3第三章液流型态及水头损失习题
- 格式:ppt
- 大小:4.13 MB
- 文档页数:34
第3章 流体动力学基础3.1 解: zuu y u u x u u t u a x z x y x x x x ∂∂+∂∂+∂∂+∂∂=()()342246222222222=++++=+-++++=++=z y x t z y t y x t u u y xzu u yu u xu u tu a y zy yy xy y ∂∂+∂∂+∂∂+∂∂=()()32111=-++=-+++--=+-=z y x z x t z y t u u x yzu u y u u x u u t u a z z z y z x z z ∂∂+∂∂+∂∂+∂∂=()()112122211=++++=-+-+++=-+=z y x t z y t y x t u u z x222286.35s m a a a a z y x =++=3.2 解:(1)3235623=-=+=xy xy u xy y u a y x x222527310.3333231s m a a a y u y a y x y y =+===-=(2)二元流动(3)恒定流 (4)非均匀流 3.3 解:bh u y h u bdy h y u udA Q h hA m ax 07871m ax 071m ax 8787==⎪⎭⎫ ⎝⎛==⎰⎰ m ax 87u A Q v ==3.4 解:s m dd v v 02.011.02221221=⎪⎭⎫ ⎝⎛⨯=⎪⎪⎭⎫ ⎝⎛= 3.5 解:Hd v d 1v 1q 1q 2223d 3v Dv 1dv 2(1)s m v d Q 332330785.04==πs m q Q Q 32321.0=+= s m Q q Q 321115.0=+=(2)s m d Q v 12.242111==πs m d Q v 18.342222==π 3.6 解:渠中:s m m m s m bh v Q 311612/3=⨯⨯==管中:2231242.1d v s m Q Q Q ⨯⨯==-=πm v Q d 0186.1422==π 3.7 解: s m d d v v ABB A62.04.05.1442222=⨯=⋅=ππ以过A 点的水平面为等压面,则OmH g v g p h H OmH g v g p H B B B A A A 2222226964.58.925.18.9405.128980.48.9268.9302=⨯++=++==⨯+=+=ρρ可以看出:A B H H >,水将从B 点流向A 点。
第三章液流型态和水头损失第一节水头损失及其分类一、水头损失产生的原因实际液体都有粘滞性,实际液体在流动过程中有能量损失,主要是由于水流与边界面接触的液体质点黏附于固体表面,流速u为零,在边界面的法线方向上u从零迅速增大,导致过水断面上流速分布不均匀,这样相邻流层之间存在相对运动,有相对运动的两相邻流层间就产生内摩擦力,水流在流动过程中必然要克服这种摩擦阻力消耗一部分机械能,这部分机械能称为水头损失。
单位重量液体从一断面流至另一断面所损失的机械能称为两断面间的能量损失,也叫水头损失。
粘滞性的存在是液流水头损失产生的根源,是内在的、根本的原因。
但从另一方面考虑,液流总是在一定的固体边界下流动的,固体边界的沿程急剧变化,必然导致主流脱离边壁,并在脱离处产生旋涡。
旋涡的存在意味着液体质点之间的摩擦和碰撞加剧,这显然要引起另外的较大的水头损失。
因此,必须根据固体边界沿程变化情况对水头损失进行分类。
水流横向边界对水头损失的影响:横向固体边界的形状和大小可用水断面面积A与湿周Χ来表示。
湿周是指水流与固体边界接触的周界长度。
湿周x不同,产生的水流阻力不同。
比如:两个不同形状的断面,一正方行,二扁长矩形,两者的过水断面面积A相同,水流条件相同,但扁长矩形渠槽的湿周x较大,故所受阻力大,水头损失也大。
如果两个过水断面的湿周x相同,但面积A不同,通过同样的流量Q,水流阻力及水头损失也不相等。
所以单纯用A或X来表示水力特征并不全面,只有将两者结合起来才比较全面,为此,引入水力半径的概念。
水力学中习惯上称χAR=为水力半径,它是反映过水断面形状尺寸的一个重要的水力要素。
水流边界纵向轮廓对水头损失的影响:纵向轮廓不同的水流可能发生均匀流与非均匀流,其水头损失也不相同。
二、水头损失的分类边界形状和尺寸沿程不变或变化缓慢时的水头损失成为沿程水头损失,以hf表示,简称沿程损失。
边界形状和尺寸沿程急剧变化时的水头损失称为局部水头损失,以hj表示,简称局部损失。
⽔⼒学习题及答案-液体⼀元恒定总流的基本原理第3章液体⼀元恒定总流的基本原理题解3.1如图某⽔平放置的分叉管路,总管流量Q =40m 3/s ,通过叉管1的流量为Q 1=20m 3/s ,叉管2的直径d =1.5m 求出管2的流量及断⾯平均流速。
题3.1图解:由连续⽅程可知12Q Q Q =+则321402020m /s Q Q Q =-=-=2222222442011.32m/s 3.14 1.5Q Q v A d π?====?3.2有⼀底坡⾮常陡的渠道如图所⽰,⽔流为恒定流,A 点流速为5m/s ,设A 点距⽔⾯的铅直⽔深H =3.5m ,若以o o -为基准⾯。
求A 点的位置⽔头。
压强⽔头,流速⽔头,总⽔头各为多少?题3.2图解:A 点的位置⽔头:10m A z = A 点的压强⽔头为:2cos 30 3.50.75 2.63m Ap H gρ=?=?= A 点的流速⽔头:225 1.27m 229.81A u g ==? 总⽔头: 210 2.63 1.2713.9m 2A AA A p u E z g gρ=++=++=3.3垂直放置的管道,并串联⼀⽂丘⾥流量计如图所⽰。
已知收缩前的管径m 0.4=D ,喉管处的直径m 0.2=d ,⽔银压差计读数△h =3.0cm ,两断⾯间的⽔头损失gv h w 205.021=(1v 对应喉管处的流速)求管中⽔流的流速和流量。
1题3.3图解:以2—2断⾯为基准⾯对1—1断⾯和2—2断⾯列能量⽅程有(并取12 1.0αα==)gv g v g p g v g p z 205.0202212222111+++=++ρρ整理后得出 gv g v g v g v g v g p g p z 295.02205.0222122212122211-=+-=-+ρρ(a )列出⽔银压差计上的等压⾯⽅程有[]h z z l g p h g gl p m ?+--+=?++)(2121ρρρ经化简,由于02=zh gp p z ?-=-+6.12211ρ代⼊(a )后可得g v h 289.06.1221=?从⽽可解出m /s 89.21=v 流量s d A v Q /m 1007.9489.234211-?=?==π3.4有⼀⽔泵,,抽⽔流量Q =0.02m 3/s,吸⽔管直径d =20cm ,管长L =5.0m ,泵内允许真空值为6.5m ⽔柱,吸⽔管(包括底阀、弯头)⽔头损失h W =0.16m ,试计算⽔泵的安装⾼度h s 。
第三章流体运动学与动力学基础主要内容基本概念欧拉运动微分方程连续性方程——质量守恒*伯努利方程——能量守恒** 重点动量方程——动量守恒** 难点方程的应用第一节研究流体运动的两种方法流体质点:物理点。
是构成连续介质的流体的基本单位,宏观上无穷小(体积非常微小,其几何尺寸可忽略),微观上无穷大(包含许许多多的流体分子,体现了许多流体分子的统计学特性)。
空间点:几何点,表示空间位置。
流体质点是流体的组成部分,在运动时,一个质点在某一瞬时占据一定的空间点(x,y,z)上,具有一定的速度、压力、密度、温度等标志其状态的运动参数。
拉格朗日法以流体质点为研究对象,而欧拉法以空间点为研究对象。
一、拉格朗日法(跟踪法、质点法)Lagrangian method1、定义:以运动着的流体质点为研究对象,跟踪观察个别流体质点在不同时间其位置、流速和压力的变化规律,然后把足够的流体质点综合起来获得整个流场的运动规律。
2、拉格朗日变数:取t=t0时,以每个质点的空间坐标位置为(a,b,c)作为区别该质点的标识,称为拉格朗日变数。
3、方程:设任意时刻t,质点坐标为(x,y,z) ,则:x = x(a,b,c,t)y = y(a,b,c,t) z = z(a,b,c,t) 4、适用情况:流体的振动和波动问题。
5、优点: 可以描述各个质点在不同时间参量变化,研究流体运动轨迹上各流动参量的变化。
缺点:不便于研究整个流场的特性。
二、欧拉法(站岗法、流场法)Eulerian method1、定义:以流场内的空间点为研究对象,研究质点经过空间点时运动参数随时间的变化规律,把足够多的空间点综合起来得出整个流场的运动规律。
2、欧拉变数:空间坐标(x ,y ,z )称为欧拉变数。
3、方程:因为欧拉法是描写流场内不同位置的质点的流动参量随时间的变化,则流动参量应是空间坐标和时间的函数。
位置: x = x(x,y,z,t)y = y(x,y,z,t) z = z(x,y,z,t)速度: u x =u x (x,y,z,t )u y =u y (x,y,z,t ) u z =u z (x,y,z,t )同理: p =p (x,y,z,t ) ,ρ=ρ(x,y,z,t) 说明: x 、y 、z 也是时间t 的函数。
第三章水动力学基础1、渐变流与急变流均属非均匀流。
( )2、急变流不可能是恒定流。
( )3、总水头线沿流向可以上升,也可以下降。
( )4、水力坡度就是单位长度流程上的水头损失。
( )5、扩散管道中的水流一定是非恒定流。
( )6、恒定流一定是均匀流,非恒定流一定是非均匀流。
( )7、均匀流流场内的压强分布规律与静水压强分布规律相同。
( )8、测管水头线沿程可以上升、可以下降也可不变。
( )9、总流连续方程v1A1 = v2A2对恒定流和非恒定流均适用。
( )10、渐变流过水断面上动水压强随水深的变化呈线性关系。
( )11、水流总是从单位机械能大的断面流向单位机械能小的断面。
( )12、恒定流中总水头线总是沿流程下降的,测压管水头线沿流程则可以上升、下降或水平。
( )13、液流流线和迹线总是重合的。
( )14、用毕托管测得的点流速是时均流速。
( )15、测压管水头线可高于总水头线。
( )16、管轴高程沿流向增大的等直径管道中的有压管流,其管轴压强沿流向增大。
( )17、理想液体动中,任意点处各个方向的动水压强相等。
( )18、恒定总流的能量方程z1 + p1/g + v12/2g = z2 +p2/g + v22/2g +h w1- 2 ,式中各项代表( )(1) 单位体积液体所具有的能量;(2) 单位质量液体所具有的能量;(3) 单位重量液体所具有的能量;(4) 以上答案都不对。
19、图示抽水机吸水管断面A─A动水压强随抽水机安装高度h的增大而( )(1) 增大(2) 减小(3) 不变(4) 不定h1与h2的关系为( ) (1) h>h(2) h<h(3) h1 = h2(4) 无法确定( )(1) 测压管水头线可以上升也可以下降(2) 测压管水头线总是与总水头线相平行(3) 测压管水头线沿程永远不会上升(4) 测压管水头线不可能低于管轴线22、图示水流通过渐缩管流出,若容器水位保持不变,则管内水流属( )(3) 恒定非均匀流(4) 非恒定非均匀流( )(1) 逐渐升高(2) 逐渐降低(3) 与管轴线平行(4) 无法确定24、均匀流的总水头线与测压管水头线的关系是( )(1) 互相平行的直线;(2) 互相平行的曲线;(3) 互不平行的直线;(4) 互不平行的曲线。
⽔⼒学液流形态和⽔头损失第三章液流形态和⽔头损失考点⼀沿程⽔头损失、局部⽔头损失及其计算公式1、沿程⽔头损失和局部⽔头损失计算公式(1)⽔头损失的物理概念定义:实际液体运动过程中,相邻液层之间存在相对运动。
由于粘性的作⽤,相邻流层之间就存在内摩擦⼒。
液体运动过程中,要克服这种摩擦阻⼒就要做功,做功就要消耗⼀部分液流的机械能,转化为热能⽽散失。
这部分转化为热能⽽散失的机械能就是⽔头损失。
分类:液流边界状况的不同,将⽔头损失分为沿程⽔头损失和局部⽔头损失。
(2)沿程⽔头损失:在固体边界平直的⽔道中,单位重量的液体⾃⼀个断⾯流⾄另⼀个断⾯损失的机械能就叫做该两个断⾯之间的⽔头损失,这种⽔头损失是沿程都有并随沿程长度增加⽽增加的,所以称作沿程⽔头损失,常⽤h f 表⽰。
沿程⽔头损失的计算公式为达西公式对于圆管 g v d L h f 22λ=对于⾮圆管 gv R L h f 242λ=式中,λ为沿程阻⼒系数,其值与液流的流动形态和管壁的相对粗糙度d /?有关,其中?称为管壁的绝对粗糙度,)(Re,df ?=λ; L 为管长;d 为管径;v 为管道的断⾯平均流速;R 为⽔⼒半径;v 为断⾯平均流速。
(3)局部⽔头损失:当液体运动时,由于局部边界形状和⼤⼩的改变,液体产⽣漩涡,或流线急剧变化,液体在⼀个局部范围之内产⽣了较⼤的能量损失,这种能量损失称作局部⽔头损失,常⽤h j 表⽰。
局部⽔头损失的计算公式为 gv h j 22ζ=式中,ζ为局部阻⼒系数;其余符号同前。
(4)总⽔头损失对于某⼀液流系统,其全部⽔头损失h w 等于各流段沿程⽔头损失与局部⽔头损失之和,即 ∑∑+=jifiw hh h2、湿周、⽔⼒半径(1)湿周χ:液流过⽔断⾯与固体边界接触的周界线,是过⽔断⾯的重要的⽔⼒要素之⼀。
其值越⼤,对⽔流的阻⼒和⽔头损失越⼤。
(2)⽔⼒半径R : 过⽔断⾯⾯积与湿周的⽐值,即χAR =单靠过⽔断⾯⾯积或湿周,都不⾜以表明断⾯⼏何形状和⼤⼩对⽔流⽔头损失的影响。
第三章 流体动力学3-1.重度γoil =8.82kN/m 3的重油,沿直径d =150mm 的输油管路流动,其重量流量G=490kN/h ,求体积流量Q 及平均流速v ?解:3-2.图示一渐扩形的供水管段,已知:d=15cm ,D=30cm ,p A =6.86N/cm 2,p B =5.88N/cm 2,h=1m ;v B =1.5m/s 。
问v A =?水流的方向如何?水头损失为若干? 设α=1。
解:设流向为由A 到B ,则有:即:则流向的确为由A 到B 。
3-3 水平管路中装一只汾丘里水表。
已知D=5cm ,d=2.5cm ,p’1=0.784N/cm 2,水的流量Q=2.7升/秒。
问h v 为若干毫米水银柱?(不计损失)解: ,解出:p’2=-0.634N/cm 2,为相对压强,即负的真空度h v ,即h v =0.634N/cm 2,sm h m m kN h kN GQ /0154321.0/556.55/82.8/490333====γs m m s m A Q v /873278.04/)15.0(/0154321.023=⨯==πB B A A A v A v =s m dD A A v v A B B A /65.122=⨯==lh s m m N m N +⨯+⨯+=⨯+⨯+8.925.198001088.50.18.92)/6(/9800/1086.602423240 O H 72194.1 2>解出m h l =gv p g v 202784.0022221++=++γγs cm s cm D Q v /51.1374/5/27004/2321=⨯==ππs cm scm d Q v /0395.5504/5.2/27004/2322=⨯==ππ2·x 1x 2而1N/cm 2=75.061mmHg ,故 h v =47.588 mmHg 。
3-4 水银压差计连接在水平放置的汾丘里流量计上。
第三章 液流形态和水头损失考点一 沿程水头损失、局部水头损失及其计算公式1、沿程水头损失和局部水头损失计算公式(1)水头损失的物理概念定义:实际液体运动过程中,相邻液层之间存在相对运动。
由于粘性的作用,相邻流层之间就存在内摩擦力。
液体运动过程中,要克服这种摩擦阻力就要做功,做功就要消耗一部分液流的机械能,转化为热能而散失。
这部分转化为热能而散失的机械能就是水头损失。
分类:液流边界状况的不同,将水头损失分为沿程水头损失和局部水头损失。
(2)沿程水头损失:在固体边界平直的水道中,单位重量的液体自一个断面流至另一个断面损失的机械能就叫做该两个断面之间的水头损失,这种水头损失是沿程都有并随沿程长度增加而增加的,所以称作沿程水头损失,常用h f 表示。
沿程水头损失的计算公式为达西公式对于圆管 gv d L h f 22λ= 对于非圆管 gv R L h f 242λ= 式中,λ为沿程阻力系数,其值与液流的流动形态和管壁的相对粗糙度d /∆有关,其中∆称为管壁的绝对粗糙度,)(Re,df ∆=λ; L 为管长;d 为管径;v 为管道的断面平均流速;R 为水力半径; v 为断面平均流速。
(3)局部水头损失:当液体运动时,由于局部边界形状和大小的改变,液体产生漩涡,或流线急剧变化,液体在一个局部范围之内产生了较大的能量损失,这种能量损失称作局部水头损失,常用h j 表示。
局部水头损失的计算公式为 gv h j 22ζ= 式中,ζ为局部阻力系数;其余符号同前。
(4)总水头损失对于某一液流系统,其全部水头损失h w 等于各流段沿程水头损失与局部水头损失之和,即 ∑∑+=ji fi w h h h2、湿周、水力半径(1)湿周χ:液流过水断面与固体边界接触的周界线,是过水断面的重要的水力要素之一。
其值越大,对水流的阻力和水头损失越大。
(2)水力半径R : 过水断面面积与湿周的比值,即 χAR =单靠过水断面面积或湿周,都不足以表明断面几何形状和大小对水流水头损失的影响。