离散型随机变量及其分布列、期望与方差
- 格式:pdf
- 大小:1017.93 KB
- 文档页数:3
第6讲 离散型随机变量的分布列、均值与方差[学生用书P203])1.离散型随机变量的分布列(1)定义:若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,则表称为离散型随机变量X 的概率分布列,简称为X 的分布列,有时为了表达简单,也用等式P (X =x i )=p i ,i =1,2,…,n 表示X 的分布列.(2)性质①p i ≥0(i =1,2,…,n );②∑ni =1p i =1. 2.离散型随机变量X 的均值与方差3.均值与方差的性质(1)E (aX +b )=aE (X )+b (a ,b 为常数). (2)D (aX +b )=a 2D (X )(a ,b 为常数).1.辨明三个易误点(1)确定离散型随机变量的取值时,易忽视各个可能取值表示的事件是彼此互斥的.(2)对于分布列易忽视其性质p 1+p 2+…+p n =1及p i ≥0(i =1,2,…,n ),其作用可用于检验所求离散型随机变量的分布列是否正确.(3)均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.2.求离散型随机变量均值、方差的基本方法(1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解; (2)已知随机变量X 的均值、方差,求X 的线性函数Y =aX +b 的均值、方差和标准差,可直接用X 的均值、方差的性质求解;(3)如能分析所给随机变量服从常用的分布(如两点分布、二项分布等),可直接利用它们的均值、方差公式求解.1.袋中装有10个红球、5个黑球.每次随机抽取1个球后,若取得黑球则另换1个红球放回袋中,直到取到红球为止.若抽取的次数为X ,则表示“放回5个红球”事件的是( )A .X =4B .X =5C .X =6D .X ≤5C [解析] 事件“放回5个红球”表示前5次摸到黑球,且第6次摸到红球,故X =6.2.教材习题改编 设随机变量X 的分布列如下表所示,则p 4的值是( )A.1 B .12C.14D .18D [解析] 由分布列的性质,得12+14+18+p 4=1,所以p 4=18.3.设随机变量X 的分布列为P (X =k )=15(k =2,4,6,8,10),则D (X )等于( )A .5B .8C .10D .16B [解析] 因为E (X )=15(2+4+6+8+10)=6,所以D (X )=15[(-4)2+(-2)2+02+22+42]=8.4.设随机变量X 的分布列为P (X =k )=k15,k =1,2,3,4,5,则P ⎝⎛⎭⎫12<X <52=________. [解析] P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=115+215=15. [答案] 155.一个人将编为1,2,3,4的四个小球随机放入编为1,2,3,4的四个盒子,每个盒子放一个小球,球的编与盒子的编相同时叫做放对了,否则叫做放错了.设放对个数记为ξ,则ξ的期望的值为________.[解析] 将四个不同小球放入四个不同盒子,每个盒子放一个小球,共有A 44种不同放法,放对的个数ξ可取的值有0,1,2,4,其中P (ξ=0)=9A 44=38, P (ξ=1)=C 14×2A 44=13,P (ξ=2)=C 24A 44=14,P (ξ=4)=1A 44=124,E (ξ)=0×38+1×13+2×14+4×124=1. [答案] 1离散型随机变量的分布列的性质[学生用书P204][典例引领]设离散型随机变量X 的分布列为求2X +1的分布列.【解】 由分布列的性质知: 0.2+0.1+0.1+0.3+m =1, 解得m =0.3. 首先列表为:从而2X +1的分布列为在本例的条件下,求P (1<X ≤4). [解] 由例题解析知m =0.3,所以P (1<X ≤4)=P (X =2)+P (X =3)+P (X =4)=0.1+0.3+0.3=0.7.离散型随机变量分布列性质的应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负;(2)若X 为随机变量,则2X +1仍然为随机变量,求其分布列时可先求出相应的随机变量的值,再根据对应的概率写出分布列.随机变量X 的分布列如下:其中a ,b ,c 成等差数列,则P (|X |=1)=________,公差d 的取值范围是________. [解析] 因为a ,b ,c 成等差数列,所以2b =a +c . 又a +b +c =1,所以b =13,所以P (|X |=1)=a +c =23.又a =13-d ,c =13+d ,根据分布列的性质,得0≤13-d ≤23,0≤13+d ≤23,所以-13≤d≤13. [答案] 23 ⎣⎡⎦⎤-13,13离散型随机变量的均值(高频考点)[学生用书P204]离散型随机变量的均值是高考命题的热点,多以解答题的形式呈现,多为中档题. 高考对离散型随机变量的均值的考查主要有以下两个命题角度: (1)已知离散型随机变量的均值,求参数值; (2)已知离散型随机变量符合的条件,求其均值.[典例引领](2015·高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同.从中任意选取3个.(1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.【解】 (1)令A 表示事件“三种粽子各取到1个”,则由古典概型的概率计算公式有P (A )=C 12C 13C 15C 310=14.(2)X 的所有可能值为0,1,2,且P (X =0)=C 38C 310=715,P (X =1)=C 12C 28C 310=715,P (X =2)=C 22C 18C 310=115.综上知,X 的分布列为故E (X )=0×715+1×715+2×115=35(个).求离散型随机变量X 的均值的方法(1)理解X 的意义,写出X 可能取的全部值; (2)求X 取每个值的概率; (3)写出X 的分布列; (4)由均值的定义求E (X ).[题点通关]角度一 已知离散型随机变量的均值,求参数值1.某射击运动员在一次射击比赛中所得环数ξ的分布列如下:已知ξ的均值E (ξ)=4.3,则y 的值为( ) A .0.6 B .0.4 C .0.2D .0.1C [解析] 由题意知,x +0.1+0.3+y =1,又E (ξ)=3x +4×0.1+5×0.3+6y =4.3,两式联立解得y =0.2.角度二 已知离散型随机变量符合的条件,求其均值2.根据某电子商务平台的调查统计显示,参与调查的1 000位上购物者的年龄情况如图所示.(1)已知[30,40)、[40,50)、[50,60)三个年龄段的上购物者人数成等差数列,求a ,b 的值;(2)该电子商务平台将年龄在[30,50)之间的人群定义为高消费人群,其他年龄段的人群定义为潜在消费人群,为了鼓励潜在消费人群的消费,该平台决定发放代金券,高消费人群每人发放50元的代金券,潜在消费人群每人发放100元的代金券,现采用分层抽样的方式从参与调查的1 000位上购物者中抽取10人,并在这10人中随机抽取3人进行回访,求此3人获得代金券总和X 的分布列与数学期望.[解] (1)由题意可知⎩⎪⎨⎪⎧2b =a +0.015,(0.01+0.015×2+b +a )×10=1, 解得a =0.035,b =0.025.(2)利用分层抽样从样本中抽取10人,其中属于高消费人群的有6人,属于潜在消费人群的有4人.从中抽取3人,并计算3人所获得代金券的总和X ,则X 的所有可能取值为:150,200,250,300,P (X =150)=C 36C 310=16,P (X =200)=C 26C 14C 310=12,P (X =250)=C 16C 24C 310=310,P (X =300)=C 34C 310=130.故X 的分布列为E (X )=150×16+200×12+250×310+300×130=210.离散型随机变量的均值与方差的应用[学生用书P205][典例引领]为回馈顾客,某商场拟通过摸球兑奖的方式对1 000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求: ①顾客所获的奖励额为60元的概率; ②顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60 000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.【解】 (1)设顾客所获的奖励额为X 元.①依题意,得P (X =60)=C 11C 13C 24=12,即顾客所获的奖励额为60元的概率为12.②依题意,得X 的所有可能取值为20,60.P (X =60)=12,P (X =20)=C 23C 24=12,即X 的分布列为所以顾客所获的奖励额的期望为E (X )=20×0.5+60×0.5=40(元). (2)根据商场的预算,每个顾客的平均奖励额为60元. 所以,先寻找期望为60元的可能方案.对于面值由10元和50元组成的情况,如果选择(10,10,10,50)的方案,因为60元是面值之和的最大值,所以期望不可能为60元;如果选择(50,50,50,10)的方案,因为60元是面值之和的最小值,所以期望也不可能为60元,因此可能的方案是(10,10,50,50),记为方案1.对于面值由20元和40元组成的情况,同理可排除(20,20,20,40)和(40,40,40,20)的方案,所以可能的方案是(20,20,40,40),记为方案2.以下是对两个方案的分析:对于方案1,即方案(10,10,50,50),设顾客所获的奖励额为X 1元,则X 1的分布列为X 1的期望为E (X 1)=20×16+60×23+100×16=60,X 1的方差为D (X 1)=(20-60)2×16+(60-60)2×23+(100-60)2×16=1 6003.对于方案2,即方案(20,20,40,40),设顾客所获的奖励额为X 2元,则X 2的分布列为X 2的期望为E (X 2)=40×16+60×23+80×16=60,X 2的方差为D (X 2)=(40-60)2×16+(60-60)2×23+(80-60)2×16=4003.由于两种方案的奖励额的期望都符合要求,但方案2奖励额的方差比方案1的小,所以应该选择方案2.利用均值与方差解决实际问题的方法(1)对实际问题进行具体分析,将实际问题转化为数学问题,并将问题中的随机变量设出来.(2)依据随机变量取每一个值时所表示的具体事件,求出其相应的概率. (3)依据期望与方差的定义、公式求出相应的期望与方差值. (4)依据期望与方差的意义对实际问题作出决策或给出合理的解释.(2017·郑州市第一次质量预测)某中药种植基地有两处种植区的药材需在下周一、周二两天内采摘完毕,基地员工一天可以完成一处种植区的采摘.由于下雨会影响药材品质,基地收益如下表所示:若基地额外聘请工人,可在周一当天完成全部采摘任务.无雨时收益为20万元;有雨时收益为10万元.额外聘请工人的成本为a 万元.已知下周一和下周二有雨的概率相同,两天是否下雨互不影响,基地收益为20万元的概率为0.36.(1)若不额外聘请工人,写出基地收益X 的分布列及基地的预期收益; (2)该基地是否应该外聘工人,请说明理由.[解] (1)设下周一无雨的概率为p ,由题意,p 2=0.36,p =0.6, 基地收益X 的可能取值为20,15,10,7.5,则P (X =20)=0.36,P (X =15)=0.24,P (X =10)=0.24,P (X =7.5)=0.16, 所以基地收益X 的分布列为基地的预期收益E (X )=20×0.36+15×0.24+10×0.24+7.5×0.16=14.4, 所以基地的预期收益为14.4万元. (2)设基地额外聘请工人时的收益为Y 万元,则其预期收益E (Y )=20×0.6+10×0.4-a =16-a(万元),E (Y )-E (X )=1.6-a ,综上,当额外聘请工人的成本高于1.6万元时,不外聘工人;成本低于1.6万元时,外聘工人;成本恰为1.6万元时,是否外聘工人均可以.[学生用书P206])——随机变量的均值与其他知识的交汇(2015·高考湖北卷)某厂用鲜牛奶在某台设备上生产A ,B 两种奶制品.生产1吨A 产品需鲜牛奶2吨,使用设备1小时,获利1 000元;生产1吨B 产品需鲜牛奶1.5吨,使用设备1.5小时,获利1 200元.要求每天B 产品的产量不超过A 产品产量的2倍,设备每天生产A ,B 两种产品时间之和不超过12小时. 假定每天可获取的鲜牛奶数量W (单位:吨)是一个随机变量,其分布列为该厂每天根据获取的鲜牛奶数量安排生产,使其获利最大,因此每天的最大获利Z (单位:元)是一个随机变量.(1)求Z 的分布列和均值;(2)若每天可获取的鲜牛奶数量相互独立,求3天中至少有1天的最大获利超过10 000元的概率.【解】 (1)设每天A ,B 两种产品的生产数量分别为x ,y ,相应的获利为z , 则有⎩⎪⎨⎪⎧2x +1.5y ≤W ,x +1.5y ≤12,2x -y ≥0,x ≥0,y ≥0.(*)目标函数为z =1 000x +1 200y .将z =1 000x +1 200y 变形为l :y =-56x +z1 200,设l 0:y =-56x .①②③当W =12时,(*)表示的平面区域如图①阴影部分所示,三个顶点分别为A (0,0),B (2.4,4.8),C (6,0).平移直线l 0知当直线l 过点B , 即当x =2.4,y =4.8时,z 取最大值,故最大获利Z =z max =2.4×1 000+4.8×1 200=8 160(元).当W =15时,(*)表示的平面区域如图②阴影部分所示,三个顶点分别为A (0,0),B (3,6),C (7.5,0).平移直线l 0知当直线l 过点B , 即当x =3,y =6时,z 取得最大值,故最大获利Z =z max =3×1 000+6×1 200=10 200(元). 当W =18时,(*)表示的平面区域如图③阴影部分所示,四个顶点分别为A(0,0),B(3,6),C(6,4),D(9,0).平移直线l0知当直线l过点C,即当x=6,y=4时,z取得最大值,故最大获利Z=z max=6×1 000+4×1 200=10 800(元).故最大获利Z的分布列为因此,E(Z)=8 160×0.3+10 200×0.5+10 800×0.2=9 708.(2)由(1)知,一天最大获利超过10 000元的概率p1=P(Z>10 000)=0.5+0.2=0.7,由二项分布,3天中至少有1天最大获利超过10 000元的概率为p=1-(1-p1)3=1-0.33=0.973.(1)本题是离散型随机变量的分布列、均值与线性规划交汇.解决本题需根据题目所给信息提炼出线性约束条件和目标函数,然后再求Z的值.考查了对数学的应用意识、数据处理能力及数形结合思想.(2)离散型随机变量的均值常与统计、平面向量、函数、数列、不等式等知识交汇,题目设计新颖,是近几年高考考查的热点.小波以游戏方式决定是参加学校合唱团还是参加学校排球队.游戏规则为:以O为起点,再从A1,A2,A3,A4,A5,A6,A7,A8(如图)这8个点中任取两点分别为终点得到两个向量,记这两个向量的数量积为X.若X=0就参加学校合唱团,否则就参加学校排球队.(1)求小波参加学校合唱团的概率;(2)求X的分布列.[解] (1)从8个点中任取两点为向量终点的不同取法共有C28=28(种),当X=0时,两向量夹角为直角,共有8种情形,所以小波参加学校合唱团的概率为P (X =0)=828=27.(2)两向量数量积X 的所有可能取值为-2,-1,0,1,X =-2时,有2种情形;X =1时,有8种情形;X =-1时,有10种情形.所以X 的分布列为[学生用书P311(独立成册)]1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 C [解析] 因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.2.设随机变量X 的概率分布列如下表所示:若F (x )=P (X ≤x ),则当x 的取值范围是[1,2)时,F (x )等于( ) A.13 B .16C.12D .56D [解析] 由分布列的性质,得a +13+16=1,所以a =12.而x ∈[1,2),所以F (x )=P (X ≤x )=12+13=56.3.随机变量ξ的取值为0,1,2,若P (ξ=0)=15,E (ξ)=1, 则D (ξ)=________.[解析] 设ξ=1时的概率为p ,则E (ξ)=0×15+1×p +2×⎝⎛⎭⎫1-p -15=1,解得p =35,故D (ξ)=(0-1)2×15+(1-1)2×35+(2-1)2×15=25.[答案] 254.在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,则这两次取出白球数X 的分布列为________.[解析] X 的所有可能值为0,1,2.P (X =0)=C 11C 11C 12C 12=14,P (X =1)=C 11C 11×2C 12C 12=12,P (X =2)=C 11C 11C 12C 12=14.所以X 的分布列为[答案]5.若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”;(2)若甲参加活动,求甲得分X 的分布列和数学期望E (X ). [解] (1)个位数字是5的“三位递增数”有 125,135,145,235,245,345.(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.所以X 的分布列为则E (X )=0×23+(-1)×114+1×1142=421.6.(2017·山东青岛一模)一个袋中装有7个除颜色外完全相同的球,其中红球4个,编分别为1,2,3,4;蓝球3个,编分别为2,4,6,现从袋中任取3个球(假设取到任一球的可能性相同).(1)求取出的3个球中含有编为2的球的概率;(2)记ξ为取到的球中红球的个数,求ξ的分布列和数学期望. [解] (1)设A =“取出的3个球中含有编为2的球”,则P (A )=C 12C 25+C 22C 15C 37=20+535=2535=57. (2)由题意得,ξ可能取的值为0,1,2,3,则 P (ξ=0)=C 33C 37=135,P (ξ=1)=C 14·C 23C 37=1235, P (ξ=2)=C 24·C 13C 37=1835, P (ξ=3)=C 34C 37=435.所以ξ的分布列为所以E (ξ)=0×135+1×1235+2×1835+3×435=127.7.袋中有20个大小相同的球,其中记上0的有10个,记上n 的有n 个(n =1,2,3,4),现从袋中任取一球,X 表示所取球的标.(1)求X 的分布列、期望和方差;(2)若Y =aX +b ,E (Y )=1,D (Y )=11,试求a ,b 的值. [解] (1)X 的取值为0,1,2,3,4,其分布列为所以E (X )=0×12+1×120+2×110+3×320+4×15=1.5,D (X )=(0-1.5)2×12+(1-1.5)2×120+(2-1.5)2×110+(3-1.5)2×320+(4-1.5)2×15=2.75.(2)由D (Y )=a 2D (X )得2.75a 2=11,得a =±2, 又E (Y )=aE (X )+b ,所以当a =2时,由1=2×1.5+b ,得b =-2; 当a =-2时,由1=-2×1.5+b ,得b =4,所以⎩⎪⎨⎪⎧a =2,b =-2或⎩⎪⎨⎪⎧a =-2,b =4.8.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.①若花店一天购进16枝玫瑰花,X 表示当天的利润(单位:元),求X 的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.[解] (1)当日需求量n ≥16时,利润y =80. 当日需求量n <16时,利润y =10n -80.所以y 关于n 的函数解析式为y =⎩⎪⎨⎪⎧10n -80,n <1680,n ≥16,(n ∈N ).(2)①X 可能的取值为60,70,80,并且P (X =60)=0.1,P (X =70)=0.2,P (X =80)=0.7. X 的分布列为X 的数学期望E (X )=60×0.1+70×0.2+80×0.7=76.X 的方差D (X )=(60-76)2×0.1+(70-76)2×0.2+(80-76)2×0.7=44. ②答案一:花店一天应购进16枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y 表示当天的利润(单位:元),那么Y 的分布列为Y 的数学期望E (Y )=55×0.1+65×0.2+75×0.16+85×0.54=76.4.Y 的方差为D (Y )=(55-76.4)2×0.1+(65-76.4)2×0.2+(75-76.4)2×0.16+(85-76.4)2×0.54=112.04.由以上的计算结果可以看出,D (X )<D (Y ),即购进16枝玫瑰花时利润波动相对较小.另外,虽然E (X )<E (Y ),但两者相差不大.故花店一天应购进16枝玫瑰花.答案二:花店一天应购进17枝玫瑰花.理由如下:若花店一天购进17枝玫瑰花,Y表示当天的利润(单位:元),那么Y的分布列为Y的数学期望E(Y)=55×0.1+65×0.2+75×0.16+85×0.54=76.4.由以上的计算结果可以看出,E(X)<E(Y),即购进17枝玫瑰花时的平均利润大于购进16枝时的平均利润.故花店一天应购进17枝玫瑰花.9.(2017·兰州市诊断考试)甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司底薪70元,每单抽成2元;乙公司无底薪,40单以内(含40单)的部分每单抽成4元,超出40单的部分每单抽成6元.假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其100天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表乙公司送餐员送餐单数频数表(1)现从甲公司记录的这100天中随机抽取2天,求这2天送餐单数都大于40的概率;(2)若将频率视为概率,回答以下问题:①记乙公司送餐员日工资为X(单位:元),求X的分布列和数学期望;②小明拟到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为他做出选择,并说明理由.[解] (1)记“抽取的2天送餐单数都大于40”为事件M,则P(M)=C220C2100=19495.(2)①设乙公司送餐员送餐单数为a,则当a=38时,X=38×4=152;当a=39时,X=39×4=156;当a =40时,X =40×4=160; 当a =41时,X =40×4+1×6=166; 当a =42时,X =40×4+2×6=172.所以X 的所有可能取值为152,156,160,166,172. 故X 的分布列为所以E (X )=152×110+156×15+160×15+166×25+172×110=162.②依题意,甲公司送餐员日平均送餐单数为38×0.2+39×0.4+40×0.2+41×0.1+42×0.1=39.5, 所以甲公司送餐员日平均工资为70+2×39.5=149(元). 由①得乙公司送餐员平均工资为162元. 因为149<162,故推荐小明去乙公司应聘.10.某公司准备将1 000万元资金投入到市环保工程建设中,现有甲、乙两个建设项目供选择.若投资甲项目一年后可获得的利润ξ1(万元)的概率分布列如下表所示:且ξ1的期望E (ξ1)=120;若投资乙项目一年后可获得的利润ξ2(万元)与该项目建设材料的成本有关,在生产的过程中,公司将根据成本情况决定是否在第二和第三季度进行产品的价格调整,两次调整相互独立且调整的概率分别为p (0<p <1)和1-p .若乙项目产品价格一年内调整次数X (次)与ξ2的关系如下表所示:(1)求m ,n 的值; (2)求ξ2的分布列;(3)若E (ξ1)<E (ξ2),则选择投资乙项目,求此时p 的取值范围.[解] (1)由题意得⎩⎪⎨⎪⎧m +0.4+n =1,110m +120×0.4+170n =120,解得m =0.5,n =0.1.(2)ξ2的可能取值为41.2,117.6,204, P (ξ2=41.2)=(1-p )[1-(1-p )]=p (1-p ),P (ξ2=117.6)=p [1-(1-p )]+(1-p )(1-p )=p 2+(1-p )2, P (ξ2=204)=p (1-p ), 所以ξ2的分布列为(3)由(2)可得:E (ξ2)=41.2p (1-p )+117.6[p 2+(1-p )2]+204p (1-p )=-10p 2+10p +117.6, 由E (ξ1)<E (ξ2),得120<-10p 2+10p +117.6, 解得0.4<p <0.6,即当选择投资乙项目时,p 的取值范围是(0.4,0.6).。
离散型随机变量的期望与方差、正态分布教学目标:1更好地理解并会求解简单问题的离散型随机变量的分布列,特别是要重点把握二项分布;2.理解正态分布的σ3原则;3.掌握离散型随机变量的均值及方差的计算方法。
重、难点:实际问题中恰当定义随机变量,求离散型随机变量的分布列及其期望。
教学过程: [知识梳理] 一、均值:一般地,若离散型随机变量X 的分布列如下:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称∑==+⋅⋅⋅+++=ni ii n n px p x p x p x p x X E 1332211)(为离散型随机变量X 的均值..或数学..期望..。
数学期望简称为期望。
离散型随机变量X 的均值..[E (X)]也称为X 的概率分布的均值,它反映了X 取值的平均水平,并且它与X 有相同的单位。
E (X)是一个常数,不依赖于样本的抽取。
样本平均值是一个随机变量,它随着抽取的样本的不同而不同。
对随机抽取的样本,随着样本容量的增大,样本平均值越来越接近于总体的均值。
E (X)越大,说明总体的平均数越大,反之,就越小。
性质:1. E (C)=C (C 为常数) 2. E (aX)=a E (X) 3. E (aX+b)=a E (X)+b 4. E (X+η)= E (X)+ E (η) 5. E (X ·η)= E (X)·E (η) (X ,η相互独立时) 6.若X 服从二点分布,则E (X)=p 7.若X ~B (n ,p ),则E (X)=n p 8.若X 服从参数为N 、M 、n 的超几何分布,则E (X)=nM/N 。
(如果X ~B (n ,p ),则由11--=k n k n nC kC ,可得np q p C np qpnpCqp kC X E n k kn k k n nk k n k k n nk kn kk n====∑∑∑-=---=------=-1111)1(1111)() 二、方差:设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则2)(EX x i -描述了x i (i=1,2,…,n)相对于均值EX 的偏离程度。
离散型随机变量及其分布列一随机变量的概念及分类1.随机变量:一般地,对于随机试验样本空间Ω中的每个样本点ω,都有唯一的实数X(ω)与之对应,我们称X为随机变量.2.离散型随机变量:可能取值为有限个或可以一一列举的随机变量,我们称之为离散型随机变量,通常用大写英文字母表示随机变量,例如X,Y,Z;用小写英文字母表示随机变量的取值,例如x,y,z.注意点:离散型随机变量的特征:(1)可以用数值表示;(2)试验之前可以判断其可能出现的所有值,但不能确定取何值;(3)试验结果能一一列出.二离散型随机变量的分布列1.离散型随机变量的分布列:一般地,设离散型随机变量X的可能取值为x1,x2,…,x n,我们称X取每一个x i的概率P(X=x i)=p i,i=1,2,3,…,n为X的概率分布列,简称分布列.离散型随机变量的分布列可以用表格表示:X x1x2…x nP p1p2…p n离散型随机变量的分布列的性质:(1)p i≥0,i=1,2,…,n;(2)p1+p2+…+p n=1.2.对于只有两个可能结果的随机试验,用A 表示“成功”,A 表示“失败”,定义X =⎩⎪⎨⎪⎧1,A 发生,0,A 发生.如果P(A)=p ,则P(A )=1-p ,那么X 的分布列如表所示. X 0 1 P1-pp我们称X 服从两点分布或0-1分布. 注意点:随机变量X 只取0和1,才是两点分布,否则不是. 三 分布列的性质及应用 分布列的性质及其应用(1)利用分布列中各概率之和为1可求参数的值,此时要注意检验,以保证每个概率值均为非负数.(2)求随机变量在某个范围内的概率时,根据分布列,将所求范围内各随机变量对应的概率相加即可,其依据是互斥事件的概率加法公式.考点一随机变量及离散型随机变量【例1】(2021·南昌县莲塘)先后抛掷一枚质地均匀的骰子5次,那么不能作为随机变量的是( )A.出现7点的次数B.出现偶数点的次数C.出现2点的次数D.出现的点数大于2小于6的次数【答案】A【解析】抛掷一枚骰子不可能出现7点,出现7点为不可能事件出现7点的次数不能作为随机变量本题正确选项:A【练1】(2020·保定容大中学高二月考)袋中有3个白球、5个黑球,从中任取2个,则可以作为随机变量的是( )A.至少取到1个白球B.取到白球的个数C.至多取到1个白球D.取到的球的个数【答案】B【解析】根据离散型随机变量的定义可得选项B是随机变量,其可以一一列出,其中随机变量X的取值0,1,2.故选:B.考点二分布列【例2】(2020·吉林油田第十一中学)若随机变量X的分布列如下所示X-1012P0.2a b0.3且E(X)=0.8,则a、b的值分别是( )A.0.4,0.1B.0.1,0.4C.0.3,0.2D.0.2,0.3【答案】B【解析】由随机变量X 的分布列得:0.20.31a b +++=,所以0.5a b +=,又因为()10.20120.30.8E X a b =-⨯+⨯+⨯+⨯=,解得0.4b =,所以0.1a =,故选:B 【练2】(2021·广东湛江)若随机变量X 的分布列为()(1,2,3,4)10iP X i i ===,则(2)P X >=___________. 【答案】710【解析】由题可知347234101010P X P XP X.故答案为:710. 考点三 两点分布【例3】(2020·永安市第三中学高二期中)设随机变量X 服从两点分布,若()()100.2P X P X =-==,则成功概率()1P X ==( )A .0.2B .0.4C .0.6D .0.8【答案】C【解析】随机变量X 服从两点分布,()()100.2P X P X =-==,根据两点分布概率性质可知:()()()()100.2101P X P X P X P X ⎧=-==⎪⎨=+==⎪⎩,解得()10.6P X ==,故选:C.【练3】(2020·全国高二单元测试)下列问题中的随机变量不服从两点分布的是( ) A .抛掷一枚骰子,所得点数为随机变量X B .某射手射击一次,击中目标的次数为随机变量XC .从装有5个红球,3个白球的袋中取1个球,令随机变量X ={1,取出白球;0,取出红球}D .某医生做一次手术,手术成功的次数为随机变量X 【答案】A【解析】两点分布又叫01-分布,所有的实验结果有两个,B ,C ,D 满足定义, 而A ,抛掷一枚骰子,所得点数为随机变量X ,则X 的所有可能的结果有6种,不是两点分布.故选:A.课后练习1.(2021高二下·嘉兴期末)设实数a>0,随机变量ξ的分布列是:ξ-101P a 21 3 a 6则E(ξ)、D(ξ)的值分别为()A.E(ξ)=−13,D(ξ)=59B.E(ξ)=−13,D(ξ)=1C.E(ξ)=13,D(ξ)=59D.E(ξ)=13,D(ξ)=1【答案】 A【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】由分布列的概率的性质,知:a2+13+a6=2a+13=1,得a=1,∴E(ξ)=−1×12+0×13+1×16=−13,而E(ξ2)=1×23+0×13=23,∴D(ξ)=E(ξ2)−E2(ξ)=23−19=59.故答案为:A【分析】利用分布列的性质求解a,然后求解期望与方程即可.2.(2021高二下·淄博期末)已知某一随机变量X的分布列如下,且E(X)=5.9,则a的值为()X4a9P0.50.2bA.5B.6C.7D.8【答案】 B【考点】离散型随机变量及其分布列,离散型随机变量的期望与方差【解析】因为b=1−0.2−0.5=0.3,由4×0.5+a×0.2+9×0.3=5.9,解得a=6,故答案为:B.【分析】根据已知的分布图表中的数据,结合期望公式以及期望值计算出a的值即可。
离散型随机变量分布列、期望及方差高三数学徐建勋2010-1-30教学目标:1、理解取有限个值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性2、理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题教学重点:(1)离散型随机变量及其分布列(2)条件概率及事件的独立性(3)离散型随机变量的期望与方差教学难点:离散型随机变量及其分布列及其两个基本性质教学过程:【知识梳理】1、随机变量的概念如果随机试验的结果可以用一个变量X表示,并且X是随着试验的结果的不同而变化的,那么这样的变量X叫随机变量,随机变量常用希腊字母X、Y、…表示。
如果随机变量X的所有可能的取值都能一一列举出来,则称X为离散型随机变量.2、离散型随机变量的分布列设离散型随机变量X可能取得的值为,X取得每一个值的概率为,则称表为离散型随机变量X的概率分布,或称为离散型随机变量X的分布列.离散型随机变量X的分布列的性质:(1)(2)一般的,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
3、二点分布如果随机变量X的分布列为,其中,则称离散型随机变量X服从参数为的二点分布.4、超几何分布一般的,设有总数为N件的两类物品,其中一类有n件,从所有物品中任取M件(M ≤N),这M件中所含这类物品的件数X是一个离散型随机变量,它取值为m时的概率为我们称离散型随机变量X的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.5、条件概率一般地,设A,B为两个事件,且,在事件A发生的条件下,事件B发生的条件概率记为6、独立重复试验一般地,在相同条件下,重复地做n次试验称为n次独立重复试验.在n次独立重复试验中,事件A恰好发生k次的概率为,,1,2,…,n,其中p是一次试验中该事件发生的概率。
7、二项分布若将事件A发生的次数设为X ,事件A不发生的概率设为,那么在n次独立重复试验中,事件A恰好发生k次的概率是(其中k = 0,1,2,…,n),于是得到X的分布列:则称这样的离散型随机变量X服从参数为n,p的二项分布,记为。
离散型随机变量的分布列、均值与方差1.离散型随机变量的均值与方差 一般地,若离散型随机变量X 的分布列为(1)分布列的性质①p i ≥0,i =1,2,3,…,n . ②11=∑=ni i p(2)均值称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平. (3)方差称D (X )=i 12))((P X E x ni i ∑=-为随机变量X 的方差,它刻画了随机变量X 与其均值E (X )的平均偏离程度,其算术平方根D (X )为随机变量X 的标准差. 2.均值与方差的性质 (1)E (aX +b )=aE (X )+b .(2)D (aX +b )=a 2D (X ).(a ,b 为常数)3.判断下列结论的正误(正确的打“√”错误的打“×”)(1)随机变量的均值是常数,样本的平均值是随机变量,它不确定.(√)(2)随机变量的方差和标准差都反映了随机变量取值偏离均值的平均程度,方差或标准差越小,则偏离变量平均程度越小.(√)(3)离散型随机变量的概率分布列中,各个概率之和可以小于1.(×) (4)离散型随机变量的各个可能值表示的事件是彼此互斥的.(√) (5)期望值就是算术平均数,与概率无关.(×)(6)随机变量的均值是常数,样本的平均值是随机变量.(×)(7)在篮球比赛中,罚球命中1次得1分,不中得0分.如果某运动员罚球命中的概率为0.7,那么他罚球1次的得分X 的均值是0.7.(√)(8)在一组数中,如果每个数都增加a ,则平均数也增加a .(√) (9)在一组数中,如果每个数都增加a ,则方差增加a 2.(×)(10)如果每个数都变为原来的a 倍,则其平均数是原来的a 倍,方差是原来的a 2倍.(√)考点一 离散型随机变量的分布列及性质[例1] (1)设X 是一个离散型随机变量,其分布列为则q 等于( )A .1B .1±22C .1-22D .1+22 解析:由分布列的性质知⎩⎪⎨⎪⎧1-2q ≥0,q 2≥0,12+1-2q +q 2=1,∴q =1-22.答案:C(2)设离散型随机变量X 的分布列为求:①2X +1的分布列; ②|X -1|的分布列. 解:由分布列的性质知:0.2+0.1+0.1+0.3+m =1,∴m =0.3. 首先列表为从而由上表得两个分布列为①2X +1的分布列为②|X -1|的分布列为[方法引航] (1)概率值均为非负数.(2)求随机变量在某个范围内的取值概率时,根据分布列,将所求范围内随机变量对应的取值概率相加即可,其依据是互斥事件的概率加法公式.1.随机变量的分布列为:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________. 解析:由a ,b ,c 成等差数列及分布列性质得, ⎩⎪⎨⎪⎧a +b +c =1,2b =a +c ,-a +c =13,解得b =13,a =16,c =12.∴D (ξ)=16×2)311(--+13×2)310(-+12×2)311(-=59.答案:592.在本例(2)条件下,求X 2的分布列. 解:X 2的分布列为考点二 离散型随机变量的均值与方差[例2] (1)(2017·湖南益阳调研)某工厂有两条相互不影响的生产线分别生产甲、乙两种产品,产品出厂前需要对产品进行性能检测.检测得分低于80的为不合格品,只能报废回收;得分不低于80的为合格品,可以出厂,现随机抽取这两种产品各60件进行检测,检测结果统计如下:②生产一件甲种产品,若是合格品可盈利100元,若是不合格品则亏损20元;生产一件乙种产品,若是合格品可盈利90元,若是不合格品则亏损15元,在①的前提下:a .记X 为生产1件甲种产品和1件乙种产品所获得的总利润,求随机变量X 的分布列和数学期望;b .求生产5件乙种产品所获得的利润不少于300元的概率.解:①甲种产品为合格品的概率约为4560=34,乙种产品为合格品的概率约为4060=23. ②a .随机变量X 的所有取值为190,85,70,-35,且P (X =190)=34×23=12,P (X =85)=34×13=14,P (X =70)=14×23=16,P (X =-35)=14×13=112. 所以随机变量X 的分布列为所以E (X )=1902+854+706-3512=125.b .设生产的5件乙种产品中合格品有n 件,则不合格品有(5-n )件, 依题意得,90n -15(5-n )≥300,解得n ≥257,取n =4或n =5, 设“生产5件乙种产品所获得的利润不少于300元”为事件A ,则P (A )=C 454)32(13+5)32(=112243. (2)(2016·高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X 表示2台机器三年内共需更换的易损零件数,n 表示购买2台机器的同时购买的易损零件数. ①求X 的分布列;②若要求P (X ≤n )≥0.5,确定n 的最小值;③以购买易损零件所需费用的期望值为决策依据,在n =19与n =20之中选其一,应选用哪个?解:①由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.从而P (X =16)=0.2×0.2=0.04; P (X =17)=2×0.2×0.4=0.16; P (X =18)=2×0.2×0.2+0.4×0.4=0.24; P (X =19)=2×0.2×0.2+2×0.4×0.2=0.24; P (X =20)=2×0.2×0.4+0.2×0.2=0.2;P (X =21)=2×0.2×0.2=0.08; P (X =22)=0.2×0.2=0.04. 所以X 的分布列为②由①知P (X ≤③记Y 表示2台机器在购买易损零件上所需的费用(单位:元). 当n =19时,E(Y)=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4 040.当n=20时,E(Y)=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4 080. 可知当n=19时所需费用的期望值小于当n=20时所需费用的期望值,故应选n=19.[方法引航](1)已知随机变量的分布列求它的均值、方差和标准差,可直接按定义(公式)求解;(2)已知随机变量ξ的均值、方差,求ξ的线性函数η=aξ+b的均值、方差和标准差,可直接用ξ的均值、方差的性质求解;(3)由已知条件,作出对两种方案的判断.可依据均值、方差的意义,对实际问题作出判断.某商店试销某种商品20天,获得如下数据:试销结束后(3件,当天营业结束后检查存货,若发现存量少于2件,则当天进货补充至3件,否则不进货,将频率视为概率.(1)求当天商店不进货的概率;(2)记X为第二天开始营业时该商品的件数,求X的分布列.解:(1)P(当天商店不进货)=P(当天商品销售量为0件)+P(当天商品销售量为1件)=120+520=310.(2)由题意知,X的可能取值为2,3.P(X=2)=P(当天商品销售量为1件)=520=1 4;P(X=3)=P(当天商品销售量为0件)+P(当天商品销售量为2件)+P(当天商品销售量为3件)=120+920+520=34.所以X的分布列为考点三[例3] (1)若X ~B (n ,p ),且E (X )=6,D (X )=3,则P (X =1)的值为( ) A .3·2-2 B .2-4 C .3·2-10 D .2-8解析:∵E (X )=np =6,D (X )=np (1-p )=3,∴p =12,n =12,则P (X =1)=C 112·12·11)21(=3·2-10.答案:C(2)某居民小区有两个相互独立的安全防范系统(简称系统)A 和B ,系统A 和系统B 在任意时刻发生故障的概率分别为110和p .①若在任意时刻至少有一个系统不发生故障的概率为4950,求p 的值;②设系统A 在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的分布列及均值E (ξ).解:①设“至少有一个系统不发生故障”为事件C ,那么 1-P (C )=1-110·p =4950,解得p =15. ②由题意,得 P (ξ=0)=3)101(=11 000,P (ξ=1)=C 132)101)(1011(-=271 000, P (ξ=2)=C 23×2)1011(-×110=2431 000,P (ξ=3)=3)1011(-=7291 000. 所以,随机变量ξ的分布列为故随机变量ξ的均值E (ξ)=0×11 000+1×271 000+2×2431 000+3×7291 000=2710. (或∵ξ~B )109,3(,∴E (ξ)=3×910=2710.)[方法引航] 如果ξ~B (n ,p ),可直接按公式E (ξ)=np ,D (ξ)=np (1-p )求解.假设某班级教室共有4扇窗户,在每天上午第三节课上课预备铃声响起时,每扇窗户或被敞开或被并闭,且概率均为0.5.记此时教室里敞开的窗户个数为X.(1)求X的分布列;(2)若此时教室里有两扇或两扇以上的窗户被关闭,班长就会将关闭的窗户全部敞开,否则维持原状不变.记每天上午第三节课上课时刻教室里敞开的窗户个数为Y,求Y的数学期望.解:(1)∵X的所有可能取值为0,1,2,3,4,X~B(4,0.5),∴P(X=0)=C044)21(=116,P(X=1)=C144)21(=14,P(X=2)=C244)21(=38,P(X=3)=C344)21(=14,P(X=4)=C444)21(=116,∴X的分布列为(2)Y的所有可能取值为3,4,则P(Y=3)=P(X=3)=1 4,P(Y=4)=1-P(Y=3)=34,∴Y的数学期望E(Y)=3×14+4×34=154.[规范答题]求离散型随机变量的期望与方差[典例](2017·山东青岛诊断)为了分流地铁高峰的压力,某市发改委通过听众会,决定实施低峰优惠票价制度.不超过22公里的地铁票价如下表:6公里的概率分别为14,13,甲、乙乘车超过6公里且不超过12公里的概率分别为12,13.(1)求甲、乙两人所付乘车费用不相同的概率;(2)设甲、乙两人所付乘车费用之和为随机变量ξ,求ξ的分布列与数学期望.[规范解答] (1)由题意可知,甲、乙乘车超过12公里且不超过22公里的概率分别为14,13.2分则甲、乙两人所付乘车费用相同的概率P 1=14×13+12×13+14×13=13.3分 所以甲、乙两人所付乘车费用不相同的概率P =1-P 1=1-13=23.4分 (2)由题意可知,ξ=6,7,8,9,10.且P (ξ=6)=14×13=112, P (ξ=7)=14×13+12×13=14.P (ξ=8)=14×13+14×13+12×13=13. P (ξ=9)=12×13+14×13=14.P (ξ=10)=14×13=112,10分 所以ξ的分布列为则E (ξ)=6×112+7×14+8×13+9×14+10×112=8.12分[规范建议] 1.分清各事件间的关系:独立事件、互斥事件、对立事件.2.求随机变量的分布列,先把随机变量所有可能值列举出来,逐个求对应的概率. 3.利用期望公式求期望值.[高考真题体验]1.(2016·高考四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是________.解析:同时抛掷两枚质地均匀的硬币,至少有一枚硬币正面向上的概率为1-2)21(=34,且X ~B )43,2(,∴均值是2×34=32.答案:322.(2015·高考广东卷)已知随机变量X 服从二项分布B (n ,p ).若E (X )=30,D (X )=20,则p =________.解析:因为X~B(n,p),所以E(X)=np=30,D(X)=np(1-p)=20,解得n=90,p=1 3.答案:1 33.(2016·高考全国甲卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:(1)(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;(3)求续保人本年度的平均保费与基本保费的比值.解:(1)设A表示事件:“一续保人本年度的保费高于基本保费”,则事件A发生当且仅当一年内出险次数大于1,故P(A)=0.2+0.2+0.1+0.05=0.55.(2)设B表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B发生当且仅当一年内出险次数大于3,故P(B)=0.1+0.05=0.15.又P(AB)=P(B),故P(B|A)=P(AB)P(A)=P(B)P(A)=0.150.55=311.因此所求概率为311.(3)记续保人本年度的保费为X元,则X的分布列为E(X)=0.85a×0.30×0.05=1.23a.因此续保人本年度的平均保费与基本保费的比值为1.23.4.(2013·高考课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如下图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57 000元的概率.(3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若需求量X ∈[100,110),则取X =105,且X =105的概率等于需求量落入[100,110)的频率),求T 的数学期望. 解:(1)当X ∈[100,130)时,T =500X -300(130-X )=800X -39 000, 当X ∈[130,150]时,T =500×130=65 000. 所以T =⎩⎨⎧800X -39 000,100≤X <130,65 000, 130≤X ≤150.(2)由(1)知利润T 不少于57 000元当且仅当120≤X ≤150.由直方图知需求量X ∈[120,150]的频率为0.7,所以下一个销售季度内的利润T 不少于57 000元的概率的估计值为0.7. (3)依题意可得T 的分布列为所以E (T )=45 000×0.1课时规范训练 A 组 基础演练1.设随机变量ξ的分布列为P (ξ=k )=15(k =2,4,6,8,10),则D (ξ)等于( ) A .5 B .8 C .10 D .16 解析:选B.∵E (ξ)=15(2+4+6+8+10)=6, ∴D (ξ)=15[(-4)2+(-2)2+02+22+42]=8.2.已知某一随机变量X 的分布列如下,且E (X )=6.3,则a 的值为( )A.5 B .6 C .解析:选C.由分布列性质知:0.5+0.1+b =1,∴b =0.4. ∴E (X )=4×0.5+a ×0.1+9×0.4=6.3,∴a =7.3.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400 解析:选B.记“不发芽的种子数为ξ”, 则ξ~B (1 000,0.1),所以E (ξ)=1 000×0.1=100, 而X =2ξ,故E (X )=E (2ξ)=2E (ξ)=200.4.如图,将一个各面都涂了油漆的正方体,切割为125个同样大小的小正方体,经过混合后,从中随机取一个小正方体,记它的油漆面数为X ,则X 的均值E (X )等于( )A.126125 B.65 C.168125 D.75解析:选B.125个小正方体中8个三面涂漆,36个两面涂漆,54个一面涂漆,27个没有涂漆,∴从中随机取一个正方体,涂漆面数X 的均值E (X )=54125×1+36125×2+8125×3=150125=65. 5.一射手对靶射击,直到第一次命中为止,每次命中的概率都为0.6,现有4颗子弹,则射击停止后剩余子弹的数目X 的期望值为( )A .2.44B .3.376C .2.376D .2.4 解析:选C.X 的所有可能取值为3,2,1,0,其分布列为∴E (X )=3×0.6+2×0.24+6.已知随机变量ξ的分布列为P (ξ=k )=12k -1,k =1,2,3,…,n ,则P (2<ξ≤5)=________. 解析:P (2<ξ≤5)=P (ξ=3)+P (ξ=4)+P (ξ=5)=14+18+116=716.答案:7 167.有一批产品,其中有12件正品和4件次品,有放回地任取3件,若X表示取到次品的件数,则D(X)=__________.解析:由题意知取到次品的概率为14,∴X~B)41,3(,∴D(X)=3×14×)411(-=916.答案:9 168.随机变量ξ的分布列如下:其中a,b,c成等差数列,则P(|ξ|d的取值范围是________.解析:因为a,b,c成等差数列,所以2b=a+c.又a+b+c=1,所以b=13.所以P(|ξ|=1)=a+c=23.又a=13-d,c=13+d,根据分布列的性质,得0≤13-d≤23,0≤13+d≤23,所以-13≤d≤13,此即公差d的取值范围.答案:23]31,31[-9.一次考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的.评分标准规定:“每题只选一个选项,答对得5分,不答或答错得零分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,有一道题可以判断一个选项是错误的,还有一道题因不理解题意只好乱猜.请求出该考生:(1)得60分的概率;(2)所得分数ξ的分布列和数学期望.解:(1)设“可判断两个选项是错误的”两道题之一选对为事件A,“有一道题可以判断一个选项是错误的”选对为事件B,“有一道题不理解题意”选对为事件C,∴P(A)=12,P(B)=13,P(C)=14,∴得60分的概率为P=12×12×13×14=148.(2)ξ可能的取值为40,45,50,55,60.P(ξ=40)=12×12×23×34=18;P(ξ=45)=C12×12×12×23×34+12×12×13×34+12×12×23×14=1748;P(ξ=50)=12×12×23×34+C12×12×12×13×34+C12×12×12×23×14+12×12×13×14=1748;P(ξ=55)=C12×12×12×13×14+12×12×23×14+12×12×13×34=748;P(ξ=60)=12×12×13×14=148.ξ的分布列为E(ξ)=40×18+45×1748+50×1748+55×748+60×148=57512.10.随着人们对环境关注度的提高,绿色低碳出行越来越受到市民重视,为此某市建立了公共自行车服务系统,市民凭本人二代身份证到公共自行车服务中心办理诚信借车卡借车,初次办卡时卡内预先赠送20分,当诚信积分为0时,借车卡将自动锁定,限制借车,用户应持卡到公共自行车服务中心以1元购1个积分的形式再次激活该卡,为了鼓励市民租用公共自行车出行,同时督促市民尽快还车,方便更多的市民使用,公共自行车按每车每次的租用时间进行扣分收费,具体扣分标准如下:①租用时间不超过1小时,免费;②租用时间为1小时以上且不超过2小时,扣1分;③租用时间为2小时以上且不超过3小时,扣2分;④租用时间超过3小时,按每小时扣2分收费(不足1小时的部分按1小时计算).甲、乙两人独立出行,各租用公共自行车一次,两人租车时间都不会超过3小时,设甲、乙租用时间不超过一小时的概率分别是0.5和0.6;租用时间为1小时以上且不超过2小时的概率分别是0.4和0.2.(1)求甲、乙两人所扣积分相同的概率;(2)设甲、乙两人所扣积分之和为随机变量ξ,求ξ的分布列和数学期望.解:(1)设甲、乙所扣积分分别为x1,x2,由题意可知,P(x1=0)=0.5,P(x1=1)=0.4,P(x1=2)=1-0.5-0.4=0.1,P(x2=0)=0.6,P(x2=1)=0.2,P(x2=2)=1-0.6-0.2=0.2,所以P(x1=x2)=P(x1=x2=0)+P(x1=x2=1)+P(x1=x2=2)=0.5×0.6+0.4×0.2+0.1×0.2=0.4.(2)由题意得,变量ξ的所有取值为0,1,2,3,4.P (ξ=0)=0.5×0.6=0.3,P (ξ=1)=0.5×0.2+0.6×0.4=0.34,P (ξ=2)=0.5×0.2+0.6×0.1+0.4×0.2=0.24, P (ξ=3)=0.4×0.2+0.2×0.1=0.1, P (ξ=4)=0.1×0.2=0.02, 所以ξ的分布列为E (ξ)=0×0.3+1×0.34+2B 组 能力突破1.已知X 的分布列则在下列式子中①E (X )=-13;②D (X )=2327;③P (X =0)=13,正确的个数是( )A .0B .1C .2D .3解析:选C.由E (X )=(-1)×12+0×13+1×16=-13,故①正确.由D (X )=2)311(+-×12+2)310(+×13+2)311(+×16=59,知②不正确.由分布列知③正确.2.已知ξ的分布列如下表,若η=2ξ+2,则D (η)的值为( )A.-13B.59C.109D.209解析:选D.E (ξ)=-1×12+0×13+1×16=-13,D (ξ)=2)311(+-×12+2)310(+×13+2)311(+×16=59∴D (η)=D (2ξ+2)=4D (ξ)=209,故选D.3.已知随机变量X +η=8,若X ~B (10,0.6),则E (η)和D (η)分别是( )A .6和2.4B .2和2.4C .2和5.6D .6和5.6 解析:选B.由已知随机变量X +η=8,所以η=8-X .因此,E (η)=8-E (X )=8-10×0.6=2,D (η)=(-1)2D (X )=10×0.6×0.4=2.4.4.两封信随机投入A ,B ,C 三个空邮箱,则A 邮箱的信件数ξ的数学期望E (ξ)=________. 解析:两封信投入A ,B ,C 三个空邮箱,投法种数是32=9,A 中没有信的投法种数是2×2=4,概率为49,A 中仅有一封信的投法种数是C 12×2=4,概率为49, A 中有两封信的投法种数是1,概率为19,故A 邮箱的信件数ξ的数学期望是49×0+49×1+19×2=23. 答案:235.李先生家在H 小区,他在C 科技园区工作,从家开车到公司上班有L 1,L 2两条路线(如图),路线L 1上有A 1,A 2,A 3三个路口,各路口遇到红灯的概率均为12;路线L 2上有B 1,B 2两个路口,各路口遇到红灯的概率依次为34,35.(1)若走路线L 1,求最多遇到1次红灯的概率; (2)若走路线L 2,求遇到红灯次数X 的数学期望;(3)按照“平均遇到红灯的次数最少”的要求,请你帮助李先生分析上述两条路线中,选择哪条路线上班更好些,并说明理由.解:(1)设“走路线L 1最多遇到1次红灯”为事件A ,则P (A )=C 03×2)21(+C 13×12×2)21(=12. 所以走路线L 1最多遇到1次红灯的概率为12. (2)依题意,知X 的可能取值为0,1,2. P (X =0)=)531)(431(--=110.P (X =1)=34×)531(-+)431(-×35=920,P (X =2)=34×35=920. 随机变量X 的分布列为所以E (X )=110×0+920×1+920×2=2720.(3)设选择路线L 1遇到红灯的次数为Y ,随机变量Y 服从二项分布,即Y ~B )21,3(,所以E (Y )=3×12=32.因为E (X )<E (Y ),所以选择路线L 2上班更好.。
离散型随机变量的期望值和方差一、基本知识概要:1、 期望的定义:一般地,若离散型随机变量ξ的分布列为则称E ξ=x 1P 1+x 2P 2+x 3P 3+…+x n P n +…为ξ的数学期望或平均数、均值,简称期望。
它反映了:离散型随机变量取值的平均水平。
若η=a ξ+b(a 、b 为常数),则η也是随机变量,且E η=aE ξ+b 。
E(c)= c 特别地,若ξ~B(n ,P ),则E ξ=n P2、 方差、标准差定义:D ξ=(x 1-E ξ)2·P 1+(x 2-E ξ)2·P 2+…+(x n -E ξ)2·P n +…称为随机变量ξ的方差。
D ξ的算术平方根ξD =δξ叫做随机变量的标准差。
随机变量的方差与标准差都反映了:随机变量取值的稳定与波动、集中与离散的程度。
且有D(a ξ+b)=a 2D ξ,可以证明D ξ=E ξ2- (E ξ)2。
若ξ~B(n ,p),则D ξ=npq ,其中q=1-p.3、特别注意:在计算离散型随机变量的期望和方差时,首先要搞清其分布特征及分布列,然后要准确应用公式,特别是充分利用性质解题,能避免繁琐的运算过程,提高运算速度和准确度。
二、例题: 例1、(1)下面说法中正确的是 ( )A .离散型随机变量ξ的期望E ξ反映了ξ取值的概率的平均值。
B .离散型随机变量ξ的方差D ξ反映了ξ取值的平均水平。
C .离散型随机变量ξ的期望E ξ反映了ξ取值的平均水平。
D .离散型随机变量ξ的方差D ξ反映了ξ取值的概率的平均值。
解:选C说明:此题考查离散型随机变量ξ的期望、方差的概念。
(2)、(2001年高考题)一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出两个,则其中含红球个数的数学期望是。
解:含红球个数ξ的E ξ=0×101+1×106+2×103=1.2 说明:近两年的高考试题与《考试说明》中的“了解……,会……”的要求一致,此部分以重点知识的基本题型和内容为主,突出应用性和实践性及综合性。
第51讲离散型随机变量的分布列、期望与方差【学习目标】1.了解离散型随机变量的期望、方差、标准差的概念,会求某些简单的离散型随机变量的概率分布.2.会根据离散型随机变量的分布列求期望、方差或标准差,并能解决一些实际问题.3.理解超几何分布、二项分布的试验模型,会将某些特殊离散型随机变量的分布列、期望与方差转化化归为二项分布求解.【知识要点】1.离散型随机变量的分布列(1)随机变量如果随机试验的每一个试验结果都可以用一个确定的数字表示,数字随着试验结果的变化而变化的变量叫做随机变量,随机变量常用字母X,Y,ξ,η等来表示.(2)离散型随机变量对于随机变量可能取到的值,可以按一定顺序一一列出,这样的变量就叫离散型随机变量.(3)分布列设离散型随机变量X可能取的值为x1,x2,…,x i,…,x n,而每一个值的概率为P(X=x i)=p i (i=1,2,…,n).则称表为随机变量X的概率分布列.(4)分布列的两个性质①0≤p i≤1,i=1,2,…,n. ②p1+p2+…+p n=1.2.两点分布如果随机变量X 的分布列为(其中0<p<1),q=1-p,则称离散型随机变量X服从参数为p的两点分布列.3.超几何分布列在含有M件次品数的N件产品中,任取n件,其中含有X件次品数,则事件{X=k}发生的概率为P(X=k)=C M k C N-M n-kC N n,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称此分布列:P148.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以100天记录的各需求量的频率作为各需求量发生的概率.(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.P13为超几何分布列.、4.离散型随机变量的均值与方差若离散型随机变量ξ的分布列为:(1)均值:称Eξ=x1p1+x2p2+…+x n p n为随机变量ξ的均值或数学期望,它反映了离散型随机变量取值的平均水平.(2)方差:称Dξ=∑ni=1(x i-Eξ)2p i为随机变量ξ的方差,它刻画了随机变量ξ与其均值Eξ的平均偏离程度,其算术平方根Dξ为随机变量ξ的标准差.5.均值与方差的性质(1)E(aξ+b)=aEξ+b.(2)D(aξ+b)=a2Dξ.6.基本性质若ξ服从两点分布,则Eξ=p,Dξ=p(1-p)若X服从二项分布,即ξ~B(n,p),则Eξ=np,Dξ=np(1-p).典型例题考点一、超几何分布及其应用例题1.某校校庆,各届校友纷至沓来,某班共来了n位校友(n>10且n∈N*),其中女校友6位,组委会对这n位校友制作了一份校友名单,现随机从中选出2位校友代表,若选出的2位校友是一男一女,则称为“最佳组合”.(1)若随机选出的2位校友代表为“最佳组合”的概率等于12,求n的值;(2)当n=12时,设选出的2位校友中女校友人数为ξ,求ξ的分布列和Eξ.考点二、二项分布及其应用例题2. (2013福建)某联欢晚会举行抽奖活动,举办方设置了甲、乙两种抽奖方案,方案甲的中奖率为23,中奖可以获得2分;方案乙的中奖率为25,中奖可以获得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中奖与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为X,求X≤3的概率;(2)若小明、小红两人都选择方案甲或都选择方案乙进行抽奖,问:他们选择何种方案抽奖,累计得分的数学期望较大?7.某公司规定:员工的销售津贴按季度发放,如果员工没有完成季度销售任务,则在其相应季度的销售津贴中扣除500元,但每个员工全年最多扣除1000元销售津贴.设某员工完成季度销售任务的概率为0.8,且每个季度是否完成销售任务是相互独立的,计算(结果精确到0.01):(1)一年内该员工连续两个季度扣销售津贴的概率;(2)一年内该员工恰好两个季度扣销售津贴的概率;(3)一年内该员工平均扣多少销售津贴.6.受轿车在保修期内维修费等因素的影响,企业生产每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该厂已售出的两种品牌轿车中随机抽取50辆,统计数据如下:将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求其首次出现故障发生在保修期内的概率;(2)若该厂生产的轿车均能售出,记生产一辆甲品牌轿车的利润为X1,生产一辆乙品牌轿车的利润为X2,分别求X1,X2的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应生产哪种品牌的轿车?说明理由.P4 考点三、离散型随机变量的分布列、数学期望与方差例题3. (2013浙江)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和,求ξ的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若Eη=53,Dη=59,求a∶b∶c.P54.某学校要从5名男生和2名女生中选出2人作为上海世博会志愿者,若用随机变量ξ表示选出的志愿者中女生的人数,则数学期望Eξ=____(结果用最简分数表示).5.设p为非负实数,随机变量X的概率分布列为:则EX的最大值为____;DX的最大值为____.P10考点集训1.已知X~B(n,p),E(X)=8,D(X)=1.6,则n和p值分别为( )A.100和0.08 B.20和0.4C.10和0.2 D.10和0.82.设随机变量ξ的分布列为P(ξ=k)=ck(k+1),k=1,2,3,c为常数,则P(0.5<ξ<2.5)=____.3.随机变量ξ的分布列如下:则:(1)x=____;(2)P(ξ>3)=____;(3)P(1≤ξ<4)=____.考点四、期望与方差的实际应用例题4.(2013重庆)某商场举行的“三色球”购物摸奖活动规定:在一次摸奖中,摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.根据摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:其余情况无奖且每次摸奖最多只能获得一个奖级.(1)求一次摸奖恰好摸到1个红球的概率;(2)求摸奖者在一次摸奖中获奖金额X的分布列与期望E(X).【基础检测】1.设ξ是服从二项分布B(n,p)的随机变量,又E(ξ)=15,D(ξ)=454,则n与p的值为( )A.60,34B.60,14C.50,34 D.50,142.已知袋中装有6个白球、2个黑球,从中任取3个球,则取到白球个数ξ的期望E(ξ)=( )A.2 B.5928 C.6128 D.943.已知随机变量X的分布列为:则E(6X+8)等于____.4.已知随机变量ξ的分布列如下:其中a,b,c成等差数列,若E(ξ)=13,则D(ξ)的值是____.方法总结1.关于离散型随机变量分布列的计算方法如下:(1)写出ξ的所有可能取值.(2)用随机事件概率的计算方法,求出ξ取各个值的概率.(3)利用(1)(2)的结果写出ξ的分布列.2.常见的特殊离散型随机变量的分布列.(1)两点分布.它的分布列为(p0q1),其中0<p<1,且p+q=1;(2)二项分布.它的分布列为(0p01p12p2……k p k……n p n),其中p k=C n k p k q n-k,k=0,1,2,…,n,且0<p<1,p+q=1,p k=C n k p k q n-k可记为b(k;n,p).3.对离散型随机变量的期望应注意:(1)期望是算术平均值概念的推广,是概念意义下的平均.(2)Eξ是一个实数,由ξ的分布列唯一确定,即作为随机变量ξ是可变的,可取不同值,而Eξ是不变的,它描述ξ取值的平均状态.(3)Eξ=x1p1+x2p2+…+x n p n+…直接给出了Eξ的求法,即随机变量取值与相应概率值分别相乘后相加4.对离散型随机变量的方差应注意:(1)Dξ表示随机变量ξ对Eξ的平均偏离程度,Dξ越大表明平均偏离程度越大,说明ξ的取值越分散;反之Dξ越小,ξ的取值越集中,在Eξ附近,统计中常用Dξ来描述ξ的分散程度.(2)Dξ与Eξ一样也是一个实数,由ξ的分布列唯一确定.。
离散型随机变量的数学期望和方差知识点一、离散型随机变量的数学期望 1.定义一般地,如果离散型随机变量的分布列为则称n n i i p x p x p x p x X E +++++= 2211)(为随机变量X 的数学期望或均值。
2.意义:反映离散型随机变量取值的平均水平。
3.性质:若X 是随机变量,b aX Y +=,其中b a ,是实数,则Y 也是随机变量,且b X aE b aX E +=+)()( 二、离散型随机变量的方差 1.定义一般地,如果离散型随机变量的分布列为则称∑=-=ni i ip X E x X D 12))(()(为随机变量的方差。
2.意义:反映离散型随机变量偏离均值的程度。
3.性质:)()(2X D a b aX D =+ 三、二项分布的均值与方差如果),(~p n B X ,则np X E =)(,)1()(p np X D -=。
题型一离散型随机变量的均值【例1】设随机变量X的分布列如下表,且E(X)=1.6,则a-b=()X0123P0.1a b0.1A.0.2 B.0.1C.-0.2 D.0.4【例2】随机抛掷一枚质地均匀的骰子,则所得点数ξ的数学期望为()A.0.6 B.1C.3.5 D.2【例3】某次考试中,第一大题由12个选择题组成,每题选对得5分,不选或错选得0分.小王选对每题的概率为0.8,则其第一大题得分的均值为________.【例4】(2016年高考全国乙卷)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?【过关练习】1.今有两台独立工作的雷达,每台雷达发现飞行目标的概率分别为0.9和0.85,设发现目标的雷达的台数为ξ,则E (ξ)等于( ) A .0.765 B .1.75 C .1.765D .0.222.某射手射击所得环数ξ的分布列如下:3.已知随机变量ξ的分布列为则x =______,P (1≤ξ<3)=4.(2015年高考重庆卷)端午节吃粽子是我国的传统习俗.设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白棕5个,这三种粽子的外观完全相同.从中任意选取3个. (1)求三种粽子各取到1个的概率;(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.题型二 离散型随机变量方差的计算【例1】若X 的分布列为其中p ∈(0,1),则( ) A .D (X )=p 3 B .D (X )=p 2 C .D (X )=p -p 2D .D (X )=pq 2【例2】设随机变量ξ的分布列为P (ξ=k )=C k n⎝⎛⎭⎫23k .⎝⎛⎭⎫13n -k ,k =0,1,2,…,n ,且E (ξ)=24, 则D (ξ)的值为( ) A .8 B .12 C.29D .16【例3】若D (ξ)=1,则D (ξ-D (ξ))=________.【例4】若随机变量X 1~B (n,0.2),X 2~B (6,p ),X 3~B (n ,p ),且E (X 1)=2,D (X 2)=32,则σ(X 3)=( )A .0.5 B. 1.5 C. 2.5D .3.5【例5】根据以往的经验,某工程施工期间的降水量X (单位:mm)对工期的影响如下表:求工期延误天数Y 的均值与方差.【过关练习】1.某人从家乘车到单位,途中有3个路口.假设在各路口遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇到红灯的次数的方差为( ) A .0.48 B .1.2 C .0.72D .0.62.设投掷一个骰子的点数为随机变量X ,则X 的方差为________.3.盒中有2个白球,3个黑球,从中任取3个球,以X 表示取到白球的个数,η表示取到黑球的个数.给出下列结论:①E (X )=65,E (η)=95;②E (X 2)=E (η);③E (η2)=E (X );④D (X )=D (η)=925.其中正确的是________.(填上所有正确结论的序号)4.海关大楼顶端镶有A 、B 两面大钟,它们的日走时误差分别为X 1、X 2(单位:s),其分布列如下:课后练习【补救练习】1.若随机变量ξ~B(n,0.6),且E(ξ)=3,则P(ξ=1)的值为()A.2×0.44B.2×0.45C.3×0.44D.3×0.642.已知ξ~B(n,p),E(ξ)=8,D(ξ)=1.6,则n与p的值分别为()A.100和0.08 B.20和0.4C.10和0.2 D.10和0.83.有甲、乙两种水稻,测得每种水稻各10株的分蘖数据,计算出样本均值E(X甲)=E(X乙),方差分别为D(X甲)=11,D(X乙)=3.4.由此可以估计()A.甲种水稻比乙种水稻分蘖整齐B.乙种水稻比甲种水稻分蘖整齐C.甲、乙两种水稻分蘖整齐程度相同D.甲、乙两种水稻分蘖整齐程度不能比较4.一次数学测验有25道选择题构成,每道选择题有4个选项,其中有且只有一个选项正确,每选一个正确答案得4分,不做出选择或选错的不得分,满分100分,某学生选对任一题的概率为0.8,则此学生在这一次测试中的成绩的期望为________;方差为________.【巩固练习】1.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是() A.6 B.7.8C.9 D.122.一射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4发子弹,则命中后剩余子弹数目的均值为()A.2.44 B.3.376C.2.376 D.2.43.已知随机变量X+Y=8,若X~B(10,0.6),则E(Y),D(Y)分别是()A.6,2.4 B.2,2.4C.2,5.6 D.6,5.64.马老师从课本上抄录一个随机变量ξ的概率分布列如下表:请小牛同学计算ξ“?”处的数值相同.据此,小牛给出了正确答案E (ξ)=________.5.某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为23,得到乙、丙两公司面试的概率均为p ,且三个公司是否让其面试是相互独立的.记X 为该毕业生得到面试的公司个数,若P (X =0)=112,则随机变量X 的数学期望E (X )=________.6.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,若E (ξ)=13,则D (ξ)=________.7.某城市出租汽车的起步价为6元,行驶路程不超出3 km 时按起步价收费,若行驶路程超出3 km ,则按每超出 1 km 加收3元计费(超出不足 1 km 的部分按 1 km 计).已知出租车一天内行车路程可能为200,220,240,260,280,300(单位:km),它们出现的概率分别为0.12,0.18,0.20,0.20,0.18,0.12,设出租车行车路程ξ是一个随机变量,司机收费为η(元),则η=3ξ-3,求出租车行驶一天收费的均值.8.为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设ξ为成活沙柳的株数,数学期望E (ξ)=3,标准差D (ξ)为62. (1)求n ,p 的值并写出ξ的分布列;(2)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【拔高练习】1.设ξ为离散型随机变量,则E (E (ξ)-ξ)=( ) A .0 B .1 C .2D .不确定2.甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为23,乙获胜的概率为13,各局比赛结果相互独立.(1)求甲在4局以内(含4局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望).3.A ,B 两个投资项目的利润率分别为随机变量X 1和X 2.根据市场分析,X 1和X 2的分布列分别为:(1)在A ,B 两个项目上各投资10012A 和B 所获得的利润,求方差D (Y 1),D (Y 2);(2)将x (0≤x ≤100)万元投资A 项目,(100-x )万元投资B 项目,f (x )表示投资A 项目所得利润的方差与投资B 项目所得利润的方差的和.求f (x )的最小值,并指出x 为何值时,f (x )取到最小值.。
11.2离散型随机变量及其分布列、均值与方差考点离散型随机变量及其分布列、均值与方差1.(2020课标Ⅲ理,3,5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且J1 4p i=1,则下面四种情形中,对应样本的标准差最大的一组是() A.p1=p4=0.1,p2=p3=0.4 B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2答案B根据均值E(X)=J1 4x i p i,方差D(X)=J1 4[x i-E(X)]2·p i以及方差与标准差的关系,得各选项对应样本的标准差如下表.由此可知选项B对应样本的标准差最大,故选B.2.(2018浙江,7,4分)设0<p<1,随机变量ξ的分布列是ξ012P1−p212p2则当p在(0,1)内增大时,()A.D(ξ)减小B.D(ξ)增大C.D(ξ)先减小后增大D.D(ξ)先增大后减小答案D本小题考查随机变量的分布列,期望、方差的计算及函数的单调性.由题意得E(ξ)=0×1−2+1×12+2×2=12+p,D(ξ)=0−+p 2·1−2+1−p 2·12+2−+p 2·2=18[(1+2p)2(1-p)+(1-2p)2+(3-2p)2·p]=-p 2+p+14=-−+12.<1,2=1,得0<p<1,∴D(ξ)在0,,1上单调递减,故选D.3.(2021浙江,15,6分)袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m -n =,E (ξ)=.答案1;89解题指导:由古典概型概率计算公式求得m +n +4的值,再利用概率公式求出m ,从而得n 的值,进而求出m -n ;利用超几何分布的概率公式分别求出ξ=0,1,2的概率,然后利用数学期望公式即可得到结果.解析∵P (ξ=2)=C 42C rr42=6C rr42=16,可得C rr42=36,∴m +n +4=9,又∵P (一红一黄)=C 41·C1C rr42=436=9=13,解得m =3,∴n =2,∴m -n =1.P (ξ=0)=C 52C 92=1036=518,P (ξ=1)=C 41·C 51C 92=4×536=59,P (ξ=2)=16,∴E (ξ)=518×0+59×1+16×2=59+13=89.4.(2022全国甲理,19,12分,应用性)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.(1)求甲学校获得冠军的概率;(2)用X 表示乙学校的总得分,求X 的分布列与期望.解析(1)记“甲学校在第i 个项目获胜”为事件A i (i =1,2,3),“甲学校获得冠军”为事件E.则P (E )=P (A 1A 2A 3)+P (A 1A 23)+P (A 12A 3)+P (1A 2A 3)=12×25×45+12×25×15+12×35×45+12×25×45=35.∴甲学校获得冠军的概率为35.(2)记“乙学校在第j 个项目获胜”为事件B j (j =1,2,3).X 的所有可能取值为0,10,20,30.则P(X=0)=P(123)=12×25×45=425,P(X=10)=P(B123)+P(1y3)+P(12B3)=12×25×45+12×35×45+12×25×15=1125,P(X=20)=P(B1B23)+P(B12B3)+P(1B2B3)=12×35×45+12×25×15+12×35×15=1750,P(X=30)=P(B1B2B3)=12×35×15=350.∴X的分布列为X0102030P42511251750350∴E(X)=0×425+10×1125+20×1750+30×350=13.5.(2021新高考Ⅰ,18,12分)某学校组织“一带一路”知识竞赛,有A,B两类问题.每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分.已知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记X为小明的累计得分,求X的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.解题指导:(1)由题意分析出X的所有可能取值,并求出所有可能取值对应的概率,从而求出X的分布列.(2)根据(1),可求出小明先回答A类问题的数学期望E(X),再求出小明先回答B类问题的数学期望.通过比较,即可得出结果.解析(1)由题易知X的所有可能取值为0,20,100,P(X=0)=1-0.8=0.2,P(X=20)=0.8×(1-0.6)=0.32,P(X=100)=0.8×0.6=0.48,所以X的分布列为X020100P0.20.320.48(2)由(1)可知E(X)=0×0.2+20×0.32+100×0.48=54.4.假设小明先回答B类问题,其累计得分为Y,则Y的所有可能取值为0,80,100,P(Y=0)=1-0.6=0.4,P(Y=80)=0.6×(1-0.8)=0.12,P(Y=100)=0.6×0.8=0.48,所以Y的分布列为Y080100P0.40.120.48所以E(Y)=0×0.4+80×0.12+100×0.48=57.6,所以E(Y)>E(X),所以小明应选择先回答B类问题.方法总结求解离散型随机变量的数学期望的一般步骤:1.判断取值:即判断随机变量的所有可能取值及取每个值所表示的意义;2.探求概率:利用排列组合、枚举法、概率公式,求出随机变量取每个值时的概率;3.写出分布列:按规定形式写出分布列,注意检验所求的分布列或事件的概率是否正确;4.求期望值:利用离散型随机变量的数学期望的定义求其期望值.6.(2022北京,18,13分,应用性)在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到9.50m 以上(含9.50m)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,9.35,9.30,9.25;乙:9.78,9.56,9.51,9.36,9.32,9.23;丙:9.85,9.65,9.20,9.16.假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望EX;(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)解析(1)甲以往参加的10次比赛中,有4次比赛成绩达到获得优秀奖的标准,则甲得优秀奖的概率P=410= 25.(2)随机变量X的所有可能取值为0,1,2,3,设甲、乙、丙获得优秀奖分别为事件A,B,C,则A,B,C,s s 相互独立,且P(A)=25,P(B)=P(C)=12,P()=1-P(A)=1-25=35,P()=P()=12,则P(X=0)=P()=P()P()P()=35×12×12=320;P(X=1)=P(A)+P(B)+P(C)=P(A)P()·P()+P()P(B)P()+P()P()P(C)=25×12×12+ 35×12×12+35×12×12=820=25;P(X=2)=P(AB)+P(A C)+P(BC)=P(A)P(B)·P()+P(A)P()P(C)+P()P(B)P(C)=25×12×12+25×12×12+35×12×12=720;P(X=3)=P(ABC)=P(A)P(B)P(C)=25×12×12=110.故X的数学期望EX=0×320+1×25+2×720+3×110=75.(3)丙.详解:乙夺冠的概率为P(乙)=16×910×34+16×45×12+16×35×12+16×310×12+16×15×12=1348,丙夺冠的概率为P(丙)=14+14×45×56=512,甲夺冠的概率为P(甲)=1-512−1348=516,P(丙)最大,所以丙夺冠的概率最大.7.(2018北京理,17,12分)电影公司随机收集了电影的有关数据,经分类整理得到下表:电影类型第一类第二类第三类第四类第五类第六类电影部数14050300200800510好评率0.40.20.150.250.20.1好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.假设所有电影是否获得好评相互独立.(1)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;(2)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;=1”表示第k类电影得到人(3)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等.用“ξk们喜欢,“ξk=0”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差Dξ1,Dξ2,Dξ3,Dξ4,Dξ5,Dξ6的大小关系.解析(1)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,第四类电影中获得好评的电影部数是200×0.25=50.502000=0.025.(2)设事件A为“从第四类电影中随机选出的电影获得好评”,事件B为“从第五类电影中随机选出的电影获得好评”.故所求概率为P(A+B)=P(A)+P(B)=P(A)(1-P(B))+(1-P(A))P(B).由题意知:P(A)估计为0.25,P(B)估计为0.2.故所求概率估计为0.25×0.8+0.75×0.2=0.35.(3)Dξ1>Dξ4>Dξ2=Dξ5>Dξ3>Dξ6.解后反思古典概型的概率以及方差的求解:在使用古典概型的概率公式时,应该注意:(1)要判断该概率模型是不是古典概型;(2)先分清基本事件的总数n与事件A中包含的结果数m,再利用公式P(A)=求出事件A发生的概率.在求方差时,要学会判断随机变量是不是服从特殊分布,若服从,则利用特殊分布的方差公式求解.8.(2017课标Ⅲ理,18,12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?解析本题考查随机变量的分布列,数学期望.(1)由题意知,X所有可能取值为200,300,500,由表格数据知P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4.因此X的分布列为X200300500P0.20.40.4(2)由题意知,这种酸奶一天的需求量至多为500瓶,至少为200瓶,因此只需考虑200≤n≤500.当300≤n≤500时,若最高气温不低于25,则Y=6n-4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1200-2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×0.4+(1200-2n)×0.4+(800-2n)×0.2=640-0.4n.当200≤n<300时,若最高气温不低于20,则Y=6n-4n=2n;若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n.因此EY=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.所以n=300时,Y的数学期望达到最大值,最大值为520元.9.(2017天津理,16,13分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为12,13,14.(1)记X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(2)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.解析本小题主要考查离散型随机变量的分布列与数学期望,事件的相互独立性,互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.(1)随机变量X的所有可能取值为0,1,2,3.P(X=0)=1−×1−×1−=14,P(X=1)=12×1-13×1-14+1-12×13×1-14+1−2×1−×14=1124,P(X=2)=1−×13×14+12×1−×14+12×13×1=14,P(X=3)=12×13×14=124.所以,随机变量X的分布列为X0123P14112414124随机变量X的数学期望E(X)=0×14+1×1124+2×14+3×124=1312.(2)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)P(Z=1)+P(Y=1)P(Z=0)=14×1124+1124×14=1148.所以,这2辆车共遇到1个红灯的概率为1148.技巧点拔解决随机变量分布列问题的关键是正确求出随机变量可以取哪些值以及取各个值时对应的概率,只有正确理解随机变量取值的意义才能解决这个问题,理解随机变量取值的意义是解决这类问题的必要前提.10.(2016天津理,16,13分)某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)=C31C41+C32C102=13.所以,事件A发生的概率为13.(2)随机变量X的所有可能取值为0,1,2.P(X=0)=C32+C32+C42C102=415,P(X=1)=C31C31+C31C41C102=715,P(X=2)=C31C41C102=415.所以,随机变量X的分布列为X012P415715415随机变量X的数学期望E(X)=0×415+1×715+2×415=1.评析本题主要考查古典概型及其概率计算公式,互斥事件、离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.11.(2015天津理,16,13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(1)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(2)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.解析(1)由已知,有P(A)=C22C32+C32C32C84=635.所以,事件A发生的概率为635.(2)随机变量X的所有可能取值为1,2,3,4.P(X=k)=C5C34−C84(k=1,2,3,4).所以,随机变量X的分布列为X1234P1143737114随机变量X的数学期望E(X)=1×114+2×37+3×37+4×114=52.评析本题主要考查古典概型及其概率计算公式,互斥事件,离散型随机变量的分布列与数学期望等基础知识.考查运用概率知识解决简单实际问题的能力.属中等难度题.12.(2015四川理,17,12分)某市A,B两所中学的学生组队参加辩论赛,A中学推荐了3名男生、2名女生,B 中学推荐了3名男生、4名女生,两校所推荐的学生一起参加集训.由于集训后队员水平相当,从参加集训的男生中随机抽取3人、女生中随机抽取3人组成代表队.(1)求A中学至少有1名学生入选代表队的概率;(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列和数学期望.解析(1)由题意,参加集训的男、女生各有6名.参赛学生全从B中学抽取(等价于A中学没有学生入选代表队)的概率为C33C43C63C63=1100.因此,A中学至少有1名学生入选代表队的概率为1-1100=99100.(2)根据题意,X的可能取值为1,2,3.P(X=1)=C31C33C64=15,P(X=2)=C32C32C64=35,P(X=3)=C33C31C64=15.所以X的分布列为X123P153515因此,X的数学期望为E(X)=1×P(X=1)+2×P(X=2)+3×P(X=3)=1×15+2×35+3×15=2.评析本题主要考查随机事件的概率、古典概型、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查运用概率与统计的知识与方法分析和解决实际问题的能力.13.(2015安徽理,17,12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望).解析(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,P(A)=A21A31A52=310.(2)X的可能取值为200,300,400.P(X=200)=A22A52=110,P(X=300)=A33+C21C31A22A53=310,P(X=400)=1-P(X=200)-P(X=300)=1-110-310=610.故X的分布列为X200300400P110310610EX=200×110+300×310+400×610=350.14.(2015福建理,16,13分)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解析(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23,所以X的分布列为X123P161623所以E(X)=1×16+2×16+3×23=52.评析本小题主要考查古典概型、相互独立事件的概率、随机变量的分布列、数学期望等基础知识,考查运算求解能力、应用意识,考查必然与或然思想.15.(2013课标Ⅰ理,19,12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n.如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的每件产品是优质品的概率都为12,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品的检验费用为100元,且抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望.解析(1)设第一次取出的4件产品中恰有3件优质品为事件A1,第一次取出的4件产品全是优质品为事件A 2,第二次取出的4件产品都是优质品为事件B1,第二次取出的1件产品是优质品为事件B2,这批产品通过检验为事件A,依题意有A=(A1B1)∪(A2B2),且A1B1与A2B2互斥,所以P(A)=P(A1B1)+P(A2B2)=P(A1)P(B1|A1)+P(A2)P(B2|A2)=4×1+1×1=3.(2)X可能的取值为400,500,800,并且P(X=400)=1-416-116=1116,P(X=500)=116,P(X=800)=14.所以X的分布列为X400500800P111611614EX=400×1116+500×116+800×14=506.25.16.(2016课标Ⅰ,19,12分)某公司计划购买2台机器,该种机器使用三年后即被淘汰.机器有一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个200元.在机器使用期间,如果备件不足再购买,则每个500元.现需决策在购买机器时应同时购买几个易损零件,为此搜集并整理了100台这种机器在三年使用期内更换的易损零件数,得下面柱状图:以这100台机器更换的易损零件数的频率代替1台机器更换的易损零件数发生的概率,记X表示2台机器三年内共需更换的易损零件数,n表示购买2台机器的同时购买的易损零件数.(1)求X的分布列;(2)若要求P(X≤n)≥0.5,确定n的最小值;(3)以购买易损零件所需费用的期望值为决策依据,在n=19与n=20之中选其一,应选用哪个?解析(1)由柱状图并以频率代替概率可得,一台机器在三年内需更换的易损零件数为8,9,10,11的概率分别为0.2,0.4,0.2,0.2.可知X的所有可能取值为16、17、18、19、20、21、22,P(X=16)=0.2×0.2=0.04;P(X=17)=2×0.2×0.4=0.16;P(X=18)=2×0.2×0.2+0.4×0.4=0.24;P(X=19)=2×0.2×0.2+2×0.4×0.2=0.24;P(X=20)=2×0.2×0.4+0.2×0.2=0.2;P(X=21)=2×0.2×0.2=0.08;P(X=22)=0.2×0.2=0.04.(4分)所以X的分布列为X161718192021220.0P0.040.160.240.240.20.084(6分)(2)由(1)知P(X≤18)=0.44,P(X≤19)=0.68,故n的最小值为19.(8分)(3)记Y表示2台机器在购买易损零件上所需的费用(单位:元).当n=19时,EY=19×200×0.68+(19×200+500)×0.2+(19×200+2×500)×0.08+(19×200+3×500)×0.04=4040.(10分)当n=20时,EY=20×200×0.88+(20×200+500)×0.08+(20×200+2×500)×0.04=4080.可知当n=19时所需费用的期望值小于n=20时所需费用的期望值,故应选n=19.(12分)思路分析(1)确定X的可能取值,分别求其对应的概率,进而可列出分布列.(2)根据(1)中求得的概率可得P(X≤18)以及P(X≤19)的值,由此即可确定n的最小值.(3)求出n=19,n=20时的期望值,比较大小即可作出决策.。
离散型随机变量、分布列、数学期望、方差:一、框架第一方面:离散型随机变量及其分布列1. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量。
常用大写英文字母X 、Y 等或希腊字母ξ、η等表示。
2.分布列:设离散型随机变量ξ可能取得值为: x 1,x 2,…,x 3,…, ξ取每一个值x i (i =1,2,…)的概率为()i i P x p ξ==,则称表ξx 1x 2…x i…P P 1 P 2 … P i …为随机变量ξ的分布列 3. 分布列的两个性质:⑴P i ≥0,i =1,2,… ⑵P 1+P 2+…=1.常用性质来判断所求随机变量的分布列是否正确!第二方面:条件概率、事件的独立性、独立重复试验、二项分布与超几何分布1. 相互独立事件:如果事件A (或B )是否发生对事件B (或A )发生的概率没有影响,这样的两个事件叫做相互独立事件。
①如果事件A 、B 是相互独立事件,那么,A 与_B 、_A 与B 、_A 与_B 都是相互独立事件②两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。
我们把两个事件A 、B 同时发生记作A·B ,则有P (A·B )= P (A )·P (B )推广:如果事件A 1,A 2,…A n 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积。
即:P (A 1·A 2·…·A n )= P (A 1)·P (A 2)·…·P(A n )★相互独立事件A ,B 有关的概率的计算公式如下表:事件A ,B 相互独立 概率计算公式 A ,B 同时发生 P (AB )=P (A )P (B )A ,B 同时不发生 P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )]=1-P (A )-P (B )+P (A )P (B ) A ,B 至少有一个不发生 P =1-P (AB )=1-P (A )P (B )A ,B 至少有一个发生 P =1-P (A -B -)=1-P (A -)P (B -)=P (A )+P (B )-P (A )P (B )A ,B 恰有一个发生P =P (A B -+A -B )=P (A )P (B -)+P (A -)P (B )=P (A )+P (B )-2P (A )P (B )2.条件概率:称)()()|(A P AB P A B P =为在事件A 发生的条件下,事件B 发生的概率。
常见的离散型随机变量的分布列、均值与方差【知识要点】一、离散型随机变量及其分布列 1、随机变量如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量。
长用希腊字母ηξ,来表示。
若ξ是随机变量,b a +=ξη,其中b a ,是常数,则η也是随机变量。
2、离散型随机变量如果对于随机变量可能取的值,可以一一列出,这样的随机变量叫做离散型随机变量。
3、离散型随机变量的分布列(1)若离散型随机变量X 可能取的不同值为n i x x x x ,,,,,⋅⋅⋅⋅⋅⋅21,X 取每一个值)21(n i x i ,,,⋅⋅⋅=的概率i i p x X P ==)(,以表格的形式表示如下:此表称为离散型随机变量X 的分布列,简称X 的分布列。
有时为了表达简单,也用等式i i p xX P ==)(,n i ,,,⋅⋅⋅=21,表示X 的分布列。
(2)性质:①n i p i ,,,,⋅⋅⋅=≥210;②11=∑=ni i p ;③在某个范围内取值的概率等于这个范围内每个随机变量值的概率的总和。
4、常见离散型随机变量 (1)两点分布若随机变量X 的分布列是则这样的分布列称为两点分布列。
如果随机变量X 的分布列为两点分布列,就称X 服从两点分布(也称伯努利分布),而称)1(==x P p 为成功概率。
其EX=p ,DX=p(1-p). (2)超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为m k C C C X P nNkn MN k M ,,,,,⋅⋅⋅=⋅==--210)k (,其中}min{n M m ,=,且*∈≤≤N N M n N M N n 、、,,,称分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
记作:1)1()(---•==N nN N M N nM DX N nM EX n M N H X ,,其,,—。
离散型随机变量——分布列、期望与方差从近几年高考试题看,离散型随机变量的期望与方差涉及到的试题背景有:①产品检验问题;②射击,投篮问题;③选题、选课,做题,考试问题;④试验,游戏,竞赛,研究性问题;⑤旅游,交通问题;⑥摸球球问题;⑦取卡片,数字和入座问题;⑧信息,投资,路线问题;⑨与概率分布直方图关联问题;⑩综合函数、方程、数列、不等式、导数、线性规划等知识问题着重考查分析问题和解决问题的能力。
一、离散型随机变量的分布列、期望与方差1.离散型随机变量及其分布列: (1)离散型随机变量:如果在试验中,试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化的,这样的变量X 叫做一个随机变量.如果随机变量X 的所有可能的取值都能一一列举出来,则称X 为离散型随机变量. (2)离散型随机变量的特点:①结果的可数性;②结果的未知性。
(3)离散型随机变量的分布列:设离散型随机变量X 所有可能的取值为i x ,与i x 对应的概率为i p (1,2,,)i n =,则下表:称为离散型随机变量X 的概率分布,或称为离散型随机变量X 的分布列. (4)离散型随机变量的分布列的性质:①0i p >(1,2,,)i n =;②11nii p==∑(1,2,,)i n =.③(P ξ≥1)()()k k k x P x P x ξξ+==+=+⋅⋅⋅ 2.离散型随机变量的数学期望:(1)定义:一般地,设一个离散型随机变量X 所有可能的取的值是1x ,2x ,…,n x , 这些值对应的概率是1p ,2p ,…,n p ,则1122()n n E x x p x p x p =+++,叫做这个离散型随机变量X 的均值或数学期望(简称期望).(2)离散型随机变量的数学期望刻画了这个离散型随机变量的平均取值水平.3.离散型随机变量的方差:(1)定义:一般地,设一个离散型随机变量X 所有可能取的值是1x ,2x ,…,n x ,这 些值对应的概率是1p ,2p ,…,n p ,则2221122()(())(())(())n n D X x E x p x E x p x E x p =-+-++-叫做这个离散型随机变量X 的方差.(2)离散型随机变量的方差反映了离散随机变量的取值相对于期望的平均波动的大小 (离散程度).(3)()D X的算术平方根叫做离散型随机变量X 的标准差,它也是一个衡量离散 型随机变量波动大小的量.4.随机变量aX b +的期望与方差:①()()E aX b aE X b +=+;②2()().D aX b a D X +=二、条件概率与事件的独立性:1.条件概率:对于任何两个事件A 和B ,在已知事件A 发生的条件下,事件B 发生的概率叫做条件 概率,用符号“(|)P B A ”来表示.把由事件A 与B 的交(或积),记做D A B =(或D AB =). 2.事件的独立性如果事件A 是否发生对事件B 发生的概率没有影响,即(|)()P B A P B =,这时,我们称两 个事件A ,B 相互独立,并把这两个事件叫做相互独立事件.如果事件1A ,2A ,…,n A 相互独立,那么这n 个事件都发生的概率,等于每个事件发生的概率的积,即1212()()()()n n P A A A P A P A P A =⨯⨯⨯,并且上式中任意多个事 件i A 换成其对立事件后等式仍成立.三、几类典型的概率分布:1.两点分布:如果随机变量X 的分布列为其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布.注:①两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验, 所以这种分布又称为伯努利分布. ②();().E X p D X np ==2.超几何分布:一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取n 件 ()n N ≤,这n 件中所含这类物品件数X 是一个离散型随机变量,它取值为m 时的概率为C C ()C m n mM N Mn NP X m --==(0m l ≤≤,l 为n 和M 中较小的一个),称离散型随机变量X 的这 种形式的概率分布为超几何分布,也称X 服从参数为N ,M ,n 的超几何分布.记为:(,,)X H N M n .注:();ME X n N=2()()()(1)n N n N M M D X N N --=-. 3.二项分布:(1)定义:如果每次试验,只有两个可能的结果A 及A ,且事件A 发生的概率相同(p ). 那么重复地做n 次试验,各次试验的结果相互独立,这种试验称为n 次独立重复试验.在n 次试验中,事件A 恰好发生k 次的概率为:()C (1)kk n k n n P k p p -=-(0,1,,)k n =.(2)二项分布:若将事件A 发生的次数为X ,事件A 不发生的概率为1q p =-,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率是()C k k n k n P X k p q-==, 其中0,1,2,,k n =,于是得到X 的分布列:由于表中第二行恰好是二项展开式00111()C C C C n n n kk n k n n n n n n q p p q p q p q p q --+=++++各对应项的值,所以称这样的离散型随机变量X 服从参数为n ,p 的二项分布, 记作~(,)X B n p . (3)二项分布的均值与方差:若~(,)X B n p ,则()E X np =,()D x npq =(1)q p =-.4.几何分布:(1)定义:在独立重复试验中,某事件第一次发生时,所作试验的次数X 也是一个正 整数的离散型随机变量.“X k =”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为k A 、事件A 不发生记为k A ,()k p A p =,()1,k p A p =- 那么112311231()()()()()()()(1)k k k k k P X k P A A A A A P A P A P A P A P A p p ---====-.(0,1,2,k =…);于是得到随机变量ξ的概率分布如下:记作(,),Xg k p(2)若(,),X g k p 则1()E X p =;21()pD X p-=(1)q p =-. 5.正态分布(1)概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上 面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则 这条曲线称为X 的概率密度曲线.(2)曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. (2)正态分布:①定义:如果随机现象是由一些互相独立的偶然因素所引起的, 而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作 用,则表示这样的随机现象的随机变量的概率分布近似服从正态分 布.服从正态分布的随机变量叫做正态随机变量,简称正态变量. ②正态变量概率密度曲线的函数表达式为 22()2()x f x μσ--=,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞.式中的参数μ和σ分别为正态变量的数学期望和标准差. 期望为μ、标准差为σ的正态分布通常记作:2(,)XN μσ.③正态变量的概率密度函数的图象叫做正态曲线.④标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. ⑤正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是 68.3%,95.4%,99.7%.⑥正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是 0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则.⑦若2~()N ξμσ,,()f x 为其概率密度函数,则称()()()xF x P x f t dt ξ-∞==⎰≤为概率分布函 数,特别的,2~(01)N ξμσ-,,称22()t x x dt φ-=⎰为标准正态分布函数,()()x P x μξφσ-<=.离散型随机变量——分布列、期望与方差考点1.产品检验问题:例1.已知甲盒子内有3个正品元件和4个次品元件,乙盒子内有5个正品元件和4个次品 元件,现从两个盒子内各取出2个元件,试求(1)取得的4个元件均为正品的概率; (2)取得正品元件个数ε的数学期望.例2.某车间在三天内,每天生产10件某产品,其中第一天,第二天分别生产出了1件、 2件次品,而质检部每天要从生产的10件产品中随意抽取4件进行检查,若发现有次品, 则当天的产品不能通过.(1)求第一天通过检查的概率;(2)求前两天全部通过检查的概率;(2)若厂内对车间生产的产品采用记分制:两天全不通过检查得0分,通过1天、 2天分别得1分、2分.求该车间在这两天内得分的数学期望.考点2.比赛问题:例3.,A B 两队进行篮球决赛,共五局比赛,先胜三局者夺冠,且比赛结束。
高中数学专题 07 离散型随机变量及其分布列、期望与方差【母题来源一】 【 2019 年高考浙江卷】设 0< a < 1,则随机变量 X 的分布列是X0 a1 P则当 a 在( 0,1)内增大时,A . D ( X ) 增大B . D ( X ) 减小C .D ( X ) 先增大后减小D . D ( X ) 先减小后增大【答案】 D1 1 1 3 33【分析】研究方差随a 变化的增大或减小规律,常用方法就是将方差用参数 a 表示,应用函数知识求解.本题根据方差与期望的关系,将方差表示为a 的二次函数,二次函数的图象和性质解题.题目有一定综合性,注重重要知识、基础知识、运算求解能力的考查.【解析】方法 1:由分布列得E( X )1 a 3,则 D ( X ) (1 a0)2 1(1 a a)21 (1 a 1)21 2 (a 1) 2 1 ,3 3 3 3 33926则当 a 在 (0,1) 内增大时, D ( X ) 先减小后增大.故选 D .方法2:则D ( X ) E( X 2) E( X ) 0a 21 (a 1)22a22a 2 2 [(a 1) 2 3] ,33 99924则当 a 在 (0,1) 内增大时, D ( X ) 先减小后增大.故选 D .【名师点睛】易出现的错误有,一是数学期望、方差以及二者之间的关系掌握不熟,无从着手;二是计算能力差,不能正确得到二次函数表达式.【母题来源二】 【 2018 年高考浙江卷】设 0 p 1 ,随机变量 ξ的分布列是ξ0121p1pP222则当 p 在( 0, 1)内增大时,A . D(ξ)减小B .D (ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】 D【解析】,,,,∴先增大后减小,故选 D.【母题来源三】【 2017 年高考浙江卷】已知随机变量i满足 P(i =1 ) =p i, P(i =0 ) =1–p i, i=1 ,2.若0<p1<p2<1,则2A .E(1) < E(2),D (1) < D (2)B .E(1) < E(2),D (1) > D (2)C.E(1) > E(2),D (1) < D (2)D .E(1) > E(2),D (1) > D (2)【答案】 A【解析】∵E( 1 )p1 , E( 2 )p2,∴ E(1 ) E( 2 ) ,∵ D ( 1)p1(1 p1), D ( 2 )p2 (1 p2 ) ,∴ D ( 1) D ( 2 )( p1 p2 )(1p1 p2 )0 ,故选 A .【名师点睛】求离散型随机变量的分布列,首先要根据具体情况确定X 的取值情况,然后利用排列,组合与概率知识求出X 取各个值时的概率.对于服从某些特殊分布的随机变量,其分布列可以直接应用公式给出,其中超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.由已知本题随机变量i 服从两点分布,由两点分布数学期望与方差的公式可得 A 正确.【命题意图】理解取有限个值的离散型随机变量均值、方差的概念,能计算简单离散型随机变量的均值、方差,并能解决一些实际问题,考查考生的运算求解能力、分析与解决问题的能力.【命题规律】离散型随机变量的均值与方差是高考的热点题型,近三年浙江卷对此内容的考查略有淡化,难度有所降低,主要考查分布列的性质、数学期望、方差的计算及二者之间的关系.【答题模板】求离散型随机变量X 的分布列的步骤(1)理解 X 的意义,写出 X 可能取的全部值;(2)求 X 取每个值的概率;(3)写出 X 的分布列.注意:①与排列、组合有关分布列的求法.可由排列、组合、概率知识求出概率,再求出分布列.②与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.③与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.④与独立事件有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.⑤求解离散型随机变量X 的均值与方差时,只要在求解分布列的前提下,根据均值、方差的定义求E( X ) ,D ( X ) 即可.【方法总结】1.离散型随机变量分布列的概念及性质(1)离散型随机变量的分布列的概念设离散型随机变量X 可能取的不同值为x1, x2,, x n,X取每一个值 x i(i= 1, 2,, n)的概率P( X = x i ) = p i,则下表称为随机变量X 的概率分布,简称为X 的分布列.X x1x2x i x nP p1p2p i p n 有时也用等式 P( X x i ) p i ,i 1,2, , n 表示X的分布列.(2)离散型随机变量的分布列的性质① p i 0(i =1, 2,, n);② p1p2p n 1.【必记结论】( 1)随机变量的线性关系:若X 是随机变量,Y aX b ,a,b是常数,则Y也是随机变量.( 2)分布列性质的两个作用:①利用分布列中各事件概率之和为 1 可求参数的值;②随机变量ξ所取的值分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率.2.离散型随机变量的均值与方差一般地,若离散型随机变量X 的分布列为:X x1x2x i x nP p1p2p i p n (1)称E( X )x1 p1x2 p2x n p n为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.nE( X )) 2(2)称D ( X )( x i p i为随机变量X的方差,它刻画了随机变量X 与其均值 E(X)的平均偏i 1离程度,其算术平方根D( X ) 为随机变量X的标准差.(3)均值与方差的性质若 Y= aX+ b,其中 a, b 为常数,则Y 也是随机变量,且①E(aX+ b)=aE(X)+ b;②D (aX +b)= a2D (X).3.利用均值、方差进行决策均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.4.均值能够反映随机变量取值的“平均水平”,因此,当均值不同时,两个随机变量取值的水平可见分晓,由此可对实际问题作出决策判断;若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.1.【浙江省温州九校2019 届高三第一次联考】抽奖箱中有15 个形状一样,颜色不一样的乒乓球( 2 个红色,3 个黄色,其余为白色),抽到红球为一等奖,黄球为二等奖,白球不中奖。
知识归纳1.随机变量(1)如果随机试验的结果可以用一个变量X 来表示,并且X 随试验结果的不同而变化,那么变量X 叫做随机变量.(2)如果随机变量所有可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.如果随机变量可以取某一区间内的一切值,这样的随机变量叫做连续型 随机变量.2.离散型随机变量的分布列(1)设离散型随机变量X 所有可能取的不同值为x 1、x 2、…、x i 、…、x n ,X 取每个值x i (i =1,2,…n )的概率P (X =x i )=p i ,则称表X 的分布列也可简记为: P (X =x i )=p i ,i =1、2、…、n . (2)离散型随机变量的分布列的性质:①p i ≥0,i =1,2,…n ; ②p 1+p 2+p 3+…p n =1.离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。
(3)E (X )=x 1p 1+x 2p 2+…+x n p n 为随机变量 X 的均值或数学期望.它反映了离散型随机变量取值的平均水平(4)D (X )=∑i =1n[x i -E (X )]2p i =(x 1-E ξ)2p 1+(x 2-E ξ)2p 2+…+(x n -E ξ)2p n为随机变量X 的方差.它反映了随机变量取值相对于均值的平均波动大小. 方差D (X )的算术平方根D (X )叫做随机变量X 的标准差,记作σ(X ).高三第一轮复习离散型随机变量及其概率分布(5)设a,b 是常数,随机变量X,Y 满足Y=aX+b,则E(Y)=E(aX+b)=aE(X)+b,D(Y)=D(aX+b)=a2D(X)3.二点分布如果随机变量X的分布列为E(X)=p,D(X)=p(1-p)4.超几何分布设有总数为N件的两类物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率P(X=m)=k n kM N MnNC CC--(0≤m≤l,l为n和M中较小的一个),称这种离散型随机变量的概率分布为超几何分布,也称X服从参数为N、M、n的超几何分布.5.条件概率设A、B为两个事件,在事件A发生的条件下,事件B发生的概率叫做条件概率,公式:P(B|A)=P(A∩B) P(A).任何事件的条件概率都在0和1之间,即0≤P(B|A)≤1如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).6.事件的独立性如果事件A的发生与否不影响事件B发生的概率,则P(B|A)=P(B),这时称事件A与B相互独立.如果事件A与B相互独立,则P(A∩B)=P(A)P(B),对于n个事件A1、A2、…、A n,如果其中任何一个事件发生的概率不受其它事件是否发生的影响,则称这n个事件A1、A2、…、A n相互独立.如果事件A与B相互独立,那么事件A与B,A与B,A与B也都相互独立7.独立重复试验与二项分布(1)一般地,在相同条件下重复做n次试验,各次试验的结果相互独立,称为n次独立重复试验.(2)二项分布一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率都为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为P(X=k)=C k n p k(1-p)n-k,k=0,1,2,…,n.此时称随机变量X服从参数为n、p的二项分布,记作X~B(n,p).E(X)=np,D(X)=np(1-p)解决概率问题的步骤第一步,确定事件的性质:古典概型、互斥事件、独立事件、独立重复试验,然后把所给问题归结为某一种.第二步,判断事件的运算(和事件、积事件),确定事件至少有一个发生还是同时发生,分别运用相加或相乘事件公式.第三步,运用公式求概率古典概型P(A)=m n;互斥事件P(A∪B)=P(A)+P(B);条件概率P(B|A)=P(AB) P(A);独立事件P(AB)=P(A)P(B);n次独立重复试验:P(X=k)=C k n p k(1-p)n-k. 基础训练:1.下列四个表格中,可以作为离散型随机变量分布列的一个是( )A BC D2.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( )A .1 B.913 C.1113 D.27133.袋中有大小相同的 5 个球,分别标有 1,2,3,4,5 五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量 x ,则 x 所有可能取值的个数是( )A.5B.9C.10D.25 4.某一射手射击所得的环数ξ的分布列如下ξ 6 7 8 9 10P 0.1 0.2 0.25 x 0.15此射手“射击一次命中环数≥8”的概率为_____.5.某篮运动员在三分线投球的命中率是12,他投球5次,恰好投进 3 个球的概率____ (用数值作答)6.已知随机变量ξ的分布列是:则 D (ξ)=( )ξ 1 2 3P0.4 0.2 0.4A .0.6B .0.8C .1D .1.27.已知随机变量ξ~B (n ,p ),且 E (ξ)=2.4,D (ξ)=1.44,则n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.18.已知 X 的分布列如下表,设 Y =2X +1,则 Y 的数学期望A.61B.32C.1 D 369.(2011 年上海)马老师从课本上抄录一个随机变量ξ的概率分布律如下表.请小牛同学计算ξ的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同.据此,小牛给出了正确答案 E (ξ)=_____.10.已知离散型随机变量 X 的分布列如下表.若 E (X )=0,D (X )=1,则 a =___,b =____.典型例题例1:从集合{1,2,3,4,5}的所有非空子集中,等可能地取出一个.(1)记性质 r :集合中的所有元素之和为 10,求所取出的非空子集满足性质 r 的概率;(2)记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学 期望 E (ξ)变式1.某次选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分 布列与数学期望(注:本小题结果可用分数表示).(超几何分布)例2:从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛. (1)求参加辩论比赛的 4 人中有 2 名女生的概率;(2)设ξ为参加辩论比赛的女生人数,求ξ的分布列及数学期望.变式2.(2011 年广东广州调研)某商店储存的 50 个灯泡中,甲厂生产的灯泡占 60%,乙厂生产的灯泡占 40%,甲厂生产的灯泡的一等品率是 90%,乙厂生产的灯泡的一等品率是 80%.(1)若从这 50 个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这 50 个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ.求E(ξ)的值.(二项分布)例3:已知某种从太空飞船中带回的植物种子每粒成功发芽的概率都为—,某植物研究所分2个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,如果某次没有发芽,则称该次实验是失败的.(1)第一小组做了 3 次实验,记该小组实验成功的次数为X,求X 的概率分布列及数学期望;(2)第二小组进行实验,到成功了 4 次为止,求在第 4 次成功之前共有 3 次失败的概率.变式3.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料. (1)求甲中奖且乙、丙都没有中奖的概率; (2)求中奖人数ξ的分布列及数学期望 E (ξ).例4:一个袋中装有 6 个形状大小完全相同的小球,球的编号分别为 1,2,3,4,5,6.(1)若从袋中每次随机抽取 1 个球,有放回的抽取 2 次,求取出的两个球编号之和为 6 的概率;(2)若从袋中每次随机抽取 2 个球,有放回的抽取 3 次,求恰有 2 次抽到 6 号球的概率;(3)若一次从袋中随机抽取 3 个球,记球的最大编号为 X ,求随机变量 X 的分布列.例5:某商店试销某种商品20 天,获得如下数据:试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品 3 件,当天营业结束后检查存货,若发现存货少于 2 件,则当天进货补充至 3 件,否则不进货,将频率视为概率. (1)求当天商品不进货的概率;(2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望及方差.变式5.(2011 年广东惠州调研)某工厂在试验阶段大量生产一种零件.这种零件有 A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为—,B 项技术指标达标的概率为98.按质量检验规定:两项技术指标都达标的零件为合格品.(1)一个零件经过检测至少一项技术指标达标的概率;(2)任意依次抽取该种零件 4 个,设ξ表示其中合格品的个数,求ξ分布列及E (ξ),D (ξ).例 6:(2011 届广东韶关摸底)A 、B 两个投资项目的利润率分别为随机变量 x 1和x2.根据市场分析,x1和x2的分布列分别为:(1)在A、B 两个项目上各投资 100 万元,y1和y2分别表示投资项目A 和B 所获得的利润,求方差Dy1、Dy2;(2)将x(0≤x≤100)万元投资A 项目,100-x 万元投资B 项目,f(x)表示投资 A 项目所得利润的方差与投资 B 项目所得利润的方差的和. 求f(x)的最小值,并指出x 为何值时,f(x)取到最小值[注:D(ax+b)=a2Dx].变式6.(2011 年广东揭阳模拟)某单位甲乙两个科室人数及男女工作人员分布情况见下表.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两个科室中共抽取 3 名工作人员进行一项关于“低碳生活”的调查.(1)求从甲、乙两科室各抽取的人数;(2)求从甲科室抽取的工作人员中至少有 1 名女性的概率;(3)记ξ表示抽取的 3 名工作人员中男性的人数,求ξ的分布列及数学期望.参考答案基础训练:1.下列四个表格中,可以作为离散型随机变量分布列的一个是( C )A BC D2.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( D )A .1 B.913 C.1113 D.27133.袋中有大小相同的 5 个球,分别标有 1,2,3,4,5 五个号码,现在在有放回抽取的条件下依次取出两个球,设两个球号码之和为随机变量 x ,则 x 所有可能取值的个数是( B )A.5B.9C.10D.25 4.某一射手射击所得的环数ξ的分布列如下ξ 6 7 8 9 10P 0.1 0.2 0.25 x 0.15此射手“射击一次命中环数≥8”的概率为__0.7___.5.某篮运动员在三分线投球的命中率是12,他投球5次,恰好投进 3 个球的概率____ (用数值作答)解析:C 35⎝ ⎛⎭⎪⎫125=516.6.已知随机变量ξ的分布列是:则 D (ξ)=( B )ξ 1 2 3P0.4 0.2 0.4A .0.6B .0.8C .1D .1.27.已知随机变量ξ~B (n ,p ),且 E (ξ)=2.4,D (ξ)=1.44,则n ,p 的值为( )A .n =4,p =0.6B .n =6,p =0.4C .n =8,p =0.3D .n =24,p =0.18.已知 X 的分布列如下表,设 Y =2X +1,则 Y 的数学期望A.61B.32C.1 D 369.(2011 年上海)马老师从课本上抄录一个随机变量ξ的概率 分布律如下表.请小牛同学计算ξ的数学期望,尽管“!”处无法 完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的 数值相同.据此,小牛给出了正确答案 E (ξ)=__2___.10.已知离散型随机变量 X 的分布列如下表.若 E (X )=0,D (X )=1,则 a =___,b =____.解析:由题知a +b +c =12,-a +c +6=0,12×a +12×c +22×112=1,解得a =512,b =14. 典型例题例1:从集合{1,2,3,4,5}的所有非空子集中,等可能地取出一个.(1)记性质 r :集合中的所有元素之和为 10,求所取出的非空子集满足性质 r 的概率;(2)记所取出的非空子集的元素个数为ξ,求ξ的分布列和数学 期望 E (ξ)解析:(1)记“所取出的非空子集满足性质r ”为事件A ,基本事件总数n =C 15+C 25+C 35+C 45+C 55=31.事件A 包含的基本事件是{1,4,5},{2,3,5},{1,2,3,4}.事件A 包含的基本事件数m =3,所以p (A )=m n =331. (2)依题意,ξ的所有可能取值为1,2,3,4,5.又p (ξ=1)=C 1531=531,p (ξ=2)=C 2531=1031,p (ξ=3)=C 3531=1031,p (ξ=4)=C 4531=531,p (ξ=5)=C 5531=131.故ξ的分布列为:从而E (ξ)=1×31+2×31+3×31+4×31+5×31=31. 变式1.某次选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为45,35,25,且各轮问题能否正确回答互不影响.(1)求该选手被淘汰的概率;(2)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望(注:本小题结果可用分数表示).解:方法一:(1)记“该选手能正确回答第i 轮的问题”的事件为A i (i =1,2,3),则P (A 1)=45,P (A 2)=35,P (A 3)=25,∴该选手被淘汰的概率p =P (A 1+A 1A 2+A 1A 2A 3)=P (A 1)+P (A 1)P (A 2)+P (A 1)P (A 2)P (A 3) =15+45×25+45×35×35=101125.(2)ξ的可能值为1,2,3,P (ξ=1)=P (A 1)=15;P (ξ=2)=P (A 1A 2)=P (A 1)P (A 2)=45×25=825; P (ξ=3)=P (A 1A 2)=P (A 1)P (A 2)=45×35=1225.∴ξ的分布列为∴E(ξ)=1×5+2×25+3×25=25(超几何分布)例2:从 5 名男生和 4 名女生中选出 4 人去参加辩论比赛.(1)求参加辩论比赛的 4 人中有 2 名女生的概率;(2)设ξ为参加辩论比赛的女生人数,求ξ的分布列及数学期望.解析:(1)P=C25·C24C49=1021.(2)ξ可能取值为0,1,2,3,4,P(ξ=0)=C45C49=5126,P(ξ=1)=C35·C14C49=2063,P(ξ=2)=C25·C24C49=1021,P(ξ=3)=C15·C34C49=1063,P(ξ=4)=C44C49=1126.所求的分布列为:∴E(ξ)=0×126+1×63+2×21+3×63+4×126=63.变式2.(2011 年广东广州调研)某商店储存的 50 个灯泡中,甲厂生产的灯泡占 60%,乙厂生产的灯泡占 40%,甲厂生产的灯泡的一等品率是 90%,乙厂生产的灯泡的一等品率是 80%.(1)若从这 50 个灯泡中随机抽取出一个灯泡(每个灯泡被取出的机会均等),则它是甲厂生产的一等品的概率是多少?(2)若从这 50 个灯泡中随机抽取出两个灯泡(每个灯泡被取出的机会均等),这两个灯泡中是甲厂生产的一等品的个数记为ξ.求E(ξ)的值.解:(1)方法一:设事件A 表示“甲厂生产的灯泡”,事件B表示“灯泡为一等品”,依题意有 P (A )=0.6,P (B |A )=0.9,根据条件概率计算公式得P (AB )=P (A )·P (B |A )=0.6×0.9=0.54.方法二:该商店储存的 50 个灯泡中是甲厂生产的灯泡有 50×60%=30(个),乙厂生产的灯泡有 50×40%=20(个),其中是甲厂生产的一等品有 30×90%=27(个), 乙厂生产的一等品有 20×80%=16(个), 故从这 50 个灯泡中随机抽取出一个灯泡,它是甲厂生产的一等品的概率是P =5027=0.54.(2)ξ的取值为0,1,2,P (ξ=0)=C 223C 250=2531 225,P (ξ=1)=C 127C 123C 250=6211 225,P (ξ=2)=C 227C 250=3511 225.∴ξ的分布列为:∴E (ξ)=0×1 225+1×1 225+2×1 225=1 225=1.08. (二项分布)例3:已知某种从太空飞船中带回的植物种子每粒成功发芽的 概率都为—,某植物研究所分2个小组分别独立开展该种子的发芽实验,每次实验种一粒种子,如果某次没有发芽,则称该次实验是失败的. (1)第一小组做了 3 次实验,记该小组实验成功的次数为 X , 求 X 的概率分布列及数学期望;(2)第二小组进行实验,到成功了 4 次为止,求在第 4 次成功 之前共有 3 次失败的概率.解析:(1)由题意,随机变量X 可能取值为0,1,2,3,则X ~B ⎝ ⎛⎭⎪⎫3,13,即P (X =0)=C 03·⎝ ⎛⎭⎪⎫1-133=827,P (X =1)=C 13·⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫1-132=49,P (X =2)=C 23·⎝ ⎛⎭⎪⎫132·⎝⎛⎭⎪⎫1-131=29,P (X =3)=C 33·⎝ ⎛⎭⎪⎫133=127.∴X 的概率分布列为:∴X 的数学期望E (X )=0×27+1×9+2×9+3×27=1. (2)第二小组第7次实验成功,前面6次实验中有3次失败,每次试验又是相互独立的,因此所求概率为P =C 36·⎝ ⎛⎭⎪⎫133·⎝⎛⎭⎪⎫1-133·13=1602 187.变式3.某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若其瓶盖内印有“奖励一瓶”字样即为中奖,中奖概率为16.甲、乙、丙三位同学每人购买了一瓶该饮料. (1)求甲中奖且乙、丙都没有中奖的概率;(2)求中奖人数ξ的分布列及数学期望 E (ξ).解:(1)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么P (A )=P (B )=P (C )=16.P (A ·B ·C )=P (A )P (B )P (C )=16·⎝ ⎛⎭⎪⎫562=25216. (2)ξ的可能值为0,1,2,3,P (ξ=k )=C k 3⎝ ⎛⎭⎪⎫16k ⎝ ⎛⎭⎪⎫563-k(k =0,1,2,3). 所以中奖人数ξ的分布列为:E (ξ)=0×216+1×72+2×72+3×216=2.例4:一个袋中装有 6 个形状大小完全相同的小球,球的编号分别为 1,2,3,4,5,6.(1)若从袋中每次随机抽取 1 个球,有放回的抽取 2 次,求取出的两个球编号之和为 6 的概率;(2)若从袋中每次随机抽取 2 个球,有放回的抽取 3 次,求恰有 2 次抽到 6 号球的概率;(3)若一次从袋中随机抽取 3 个球,记球的最大编号为 X ,求随机变量 X 的分布列.正解:(1)设先后两次从袋中取出球的编号为m ,n ,则两次取 球的编号的一切可能结果(m ,n )有6×6=36 种,其中和为6 的结果有(1,5),(5,1),(2,4),(4,2),(3,3),共5种, 则所求概率为356.(2)每次从袋中随机抽取2个球,抽到编号为6的球的概率p =C 15C 26=13.所以,3次抽取中,恰有2次抽到6号球的概率为 C 23p 2(1-p )=3×⎝ ⎛⎭⎪⎫132⎝ ⎛⎭⎪⎫23=29.(3)随机变量X 所有可能的取值为3,4,5,6.P (X =3)=C 33C 36=120,P (X =4)=C 23C 36=320,P (X =5)=C 24C 36=620=310,P (X =6)=C 25C 36=1020=12.所以,随机变量X 的分布列为:例5试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品 3 件,当天营业结束后检查存货,若发现存货少于 2 件,则当天进货补充至 3 件,否则不进货,将频率视为概率. (1)求当天商品不进货的概率;(2)记 X 为第二天开始营业时该商品的件数,求 X 的分布列和数学期望及方差.解析:(1)P (“当天商品不进货”)=P (“当天商品销售量为0件”)+P (“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P (X =2)=P (“当天商品销售量为1件”)=520=14,P (X =3)=P (“当天商品销售量为0件”)+P (“当天商品销售量为2件”)+P (“当天商品销售量为3件”) =120+920+520=34. 故X 的分布列为:X 的数学期望为EX =2×4+3×4=4, 方差DX =14×⎝⎛⎭⎪⎫2-1142+34×⎝ ⎛⎭⎪⎫3-1142=316.变式5.(2011 年广东惠州调研)某工厂在试验阶段大量生产一种零件.这种零件有 A 、B 两项技术指标需要检测,设各项技术指标达标与否互不影响.若A项技术指标达标的概率为—,B 项技术指标达标的概率为98.按质量检验规定:两项技术指标都达标的零件为合格品.(1)一个零件经过检测至少一项技术指标达标的概率;(2)任意依次抽取该种零件 4 个,设ξ表示其中合格品的个数,求ξ分布列及E (ξ),D (ξ).解:(1)设M :一个零件经过检测至少一项技术指标达标,则M -:A ,B 都不达标;故P (M )=1-P (M -)=1-⎝ ⎛⎭⎪⎫1-34·⎝ ⎛⎭⎪⎫1-89=3536. (2)依题意知ξ~B ⎝ ⎛⎭⎪⎫4,23,P (ξ=0)=⎝ ⎛⎭⎪⎫134=181,P (ξ=1)=C 14⎝ ⎛⎭⎪⎫231⎝ ⎛⎭⎪⎫133=881,P (ξ=2)=C 24⎝ ⎛⎭⎪⎫232⎝ ⎛⎭⎪⎫132=2481=827,P (ξ=3)=C 34⎝ ⎛⎭⎪⎫233⎝ ⎛⎭⎪⎫13=3281, P (ξ=4)=⎝ ⎛⎭⎪⎫234=1681. ξ的分布列为:E (ξ)=4·3=3,D (ξ)=4·3·⎝⎛⎭⎪⎫1-3=9. 例 6:(2011 届广东韶关摸底)A 、B 两个投资项目的利润率分别为随机变量 x 1和x 2.根据市场分析,x 1和x 2的分布列分别为:(1)在 A 、B 两个项目上各投资 100 万元,y 1 和 y 2 分别表示投资项目 A 和 B 所获得的利润,求方差 Dy 1、Dy 2;(2)将 x (0≤x ≤100)万元投资 A 项目,100-x 万元投资 B 项目,f (x )表示投资 A 项目所得利润的方差与投资 B 项目所得利润的方差的和. 求f (x )的最小值,并指出 x 为何值时,f (x )取到最小值[注:D (ax +b )=a 2Dx ].解析:(1)由题设可知y 1 和 y 2 的分布列分别为:(2)f (x )=D ⎝ ⎛⎭⎪⎫x 100y 1+D ⎝ ⎛⎭⎪⎫100-x 100y 2=⎝ ⎛⎭⎪⎫x 1002Dy 1+⎝ ⎛⎭⎪⎫100-x 1002Dy 2 =41002[x 2+3(100-x )2]=41002(4x 2-600x +3×1002), 当x =6002×4=75时,f (x )=3为最小值. 变式6.(2011 年广东揭阳模拟)某单位甲乙两个科室人数及男女工作人员分布情况见下表.现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两个科室中共抽取 3 名工作人员进行一项关于“低碳生活”的调查.(1)求从甲、乙两科室各抽取的人数;(2)求从甲科室抽取的工作人员中至少有 1 名女性的概率; (3)记ξ表示抽取的 3 名工作人员中男性的人数,求ξ的分布列 及数学期望.解:(1)从甲组应抽取的人数为315×10=2,从乙组中应抽取的人数为315×5=1. (2)从甲组抽取的工作人员中至少有1名女性的概率P =1-C 26C 210=23⎝⎛⎭⎪⎫或P =C 14C 16+C 24C 210=23. (3)ξ的可能取值为0,1,2,3,0.30.5 0.2 P 12 8 2 y 2 0.20.8 P 10 5 y 1 E (y 1)=5×0.8+10×0.2=6, D (y 1)=(5-6)2×0.8+(10-6)2×0.2=4.E (y 2)=2×0.2+8×0.5+12×0.3=8,P(ξ=0)=C24C210·C12C15=475,P(ξ=1)=C14C16C210·C12C15+C24C210·C13C15=2275,P(ξ=2)=C26C210·C12C15+C16C14C210·C13C15=3475,P(ξ=3)=C26C210·C13C15=15,∴ξ的分布列为:E(ξ)=0×75+1×75+2×75+3×5=5.。