b ≥2,c ∨d ≥2C .a ∨b ≥2,c ∧d ≤2D .a ∨b ≥2,c ∨d ≥26.若存在x 使不等式x -mex>x 成立,则实数m 的取值范围为()A .(-∞,-1e )B .(-1e ,e)C .(-∞,0)D .(0,+∞)7.(2016·内江检测)若6<a <10,a2≤b ≤2a ,c =a +b ,则c 的取值范围是()A .9≤c ≤18B .15<c <30C .9≤c ≤30D .9<c <308.已知x ,y ∈R ,且x >y >0,则下式一定成立的是()A.1x -y -1y >0B .2x-3y>0C .(12)x -(12)y -x<0D .ln x +ln y >0二、填空题9.设x ,y 为实数,满足3≤xy 2≤8,4≤x 2y ≤9,则x 3y4的最大值是________.10.(2017·辽宁五校联考)三个正数a ,b ,c 满足a ≤b +c ≤2a ,b ≤a +c ≤2b ,则ba的取值范围是________.11.(2016·长沙模拟)已知a ,b ,c ∈{正实数},且a 2+b 2=c 2,当n ∈N ,n >2时,c n 与a n +b n的大小关系为______________.(用“>”连接)12.已知-12<a <0,A =1+a 2,B =1-a 2,C =11+a ,D =11-a ,则A ,B ,C ,D 的大小关系是________.(用“>”连接)答案精析1.C [因为c <b <a ,且ac <0,所以c <0,a >0,所以c a <b a ,b -a c >0,a -c ac<0,但b 2与a 2的关系不确定,故b 2c <a 2c 不一定成立.]2.C[>0,+y >0>0,>0,由2x +2y -4-xy =(x -2)·(2-y )<0,>2,>2x <2,y <2,又xy <4x <2,y <2.故选C.]3.D[因为0<a <1,a x <a y,所以x >y .采用赋值法判断,A 中,当x =1,y =0时,12<1,A 不成立;B 中,当x =0,y =-1时,ln 1<ln 2,B 不成立;C 中,当x =0,y =-π时,sin x =sin y =0,C 不成立;D 中,因为函数y =x 3在R 上是增函数,D 成立,故选D.]4.B [方法一取特殊值,a =2,b =c =-1,则T =-32<0,排除A ,C ,D ,可知选B.方法二由a +b +c =0,abc >0,知三数中一正两负,不妨设a >0,b <0,c <0,则T =1a +1b +1c =ab +bc +ca abc =ab +c (b +a )abc =ab -c2abc .∵ab <0,-c 2<0,abc >0,∴T <0,故选B.]5.C [不妨设a ≤b ,c ≤d ,则a ∨b =b ,c ∧d =c .若b <2,则a <2,∴ab <4,与ab ≥4矛盾,∴b ≥2.故a ∨b ≥2.若c >2,则d >2,∴c +d >4,与c +d ≤4矛盾,∴c ≤2.故c ∧d ≤2.故选C.]6.C[由x -m ex >x 得-m >e x×x -x (x >0),令f (x )=e x×x -x (x >0),则-m >f (x )min ,f ′(x )=e x ×x +e x ×12x -1≥2×e x-1>0(x >0),所以f (x )为(0,+∞)上的增函数,所以f (x )≥f (0)=0,-m >0,m <0,故选C.]7.D [3a2≤c ≤3a ,又6<a <10,则9<c <30.]8.C[由题意得,对于A 选项,当x =2,y =1时,1x -y -1y=0,不成立;对于B 选项,当x =3,y =2时,23<32,不成立;对于C 选项,0<(12)x <1,(12)y -x>1,成立;对于D 选项,当0<x <1,0<y <1时,ln x +ln y <0,不成立.故选C.]9.27解析由4≤x 2y ≤9,得16≤x 4y2≤81.又3≤xy 2≤8,∴18≤1xy 2≤13,∴2≤x 3y 4≤27.又x =3,y =1满足条件,这时x 3y 4=27.∴x 3y4的最大值是27.10.[23,32]11.c n>a n+bn解析∵a ,b ,c ∈{正实数},∴a n>0,b n>0,c n>0.而a n +b n cn =.∵a 2+b 2=c 2,则=1,∴0<a c <1,0<b c<1.∵n ∈N ,n >2,∴(a c )n <(a c )2,(b c )n <(b c )2.∴a n +b n c n =(a c )n +(b c )n <a 2+b 2c2=1.∴a n+b n<c n.12.C >A >B >D 解析由已知得-12<a <0,不妨取a =-14,这时A =1716,B =1516,C =43,D =45.由此猜测:C >A >B >D .∵C -A =11+a -(1+a 2)=-a (a 2+a +1)1+a =-a [(a +12)2+34]1+a.又∵1+a >0,-a >0,(a +12)2+34>0,∴C >A .∵A -B =(1+a 2)-(1-a 2)=2a 2>0,∴A >B .∵B -D =1-a 2-11-a =a (a 2-a -1)1-a =a [(a -12)2-54]1-a.又∵-12<a <0,∴1-a >0.又∵(a -12)2-54<(-12-12)2-54<0,∴B >D .综上所述,C >A >B >D .。
1.已知集合P ={x |x 2-x -2≤0},Q ={x |log 2【x -1】≤1},则【∁R P 】∩Q 等于【 】 A .[2,3] B .【-∞,-1]∪[3,+∞】 C .【2,3]D .【-∞,-1]∪【3,+∞】2.在平面直角坐标系中,O 是坐标原点,两定点A ,B 满足|OA →|=|OB →|=OA →·OB →=2,由点集{P |OP →=λOA →+μOB →,|λ|+|μ|≤1,λ,μ∈R }所表示的区域的面积是【 】 A .2 2 B .2 3 C .4 2D .4 33.已知f 【x 】=x +1x-2【x <0】,则f 【x 】有【 】A .最大值0B .最小值0C .最大值-4D .最小值-44.对于实数x ,规定[x ]表示不大于x 的最大整数,那么使不等式4[x ]2-36[x ]+45<0成立的x 的取值范围是【 】 A .【32,152】B .[2,8]C .[2,8】D .[2,7】5.【2016·潍坊联考】已知不等式x +2x +1<0的解集为{x |a <x <b },点A 【a ,b 】在直线mx +ny +1=0上,其中mn >0,则2m +1n的最小值为【 】A .4 2B .8C .9D .12二、填空题6.【2016·山西大学附中检测】已知函数f 【x 】=|lg x |,a >b >0,f 【a 】=f 【b 】,则a 2+b 2a -b的最小值为________.7.【2017·宁德质检】设P 是不等式组⎩⎪⎨⎪⎧y ≥0,x -2y ≥-1,x +y ≤3表示的平面区域内的任意一点,向量m =【1,1】,n =【2,1】.若OP →=λm +μn 【λ,μ∈R 】,则μ的最大值为________.8.【2015·山东】定义运算“⊗”:x ⊗y =x 2-y 2xy【x ,y ∈R ,xy ≠0】,当x >0,y >0时,x ⊗y+【2y 】⊗x 的最小值为________. 三、解答题9.【2016·福建长乐二中等五校期中联考】某厂生产某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C 【x 】万元,当年产量不足80千件时,C 【x 】=13x 2+10x 【万元】;当年产量不少于80千件时,C 【x 】=51x +10 000x-1 450【万元】.通过市场分析,若每件售价为500元时,该厂一年内生产的商品能全部销售完. 【1】写出年利润L 【万元】关于年产量x 【千件】的函数解析式; 【2】年产量为多少千件时,该厂在这一商品的生产中所获利润最大?10.【2016·海口一模】已知函数f 【x 】=x +m x+2【m 为实常数】.【1】若函数f 【x 】图象上动点P 到定点Q 【0,2】的距离的最小值为2,求实数m 的值; 【2】若函数y =f 【x 】在区间[2,+∞】上是增函数,试用函数单调性的定义求实数m 的取值范围;【3】设m <0,若不等式f 【x 】≤kx 在x ∈[12,1]时有解,求k 的取值范围.答案精析1.C [依题意,得P ={x |-1≤x ≤2},Q ={x |1<x ≤3},则【∁R P 】∩Q =【2,3],故选C.] 2.D [由|OA →|=|OB →|=OA →·OB →=2知〈OA →,OB →〉=π3.设OA →=【2,0】,OB →=【1,3】, OP →=【x ,y 】,则⎩⎨⎧x =2λ+μ,y =3μ,解得⎩⎪⎨⎪⎧μ=y 3,λ=12⎝⎛⎭⎪⎫x -y 3.由|λ|+|μ|≤1得|3x -y |+|2y |≤2 3. 作出可行域,如图所示.则所求面积S =2×12×4×3=4 3.]3.C [∵x <0,∴f 【x 】=-[【-x 】+1?-x ?]-2≤-2-2=-4,当且仅当-x =1-x,即x =-1时取等号.]4.C [由4[x ]2-36[x ]+45<0得32<[x ]<152,又因为[x ]表示不大于x 的最大整数,所以2≤x <8.故选C.]5.C [易知不等式x +2x +1<0的解集为【-2,-1】,所以a =-2,b =-1,2m +n =1,2m +1n=【2m +n 】【2m +1n 】=5+2m n +2n m ≥5+4=9【当且仅当m =n =13时取等号】,所以2m +1n 的最小值为9.] 6.2 2解析 由函数f 【x 】=|lg x |,a >b >0,f 【a 】=f 【b 】,可知a >1>b >0,所以lg a =-lg b ,b =1a ,a -b =a -1a >0,则a 2+b2a -b=a 2+(1a)2a -1a=a -1a +2a -1a ≥22【当且仅当a -1a =2a -1a,即a =2+62时,等号成立】.7.3解析 设P 的坐标为【x ,y 】,因为OP →=λm +μn ,所以⎩⎪⎨⎪⎧x =λ+2μ,y =λ+μ,解得μ=x -y .题中不等式组表示的可行域是如图所示的阴影部分, 由图可知,当目标函数μ=x -y 过点G 【3,0】时,μ取得最大值3-0=3. 8. 2解析 由题意,得x ⊗y +【2y 】⊗x =x 2-y 2xy +(2y )2-x 22yx =x 2+2y 22xy ≥2x 2·2y 22xy=2,当且仅当x =2y 时取等号. 9.解 【1】当0<x <80,x ∈N *时,L 【x 】=500×1 000x 10 000-13x 2-10x -250=-13x 2+40x -250;当x ≥80,x ∈N *时,L 【x 】=500×1 000x 10 000-51x -10 000x +1 450-250=1 200-【x +10 000x】,∴L 【x 】=⎩⎪⎨⎪⎧-13x 2+40x -250?0<x <80,x ∈N *?,1 200-(x +10 000x)??x ≥80,x ∈N *?.【2】当0<x <80,x ∈N *时,L 【x 】=-13【x -60】2+950,∴当x =60时,L 【x 】取得最大值L 【60】=950. 当x ≥80,x ∈N *时,L 【x 】=1 200-【x +10 000x】≤1 200-2x ·10 000x=1 200-200=1 000,∴当x =10 000x,即x =100时,L 【x 】取得最大值L 【100】=1 000>950.综上所述,当x =100时,L 【x 】取得最大值1 000,即年产量为100千件时,该厂在这一商品的生产中所获利润最大. 10.解 【1】设P 【x ,y 】,则y =x +mx+2,PQ 2=x 2+【y -2】2=x 2+【x +mx 】2=2x 2+m 2x2+2m ≥22|m |+2m =2,当m >0时,解得m =2-1; 当m <0时,解得m =-2-1. 所以m =2-1或m =-2-1.【2】由题意知,任取x 1,x 2∈[2,+∞】,且x 1<x 2, 则f 【x 2】-f 【x 1】=x 2+mx 2+2-【x 1+m x 1+2】=【x 2-x 1】·x 1x 2-mx 1x 2>0. 因为x 2-x 1>0,x 1x 2>0, 所以x 1x 2-m >0,即m <x 1x 2. 由x 2>x 1≥2,得x 1x 2>4,所以m ≤4. 所以m 的取值范围是【-∞,4]. 【3】由f 【x 】≤kx ,得x +m x+2≤kx . 因为x ∈[12,1],所以k ≥m x 2+2x+1.令t =1x,则t ∈[1,2],所以k ≥mt 2+2t +1.令g 【t 】=mt 2+2t +1,t ∈[1,2],于是,要使原不等式在x ∈[12,1]时有解,当且仅当k ≥[g 【t 】]min 【t ∈[1,2]】.因为m <0,所以g 【t 】=m 【t +1m 】2+1-1m的图象开口向下,对称轴为直线t =-1m>0.因为t ∈[1,2],所以当0<-1m ≤32,即m ≤-23时,g 【t 】min =g 【2】=4m +5;当-1m >32,即-23<m <0时,g 【t 】min =g 【1】=m +3.综上,当m ≤-23时,k ∈[4m +5,+∞】;当-23<m <0时,k ∈[m +3,+∞】.。
【高中数学】数学《不等式》复习知识点(1)一、选择题1.定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数(1)=-y f x 的图象关于(1,0)成中心对称,若s 满足不等式()()222323f s s f s s -+--+„,则s 的取值范围是( )A .13,2⎡⎫--⎪⎢⎣⎭B .[3,2]--C .[2,3)-D .[3,2]-【答案】D 【解析】 【分析】由已知可分析出()f x 在R 上为减函数且()y f x =关于原点对称,所以不等式等价于()()222323f s s f s s -+-+-„,结合单调性可得222323s s s s -+≥-+-,从而可求出s 的取值范围. 【详解】解:因为对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,所以()f x 在R 上为减函数;又(1)=-y f x 的图象关于(1,0)成中心对称,所以()y f x =关于原点对称, 则()()()222232323f s s f s s f s s -+--+=-+-„,所以222323s s s s -+≥-+-,整理得260s s +-≤,解得32s -≤≤. 故选:D. 【点睛】本题考查了函数的单调性,考查了函数的对称性,考查了一元二次不等式的求解.本题的关键是由已知得到函数的单调性和对称性,从而将不等式化简.2.若直线过点,则的最小值等于( )A .5B .C .6D .【答案】C 【解析】∵直线过点,∴,∴,∵,∴,,,当且仅当时,等号成立,故选C.点睛:本题主要考查了基本不等式.基本不等式求最值应注意的问题(1)使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.(2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件.3.若33log (2)1log a b ab +=+42a b +的最小值为( )A .6B .83C .163D .173【答案】C 【解析】 【分析】由33log (2)1loga b ab +=+213b a+=,且0,0a b >>,又由12142(42)3a b a b b a ⎛⎫+=++ ⎪⎝⎭,展开之后利用基本不等式,即可得到本题答案.【详解】因为33log (2)1loga b ab +=+()()3333log 2log 3log log 3a b ab ab +=+=,所以,23a b ab +=,等式两边同时除以ab 得213b a+=,且0,0a b >>, 所以12118211642(42)()(8)(8216)3333a b a b a b b a b a +=++=++≥+=, 当且仅当82a b b a=,即2b a =时取等号,所以42a b +的最小值为163.故选:C. 【点睛】本题主要考查利用基本不等式求最值,其中涉及对数的运算,考查计算能力,属于中等题.4.设x ,y 满足约束条件21210x y x y x y +≤⎧⎪+≥-⎨⎪-≤⎩,若32z x y =-+的最大值为n ,则2nx x ⎛ ⎝的展开式中2x 项的系数为( ) A .60 B .80C .90D .120【答案】B 【解析】 【分析】画出可行域和目标函数,根据平移得到5n =,再利用二项式定理计算得到答案.【详解】如图所示:画出可行域和目标函数,32z x y=-+,即322zy x=+,故z表示直线与y截距的2倍,根据图像知:当1,1x y=-=时,32z x y=-+的最大值为5,故5n=.52xx⎛-⎪⎝⎭展开式的通项为:()()35552155221rrr rr r rrT C x C xx---+⎛=⋅-=⋅⋅-⋅⎪⎝⎭,取2r=得到2x项的系数为:()225252180C-⋅⋅-=.故选:B.【点睛】本题考查了线性规划求最值,二项式定理,意在考查学生的计算能力和综合应用能力. 5.若,x y满足约束条件360601x yx yy-+≥⎧⎪+-≤⎨⎪≥⎩,则122yx⎛⎫⋅ ⎪⎝⎭的最小值为( )A.116B.18C.1 D.2【答案】A【解析】【分析】画出约束条件所表示的可行域,结合指数幂的运算和图象确定出目标函数的最优解,代入即可求解.【详解】由题意,画出约束条件360601x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩所表示的可行域,如图所示,其中可得(3,1)A -,(5,1)B ,(3,3)C ,因为1222yx x y -⎛⎫⋅= ⎪⎝⎭,令z x y =-,当直线y x z =-经过A 时,z 取得最小值, 所以z 的最小值为min 314z =--=-,则1222yxx y -⎛⎫⋅= ⎪⎝⎭的最小值为41216-=. 故选:A .【点睛】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力.6.给出下列五个命题,其中正确命题的个数为( )①命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++<”;②若正整数m 和n 满足m n ≤()2n m n m -; ③在ABC ∆中 ,A B >是sin sin A B >的充要条件;④一条光线经过点()1,3P ,射在直线:10l x y ++=上,反射后穿过点()1,1Q ,则入射光线所在直线的方程为5340x y -+=;⑤已知32()f x x mx nx k =+++的三个零点分别为一椭圆、一双曲线、一抛物线的离心率,则m n k ++为定值. A .2 B .3C .4D .5【答案】C 【解析】 【分析】①根据特称命题的否定的知识来判断;②根据基本不等式的知识来判断;③根据充要条件的知识来判断;④求得入射光线来判断;⑤利用抛物线的离心率判断. 【详解】①,命题“0x R ∃∈,使得20010x x ++<”的否定是“x R ∀∈,均有210x x ++≥”,故①错误.②,由于正整数m 和n 满足m n ≤,0n m -≥,由基本不等式得22m n m n+-=,当m n m =-即2n m =时等号成立,故②正确. ③,在ABC ∆中,由正弦定理得sin sin A B a b A B >⇔>⇔>,即sin sin A B A B >⇔>,所以A B >是sin sin A B >的充要条件,故③正确.④,设()1,1Q 关于直线10x y ++=的对称点为(),A a b ,则线段AQ 中点为11,22a b ++⎛⎫ ⎪⎝⎭,则1110221121112AQ a b b k a ++⎧++=⎪⎪⎪+⎨-⎪==+⎪-⎪⎩,解得2a b ==-,所以()2,2A --.所以入射光线为直线AP ,即312321y x --=----,化简得5340x y -+=.故④正确. ⑤,由于抛物线的离心率是1,所以(1)0f =,即10m n k +++=,所以1m n k ++=-为定值,所以⑤正确. 故选:C 【点睛】本小题主要考查特称命题的否定,考查基本不等式,考查充要条件,考查直线方程,考查椭圆、双曲线、抛物线的离心率,属于中档题.7.已知集合{}0lg 2lg3P x x =<<,212Q x x ⎧⎫=>⎨⎬-⎩⎭,则P Q I 为( )A .()0,2B .()1,9C .()1,4D .()1,2【答案】D 【解析】 【分析】集合,P Q 是数集,集合P 是对数不等式解的集合,集合Q 是分式不等式解的集合,分别求出解集,再交集运算求出公共部分. 【详解】解:{}19P x x =<<,{}02Q x x =<<;()1,2P Q ∴⋂=.故选:D. 【点睛】本题考查对数函数的单调性及运算性质,及分式不等式的解法和集合交集运算,交集运算口诀:“越交越少,公共部分”. 简单对数不等式问题的求解策略:(1)解决简单的对数不等式,应先利用对数的运算性质化为同底数的对数值,再利用对数函数的单调性转化为一般不等式求解.(2)对数函数的单调性和底数的值有关,在研究对数函数的单调性时,要按01a <<和1a > 进行分类讨论.分式不等式求解:先将分式化为整式;注意分式的分母不为0.8.若实数x ,y 满足40,30,0,x y x y y --≤⎧⎪-≥⎨⎪≥⎩,则2x y y +=的最大值为( )A .512B .8C .256D .64【答案】C 【解析】 【分析】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可,根据图像平移得到答案. 【详解】作出可行域,如下图阴影部分所示,令x y m +=,可知要使2m z =取到最大值,只需m 取到最大值即可, 观察图像可知,当直线x y m +=过点()6,2A 时m 取到最大值8, 故2x yy +=的最大值为256.故选:C .【点睛】本题考查了线性规划问题,画出图像是解题的关键.9.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.10.已知ABC V 外接圆的半径2R =,且2sin 2AA =.则ABC V 周长的取值范围为( )A .B .(4,C .4+D .(4+【答案】C 【解析】 【分析】由2sin 2A A =及倍角公式可得23A π=,2sin a R A ==得2212b c bc =++,再利用基本不等式及三角形两边之和大于第三边求出b c +的取值范围即可得到答案. 【详解】由题意,22cos 1123A A -=-,即cos 13A A -=-,可化为33A π⎛⎫-= ⎪⎝⎭,即sin 3A π⎛⎫-= ⎪⎝⎭,因为0A π<<,所以33A ππ-=,即23A π=,2sin a R A ==ABC V 的内角A ,B ,C ,的对边分别为a ,b ,c ,由余弦定理得,2212b c bc =++,因为222b c bc +≥(当且仅当b c =时取“=”),所以22123b c bc bc =++≥,即4bc ≤,又因为22212()b c bc b c bc =++=+-,所以2()124bc b c =+-≤,故4b c +≤,则4a b c ++≤+b c a +>,所以2a b c a ++>=4a b c +++≤.故ABC V 周长的取值范围为4+.故选:C本题考查利用余弦定理求三角形周长的取值范围,涉及到辅助角公式、基本不等式求最值,考查学生的运算求解能力,是一道中档题.11.已知,a b 都是正实数,则222a ba b a b+++的最大值是( )A .23-B .3-C .1D .43【答案】A 【解析】 【分析】设2,2m a b n a b =+=+,将222a b a b a b+++,转化为2222233a b n ma b a b m n +=--++,利用基本不等式求解. 【详解】设2,2m a b n a b =+=+, 所以22,33m n n ma b --==,所以2222222333a b n m a b a b m n +=--≤-=-++, 当且仅当233n mm n=时取等号.所以222a b a b a b +++的最大值是23-. 故选:A 【点睛】本题主要考查基本不等式的应用,还考查了转化化归的思想和运算求解的能力,属于中档题.12.已知函数1()cos 2(2)sin 2f x m x m x =+-,其中12m ≤≤,若函数()f x 的最大值记为()g m ,则()g m 的最小值为( )A .14-B .1C .D 1【答案】D 【解析】 【分析】2()sin (2)sin 2mf x m x m x =-+-+,令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,结合12m ≤≤可得()221122(2)31144t m m m g m y m m m=-+-===+-,再利用基本不等式即可得到答案.【详解】 由已知,221()(12sin )(2)sin sin (2)sin 22m f x m x m x m x m x =-+-=-+-+, 令sin [1,1]x t =∈-,则2(2)2my mt m t =-+-+,因为12m ≤≤, 所以对称轴为2111[0,]222m t m m -==-∈,所以 ()221122(2)3111144t m m m g m y m m m =-+-===+-≥=,当且仅当3m =时,等号成立. 故选:D 【点睛】本题考查换元法求正弦型函数的最值问题,涉及到二次函数的最值、基本不等式的应用,考查学生的数学运算能力,是一道中档题.13.过抛物线24x y =的焦点F 作倾斜角为锐角的直线l ,与抛物线相交于A ,B 两点,M 为线段AB 的中点,O 为坐标原点,则直线OM 的斜率的取值范围是( ) A.2⎫+∞⎪⎪⎣⎭B .[)1,+∞C.)+∞D .[)2,+∞【答案】C 【解析】 【分析】假设直线l 方程,代入抛物线方程,利用韦达定理和直线方程求得M 点坐标,利用两点连线斜率公式和基本不等式可求得结果. 【详解】由抛物线方程知:()0,1F ,设直线l 的方程为()10y kx k =+>,代入抛物线方程得:2440x kx --=, 设点()11,A x y ,()22,B x y ,()00,M x y ,则124x x k +=,M Q 为线段AB 的中点,12022x x x k +∴==,M Q 在直线l 上,200121y kx k ∴=+=+,20021122OMy k k k x k k +∴===+≥=2k =时取等号), 即直线OM斜率的取值范围为)+∞. 故选:C . 【点睛】本题考查直线与抛物线综合应用问题,涉及到利用基本不等式求解最值的问题;关键是能够结合韦达定理,利用一个变量表示出所求的斜率,进而利用基本不等式求得最值.14.若、a b 均为实数,则“()0->ab a b ”是“0a b >>”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】通过列举,和推理证明可以推出充要性. 【详解】若()0ab a b ->中,取12a b --=,=,则推不出0a b >>; 若0a b >>,则0a b ->,则可得出()0ab a b ->; 故“()0ab a b ->”是“0a b >>”的必要不充分条件, 故选:B. 【点睛】本题考查充分必要不条件的定义以及不等式的性质,可通过代入特殊值解决.15.若两个正实数x ,y 满足142x y +=,且不等式2m 4y x m +<-有解,则实数m 的取值范围是 ( ) A .(1,2)- B .(,2)(1,)-∞-+∞U C .()2,1-D .(,1)(2,)-∞-+∞U【答案】D 【解析】 【分析】将原问题转化为求最值的问题,然后利用均值不等式求最值即可确定实数m 的取值范围. 【详解】 若不等式24y x m m +<-有解,即2()4min ym m x ->+即可,142x y +=Q ,1212x y∴+=, 则121221112121124422482y y x y x x x y y x ⎛⎫⎛⎫+=++=+++≥+=+=+⨯=+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当28x y y x=,即2216y x =,即4y x =时取等号,此时1x =,4y =, 即()24min y x +=, 则由22m m ->得220m m -->,即()()120m m +->,得2m >或1m <-,即实数m 的取值范围是()(),12,-∞-⋃+∞,故选D .【点睛】本题主要考查基本不等式的应用,利用不等式有解转化为最值问题是解决本题的关键.16.已知在锐角ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos b C c B =,则111tan tan tan A B C ++的最小值为( )A B C D .【答案】A【解析】【分析】先根据已知条件,把边化成角得到B,C 关系式,结合均值定理可求.【详解】∵2cos cos b C c B =,∴2sin cos sinCcos B C B =,∴tan 2tan C B =.又A B C π++=,∴()()tan tan tan A B C B C π=-+=-+⎡⎤⎣⎦22tan tan 3tan 3tan 1tan tan 12tan 2tan 1B C B B B C B B +=-=-=---, ∴21112tan 111tan tan tan 3tan tan 2tan B A B C B B B -++=++27tan 36tan B B =+.又∵在锐角ABC ∆中, tan 0B >,∴27tan 36tan 3B B +≥=,当且仅当tan 2B =时取等号,∴min111tan tan tan 3A B C ⎛⎫++= ⎪⎝⎭,故选A. 【点睛】本题主要考查正弦定理和均值定理,解三角形时边角互化是求解的主要策略,侧重考查数学运算的核心素养.17.若 x y ,满足约束条件02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则z x y =-的最小值是( )A .0B .3-C .32D .3 【答案】B【解析】可行域为一个三角形ABC 及其内部,其中3(0,),(0,3),(1,1)2A B C ,所以直线z x y =-过点B 时取最小值3-,选B.18.设x ∈R ,则“|1|1x -<”是“220x x --<”的( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】 1111102x x x -<⇔-<-<⇔<<,22012x x x --<⇒-<<,故为充分不必要条件.19.设m ,n 为正数,且2m n +=,则1312n m n ++++的最小值为( ) A .32 B .53 C .74 D .95【答案】D【解析】【分析】根据2m n +=,化简135112(1)(2)n m n m n ++=++++⋅+,根据均值不等式,即可求得答案;【详解】当2m n +=时, Q 131111212n m n m n ++=++++++ 3511(1)(2)(1)(2)m n m n m n ++=+=++⋅++⋅+ Q 21225(1)(2)24m n m n +++⎛⎫+⋅+≤= ⎪⎝⎭, 当且仅当12m n +=+时,即3122m n ==,取等号, ∴139125n m n ++≥++. 故选:D【点睛】本题主要考查了根据均值不等式求最值,解题关键是灵活使用均值不等式,注意要验证等号的是否成立,考查了分析能力和计算能力,属于中档题.20.已知107700,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,表示的平面区域为D ,若“(,),2x y x y a ∃+>”为假命题,则实数a 的取值范围是( )A .[5,)+∞B .[2,)+∞C .[1,)+∞D .[0,)+∞ 【答案】A【解析】【分析】作出不等式组表示的可行域,结合目标函数的几何意义可得目标函数最大值,再根据特称命题和全称命题的真假关系得出“(,),2x y x y a ∀+≤”为真命题,由恒等式的思想可得实数a 的取值范围.【详解】绘制不等式组表示的可行域如图中阴影部分(含边界)所示,令2Z x y =+得2y x Z =-+,结合目标函数的几何意义可得目标函数在点A 处取得最大值,联立直线方程10770x y x y -+=⎧⎨--=⎩得点47,33A ⎛⎫ ⎪⎝⎭,所以2Z x y =+的最大值为5, 因为“(,),2x y R x y a ∃∈+>”为假命题,所以“(,),2x y x y a ∀+≤”为真命题,所以实数a 的取值范围是5a ≤,故选:A.【点睛】本题考查线性规划问题的最值,以及特称命题与全称命题的关系和不等式的恒成立思想,属于中档题.。
【高中数学】数学《不等式》复习知识要点一、选择题1.在锐角ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若222cos 3a ab C b +=,则tan 6tan tan tan A B C A+⋅的最小值为( )ABCD .32【答案】B 【解析】 【分析】根据余弦定理得到4cos c b A =,再根据正弦定理得到sin cos 3sin cos A B B A =,故tan 3tan A B =,3t 53tan 4an 6ta 3ta tan tan n n B A B C AB ⎛⎫=+ ⎪⎝+⎭⋅,计算得到答案. 【详解】由余弦定理及222cos 3a ab C b +=可得222223a a b c b ++-=,即22222a b b c -=+,得22222cos a b a bc A -=+,整理得22 2cos a b bc A =+.2222cos a b c bc A =+-Q ,2222cos 2cos b bc A b c bc A ∴+=+-,得4cos c b A =.由正弦定理得sin 4sin cos C B A =,又()sin sin C A B =+,()sin 4sin cos A B B A ∴+=, 整理得sin cos 3sin cos A B B A =.易知在锐角三角形ABC 中cos 0A ≠, cos 0B ≠,tan 3tan A B ∴=, 且tan 0B >.πA B C ++=Q , ()tan tan C A B =-+tan tan 1tan tan A B A B +=--⋅24tan 3tan 1BB =-,tan 6tan tan tan A B C A ∴+⋅()233tan 124tan tan B B B-=+353tan 43tan B B ⎛⎫=+ ⎪⎝⎭34≥⨯当且仅当tan B 时等号成立. 故选:B . 【点睛】本题考查了正余弦定理,三角恒等变换,均值不等式,意在考查学生的计算能力和综合应用能力.2.若x ,y 满足约束条件40,20,20,x y x x y -+≥⎧⎪-≤⎨⎪+-≥⎩且z ax y =+的最大值为26a +,则a 的取值范围是( ) A .[1,)-+∞ B .(,1]-∞-C .(1,)-+∞D .(,1)-∞-【答案】A【解析】 【分析】画出约束条件的可行域,利用目标函数的最值,判断a 的范围即可. 【详解】作出约束条件表示的可行域,如图所示.因为z ax y =+的最大值为26a +,所以z ax y =+在点(2,6)A 处取得最大值,则1a -≤,即1a ≥-.故选:A【点睛】本题主要考查线性规划的应用,利用z 的几何意义,通过数形结合是解决本题的关键.3.设a b c ,,为非零实数,且a c b c >>,,则( ) A .a b c +> B .2ab c >C .a b2c +> D .112a b c+> 【答案】C 【解析】 【分析】取1,1,2a b c =-=-=-,计算知ABD 错误,根据不等式性质知C 正确,得到答案. 【详解】,a c b c >>,故2a b c +>,2a bc +>,故C 正确; 取1,1,2a b c =-=-=-,计算知ABD 错误; 故选:C . 【点睛】本题考查了不等式性质,意在考查学生对于不等式性质的灵活运用.4.已知二次函数2()f x ax bx c =++的导数为'()f x ,'(0)0f >,对于任意实数都有()0f x ≥,则(1)'(0)f f 的最小值为( ) A .2 B .52C .3D .32【答案】A 【解析】()220{,440a f x acb b ac >≥∴∴≥∆=-≤Q 恒成立,,且0,0c a >> 又()()()2,00,1f x ax b f b f a b c =+∴'='=>++,()()11111120f a c f b +∴=+≥≥=+=' 当且仅当()()120f a c f ='时,不等式取等号,故的最小值为5.已知,x y 满足约束条件23023400x y x y y -+≥⎧⎪-+≤⎨⎪≥⎩,若目标函数2z mx ny =+-的最大值为1(其中0,0m n >>),则112m n+的最小值为( ) A .3 B .1C .2D .32【答案】D 【解析】 【分析】画出可行域,根据目标函数z 的最大值求得,m n 的关系式23m n +=,再利用基本不等式求得112m n +的最小值. 【详解】画出可行域如下图所示,由于0,0m n >>,所以基准直线0mx ny +=的斜率为负数,故目标函数在点()1,2A 处取得最大值,即221m n +-=,所以23m n +=.()11111151519322323232322n m m n m n m n m n ⎛⎛⎫⎛⎫+=⨯+⨯+=⨯++≥⨯+=⨯= ⎪ ⎪ ⎝⎭⎝⎭⎝,当且仅当,1n m m n m n ===时等号成立,所以112m n +的最小值为32. 故选:D【点睛】本小题主要考查根据目标函数的最值求参数,考查基本不等式求最值,考查数形结合的数学思想方法,属于中档题.6.已知关于x 的不等式()()222240m x m x -+-+>得解集为R ,则实数m 的取值范围是( ) A .()2,6B .()(),26,-∞+∞UC .(](),26,-∞⋃+∞D .[)2,6【答案】D 【解析】 【分析】分20m -=和20m -≠两种情况讨论,结合题意得出关于m 的不等式组,即可解得实数m 的取值范围.【详解】当20m -=时,即当2m =时,则有40>,该不等式恒成立,合乎题意;当20m -≠时,则()()220421620m m m ->⎧⎪⎨∆=---<⎪⎩,解得26m <<. 综上所述,实数m 的取值范围是[)2,6. 故选:D. 【点睛】本题考查利用变系数的二次不等式恒成立求参数,要注意对首项系数是否为零进行分类讨论,考查运算求解能力,属于中等题.7.若实数,,a b c ,满足222a b a b ++=,2222a b c a b c ++++=,,则c 的最大值是( ) A .43B .2log 3C .25D .24log 3【答案】D 【解析】 【分析】利用基本不等式求出2a b +的最小值后可得221a b a b ++-的最大值,从而可得2c 的最大值,故可得c 的最大值. 【详解】因为222a b a b ++=,故222a b a b ++=≥= 整理得到24a b +≥,当且仅当1a b ==时等号成立.又因为2222a b c a b c ++++=,故2114211212133a b ca b a b +++==+≤+=--,当且仅当1a b ==时等号成立,故max 24log 3c =. 故选:D. 【点睛】本题考查基本不等式的应用以及指数不等式的解,应用基本不等式求最值时,需遵循“一正二定三相等”,如果多变量等式中有和式和积式的关系,则可利用基本不等式构造关于和式或积式的不等式,通过解不等式来求最值,求最值时要关注取等条件的验证.8.已知点P ,Q 分别是抛物线28x y =和圆22(2)1x y +-=上的动点,点(0,4)A ,则2||||PA PQ 的最小值为( ) A .10 B .4C.2 D.1【答案】B 【解析】 【分析】设出点P 的坐标()00,x y ,用0y 表示出PA ;根据圆上一点到定点距离的范围,求得PQ 的最大值,再利用均值不等式求得目标式的最值. 【详解】设点()00,P x y ,因为点P 在抛物线上,所以()200080x y y =≥,因为点(0,4)A ,则()()2222200000||48416PA x y y y y =+-=+-=+.又知点Q 在圆22(2)1x y +-=上,圆心为抛物线的焦点(0,2)F ,要使2||||PA PQ 的值最小,则||PQ 的值应最大,即0max 13PQ PF y =+=+.所以()()222000003632516||||33y y y PA PQ y y +-+++==++()()0000252536236433y y y y =++-≥+⋅-=++ 当且仅当02y =时等号成立.所以2||||PA PQ 的最小值为4.故选:B. 【点睛】本题考查抛物线上一点到定点距离的求解,以及圆上一点到定点距离的最值,利用均值不等式求最值,属综合中档题.9.已知不等式组y x y x x a ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域的面积为9,若点, 则的最大值为( )A .3B .6C .9D .12【答案】C 【解析】 【分析】 【详解】分析:先画出满足约束条件对应的平面区域,利用平面区域的面积为9求出3a =,然后分析平面区域多边形的各个顶点,即求出边界线的交点坐标,代入目标函数求得最大值. 详解:作出不等式组对应的平面区域如图所示:则(,),(,)A a a B a a -,所以平面区域的面积1292S a a =⋅⋅=, 解得3a =,此时(3,3),(3,3)A B -,由图可得当2z x y =+过点(3,3)A 时,2z x y =+取得最大值9,故选C.点睛:该题考查的是有关线性规划的问题,在求解的过程中,首先需要正确画出约束条件对应的可行域,之后根据目标函数的形式,判断z 的几何意义,之后画出一条直线,上下平移,判断哪个点是最优解,从而联立方程组,求得最优解的坐标,代入求值,要明确目标函数的形式大体上有三种:斜率型、截距型、距离型;根据不同的形式,应用相应的方法求解.10.已知变量,x y 满足2402400x y x y x +-≥⎧⎪+-≤⎨⎪≥⎩,则24x y --的最小值为( )A.855B .8C .16515D .163【答案】D 【解析】 【分析】222424512x y x y ----=⨯+,而222412x y --+表示点(,)x y 到直线240x y --=的距离,作出可行域,数形结合即可得到答案. 【详解】因为222424512x y x y ----=⨯+,所以24x y --可看作为可行域内的动点到直线240x y --=的距离的5倍,如图所示,点44(,)33A 到直线240x y --=的距离d 最小,此时224424333512d -⨯-==+ 所以24x y --1653d =. 故选:D. 【点睛】本题考查目标函数的含绝对值的线性规划问题,考查学生数形结合与转化与化归的思想,是一道中档题.11.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】 【分析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号, 故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.12.已知直线22+=mx ny ()0,0m n >>过圆()()22125x y -+-=的圆心,则11m n+的最小值为( ) A .1 B .2 C .3 D .4【答案】D 【解析】 【分析】圆心坐标为(1,2),代入直线方程,再由乘1法和基本不等式,展开计算即可得到所求最小值. 【详解】圆22(1)(2)5x y -+-=的圆心为(1,2),由题意可得222m n +=,即1m n +=,m ,0n >,则1111()()24n m m n m n m n m n +=++=++…,当且仅当n mm n =且1m n +=即12m n ==时取等号, 故选:D . 【点睛】本题考查最值的求法,注意运用乘1法和基本不等式,注意满足的条件:一正二定三等,同时考查直线与圆的关系,考查运算能力,属于基础题.13.设x ,y 满足102024x x y x y -≥⎧⎪-≤⎨⎪+≤⎩,向量()2,1a x =r ,()1,b m y =-r ,则满足a b ⊥r r 的实数m的最小值为( ) A .125B .125-C .32D .32-【答案】B 【解析】 【分析】先根据平面向量垂直的坐标表示,得2m y x =-,根据约束条件画出可行域,再利用m 的几何意义求最值,只需求出直线2m y x =-过可行域内的点C 时,从而得到m 的最小值即可. 【详解】解:不等式组表示的平面区域如图所示:因为()2,1a x =r ,()1,b m y =-r,由a b ⊥r r得20x m y +-=,∴当直线经过点C 时,m 有最小值,由242x y x y +=⎧⎨=⎩,得8545x y ⎧=⎪⎪⎨⎪=⎪⎩,∴84,55C ⎛⎫ ⎪⎝⎭,∴416122555m y x =-=-=-, 故选:B.【点睛】本题主要考查了平面向量共线(平行)的坐标表示,用平面区域二元一次不等式组,以及简单的转化思想和数形结合的思想,属于中档题.目标函数有唯一最优解是我们最常见的问题,这类问题一般要分三步:画出可行域、求出关键点、定出最优解.14.已知实数,x y满足线性约束条件120xx yx y≥⎧⎪+≥⎨⎪-+≥⎩,则1yx+的取值范围为()A.(-2,-1]B.(-1,4]C.[-2,4) D.[0,4]【答案】B【解析】【分析】作出可行域,1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,观察可行域可得最小值.【详解】作出可行域,如图阴影部分(含边界),1yx+表示可行域内点(,)P x y与定点(0,1)Q-连线斜率,(1,3)A,3(1)410QAk--==-,过Q与直线0x y+=平行的直线斜率为-1,∴14PQk-<≤.故选:B.【点睛】本题考查简单的非线性规划.解题关键是理解非线性目标函数的几何意义,本题1yx+表示动点(,)P x y与定点(0,1)Q-连线斜率,由直线与可行域的关系可得结论.15.已知函数()2222,2{log ,2x x x f x x x -+≤=> ,若0R x ∃∈,使得()2054f x m m ≤- 成立,则实数m 的取值范围为 ( ) A .11,4⎡⎤-⎢⎥⎣⎦ B .1,14⎡⎤⎢⎥⎣⎦ C .12,4⎡⎤-⎢⎥⎣⎦ D .1,13⎡⎤⎢⎥⎣⎦【答案】B【解析】由函数的解析式可得函数的最小值为:()11f =,则要考查的不等式转化为:2154m m ≤-,解得:114m ≤≤,即实数m 的取值范围为 1,14⎡⎤⎢⎥⎣⎦ . 本题选择B 选项.点睛: (1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f (f (a ))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16.已知实数0x >,0y >,则“224x y +≤”是“1xy ≤”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】C【解析】【分析】利用基本不等式和充分,必要条件的判断方法判断.【详解】22x y +≥Q 且224x y +≤ ,422x y ∴≤≤⇒+≤ ,等号成立的条件是x y =,又x y +≥Q ,0,0x y >>21xy ∴≤⇒≤ ,等号成立的条件是x y =,2241x y xy ∴+≤⇒≤, 反过来,当12,3x y ==时,此时1xy ≤,但224x y +> ,不成立, ∴ “224x y +≤”是“1xy ≤”的充分不必要条件.故选:C【点睛】本题考查基本不等式和充分非必要条件的判断,属于基础题型.17.在区间[]0,1内随机取两个数m 、n ,则关于x 的方程20x nx m -+=有实数根的概率为( ) A .18 B .17 C .16 D .15【答案】A【解析】【分析】根据方程有实根可得到约束条件,根据不等式组表示的平面区域和几何概型概率公式可求得结果.【详解】若方程20x nx m -+=有实数根,则40n m ∆=-≥.如图,400101n m m n -≥⎧⎪≤≤⎨⎪≤≤⎩表示的平面区域与正方形0101m n ≤≤⎧⎨≤≤⎩的面积之比即为所求的概率,即111124118S P S ⨯⨯===⨯阴影正方形. 故选:A .【点睛】 本题考查几何概型中面积型概率问题的求解,涉及到线性规划表示的平面区域面积的求解,关键是能够根据方程有实根确定约束条件.18.若均不为1的实数a 、b 满足0a b >>,且1ab >,则( )A .log 3log 3a b >B .336a b +>C .133ab a b ++>D .b a a b >【答案】B【解析】【分析】举反例说明A,C,D 不成立,根据基本不等式证明B 成立.【详解】当9,3a b ==时log 3log 3a b <; 当2,1a b ==时133ab a b ++=; 当4,2a b ==时b a a b =;因为0a b >>,1ab >,所以336a b +>=>>,综上选B.【点睛】本题考查比较大小,考查基本分析论证能力,属基本题.19.设集合{}20,201x M x N x x x x ⎧⎫=≤=-<⎨⎬-⎩⎭,则M N ⋂为( ) A .{}01x x ≤<B .{}01x x <<C .{}02x x ≤<D .{}02x x << 【答案】B【解析】【分析】 根据分式不等式和一元二次不等式的解法,求得集合{01},{|02}M x x N x x =≤<=<<,再结合集合交集的运算,即可求解.【详解】 由题意,集合{}20{01},20{|02}1x M x x x N x x x x x x ⎧⎫=≤=≤<=-<=<<⎨⎬-⎩⎭, 所以{}01M N x x ⋂=<<.故选:B .【点睛】本题主要考查了集合的交集的概念及运算,其中解答中结合分式不等式和一元二次不等式的解法,准确求解集合,A B 是解答的关键,着重考查了计算能力.20.已知0a b >>,则下列不等式正确的是( )A .ln ln a b b a ->-B .|||b a <C .ln ln a b b a -<-D .|||b a ->【答案】C【解析】【分析】利用特殊值代入法,作差比较法,排除不符合条件的选项,即可求解,得到答案.【详解】由题意,因为0a b >>,取,1a e b ==,则ln 0,ln a b b a e -=-=,1b a e ==-,可排除A 、D 项;取11,49a b ==711812b a ==,可排除B 项;因为满足0a b >>条件的排除法,可得A 、B 、D 是错误的.故选:C .【点睛】本题主要考查了不等式与不等关系,以及不等式的的基本性质,其中解答中合理赋值,代入排除是解答的关键,着重考查了推理与运算能力.。
1.已知函数f (x )=⎩⎪⎨⎪⎧ -x +1,x <0,x -1,x ≥0,则不等式x +(x +1)·f (x +1)≤1的解集是( )
A .{x |-1≤x ≤2-1}
B .{x |x ≤1}
C .{x |x ≤2-1}
D .{x |-2-1≤x ≤2-1} 2.若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值为( ) A .0
B .-2
C .-52
D .-3
3.已知a ,b 都是正实数,且满足log 4(2a +b )=log 2ab ,则2a +b 的最小值为( )
A .12
B .10
C .8
D .6 4.若a ,b 是常数,a >0,b >0,a ≠b ,x ,y ∈(0,+∞),则a 2x +b 2y ≥?a +b ?2x +y ,当且仅当a x
=b y 时取等号.利用以上结论,可以得到函数f (x )=3x +41-3x (0<x <13
)的最小值为( ) A .5
B .15
C .25
D .2
5.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧ 5x -11y ≥-22,2x +3y ≥9,
2x ≤11.则
z =10x +10y 的最大值是( )
A .80
B .85
C .90
D .100
6.已知不等式(x +y )⎝ ⎛⎭
⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( )
A .2
B .4
C .6
D .8
7.函数y =x 2+7x +10x +1
(x >-1)的最小值为( ) A .2
B .7
C .9
D .10
8.若a 、b 、c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为( ) A.3-1 B.3+1 C .23+2
D .23-2
二、填空题
9.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y
的最小值是________. 10.对于0≤m ≤4的任意m ,不等式x 2+mx >4x +m -3恒成立,则x 的取值范围是________________. 11.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z
的最大值为________.
12.某运输公司接受了向一地区每天至少运送180 t 物资的任务,该公司有8辆载重为6 t 的A 型卡车和4辆载重为10 t 的B 型卡车,有10名驾驶员,每辆卡车每天往返的次数为A 型卡车4次,B 型卡车3次,每辆卡车每天往返的费用为A 型卡车320元,B 型卡车504元,则公司如何调配车辆,才能使公司所花的费用最低,最低费用为________元.
答案精析
1.C [由题意得不等式x +(x +1)f (x +1)≤1等价于
⎩
⎪⎨⎪⎧ x +1<0,x +(x +1)[-(x +1)+1]≤1,① 或⎩⎪⎨⎪⎧ x +1≥0,x +(x +1)[(x +1)-1]≤1,②
解不等式组①得x <-1;
解不等式组②得-1≤x ≤2-1.
故原不等式的解集是{x |x ≤2-1},故选C.]
2.C [因为x ∈⎝ ⎛⎦⎥⎤0,12,且x 2+ax +1≥0,所以a ≥-⎝ ⎛⎭
⎪⎫x +1x , 所以a ≥-⎝ ⎛⎭
⎪⎫x +1x max . 又y =x +1x 在⎝ ⎛⎦
⎥⎤0,12内是单调递减的, 所以a ≥-⎝ ⎛⎭
⎪⎫x +1x max =-(12+112
)=-52.] 3.C [由题意log 4(2a +b )=log 4ab ,
可得2a +b =ab ,a >0,b >0,
所以2a +b =12·2a ·b ≤12·(2a +b )24
, 所以2a +b ≥8,当且仅当2a =b 时取等号,
所以2a +b 的最小值为8,故选C.]
4.C [由题意可得f (x )=3x +41-3x =323x +221-3x ≥?3+2?23x +?1-3x ?=25,当且仅当33x =21-3x
,即x =15
时取等号,故最小值为25.] 5.C [如图,作出可行域,
由z =10x +10y ⇒y =-x +z 10,它表示斜率为-1,纵截距为z 10的平行直线系, 要使z =10x +10y 取得最大值,
当直线z =10x +10y 通过A (112,92
)时z 取得最大值. 因为x ,y ∈N *
,故A 点不是最优整数解.
于是考虑可行域内A 点附近的整点(5,4),(4,4),
经检验直线经过点(5,4)时,z max =90.] 6.B [不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则1+a +y x +ax y
≥a +2a +1≥9,所以a ≥2或a ≤-4(舍去).所以正实数a 的最小值为4.]
7.C [y =x 2+7x +10x +1
=(x +1)2+5(x +1)+4x +1
=(x +1)+4x +1
+5, 当x >-1,即x +1>0时,y ≥2
(x +1)×4x +1+5=9(当且仅当x =1时取“=”).故选C.]
8.D [由a (a +b +c )+bc =4-23,
得(a +c )·(a +b )=4-2 3.
∵a 、b 、c >0.
∴(a +c )·(a +b )≤⎝ ⎛⎭
⎪⎫2a +b +c 22(当且仅当a +c =b +a ,即b =c 时取“=”), ∴2a +b +c ≥24-23=2(3-1)=23-2.]
9.4
解析 由x >0,y >0,lg 2x +lg 8y =lg 2,
得lg 2x 8y =lg 2,即2
x +3y =2,
所以x +3y =1,
故1x +13y =(1x +13y
)(x +3y ) =2+3y x +x 3y ≥2+2 3y x ·x 3y =4, 当且仅当3y x =x 3y ,即x =12,y =16
时取等号,
所以1x +13y
的最小值为4. 10.(-∞,-1)∪(3,+∞)
解析 不等式可化为m (x -1)+x 2-4x +3>0在0≤m ≤4时恒成立.
令f (m )=m (x -1)+x 2-4x +3.
则⎩⎪⎨⎪⎧ f ?0?>0,f ?4?>0,⇒⎩⎪⎨⎪⎧ x 2-4x +3>0,x 2-1>0,
⇒⎩⎪⎨⎪⎧
x <1或x >3,x <-1或x >1, 即x <-1或x >3. 11.1 解析 由x 2-3xy +4y 2-z =0, 得z =x 2-3xy +4y 2,
∴xy z =xy x 2-3xy +4y 2=1x y +4y x
-3 ≤
124-3=1, 当且仅当x =2y 时取等号.
此时z =2y 2,
∴2x +1y -2z =22y +1y -22y
2 =-(1y )2+2y =-(1y
-1)2+1≤1. 12.2 560
解析 设每天调出A 型卡车x 辆,B 型卡车y 辆,公司所花的费用为z 元,则目标函数z =320x +504y (x ,y ∈N ).
由题意可得,⎩⎪⎨⎪⎧ 0≤x ≤8,x ∈N ,0≤y ≤4,x ∈N ,x +y ≤10,4x ×6+3y ×10≥180.
作出上述不等式组所确定的平面区域即可行域,如图中阴影部分所示.
结合图形可知,z=320x+504y在可行域内经过的整数点中,点(8,0)使z=320x+504y取得最小值,z min=320×8+504×0=2 560.
故每天调出A型卡车8辆,公司所花费用最低为2 560元.。