IO设备与CPU和存储器的连接
- 格式:ppt
- 大小:481.00 KB
- 文档页数:30
8086是intel公司推出的一款16位微处理器,它采用了20位位置区域总线,能够寻址1MB的内存空间。
在8086中,存储器和I/O端口的编址方式对于系统的设计和应用具有重要意义。
本文将围绕8086对存储器和I/O端口的编址方式展开深入探讨。
一、存储器的编址方式1. 实位置区域模式8086微处理器最初工作在实位置区域模式下,通过物理位置区域直接对存储器进行寻址。
在实位置区域模式下,8086可以访问的存储器空间为1MB,位置区域空间范围为0xxxx~0xFFFFF。
2. 分段位置区域模式为了克服实位置区域模式下1MB内存的局限性,8086引入了分段位置区域模式。
在分段位置区域模式下,8086通过段基址寄存器和偏移位置区域的组合来访问存储器,可以实现对更大容量的存储器进行访问。
3. 段基址寄存器在分段位置区域模式下,8086中的段基址寄存器包括CS(代码段寄存器)、DS(数据段寄存器)、ES(额外段寄存器)和SS(堆栈段寄存器),它们分别用来存放代码段、数据段、额外段和堆栈段的基址。
4. 偏移位置区域8086微处理器中,偏移位置区域用来表示段内的相对位置区域,它的范围为0~xxx。
5. 分段位置区域的形式在8086中,物理位置区域的计算方式为:物理位置区域=段基址×16+偏移位置区域。
通过这样的方式,8086可以实现对1MB范围内的存储器进行寻址。
二、 I/O端口的编址方式1. 端口编址方式8086微处理器通过端口编址方式来对I/O设备进行访问,I/O端口的位置区域空间范围为0~xxx。
2. IN指令和OUT指令8086微处理器提供了IN指令和OUT指令用于进行I/O端口的读写操作。
IN指令用于从指定端口读取数据,OUT指令用于向指定端口写入数据。
3. I/O端口位置区域的分配在8086系统中,I/O端口位置区域的分配由外围设备的制造商进行规划,保证不同的外围设备具有不同的端口位置区域,从而避免了位置区域冲突。
计算机组成原理——IO接⼝以及IO设备数据传送控制⽅式接⼝可以看作是两个部件之间交接的部分。
硬件与硬件之间有接⼝,硬件与软件之间有接⼝,软件与软件之间也有接⼝。
这⾥我们所说的I/O接⼝,⼀边连接着主机,⼀边连接着外设。
I/O接⼝的功能I/O接⼝的基本结构CPU和外设之间通常传递的信息:数据、状态、控制。
组成:寄存器组、控制逻辑电路、主机与接⼝和接⼝与I/O设备之间的信号联接线、数据地址线、控制状态信号线。
其实中间红框内的部分就是对应到电路板上的插⼝,⼜分为内部接⼝和外部接⼝两种。
内部接⼝:与系统总线相连,实质上是与内存、CPU相连。
数据的传输⽅式也只能是并⾏传输。
外部接⼝:通过接⼝电缆与外设相连,外部接⼝的数据传输可能是串⾏⽅式,因此I/O接⼝需具有串并转换功能。
接⼝与端⼝接⼝就是I/O接⼝,端⼝实质接⼝电路中可以被CPU访问的寄存器。
I/O端⼝及其编址为了便于CPU对I/O设备进⾏寻址和选择,必须给众多的I/O设备进⾏编址,也就是说给每⼀台设备规定⼀些地址码,称之为设备号或端⼝地址。
统⼀编址:与存储器共⽤地址,⽤访存指令访问I/O设备。
独⽴编址:单独使⽤⼀套地址,有专门的I/O指令。
接⼝类型I/O设备数据传送控制⽅式1.程序直接控制传送⽅式⼜叫查询⽅式。
是完全通过程序来控制主机和外围设备之间的信息传送。
通常的办法是在⽤户的程序中安排⼀段由输⼊输出指令和其他指令所组成的程序段直接控制外围设备的⼯作。
也就是说CPU要不断地查询外围设备的⼯作状态,⼀旦外围设备“准备好”或“不忙”,即可进⾏数据的传送。
该⽅法是主机与外设之间进⾏数据交换的最简单、最基本的控制⽅法。
⽆条件传送:只有在外设总处于准备好状态程序查询⽅式优点:较好协调主机与外设之间的时间差异,所⽤硬件少。
缺点:主机与外设只能串⾏⼯作,主机⼀个时间段只能与⼀个外设进⾏通讯,CPU效率低。
程序查询⽅式接⼝结构:⼀次只能查询⼀个字的原因?在这种传送⽅式下,外部数据是要存到CPU寄存器中的,故需要⼀个字。
关于I/O端口和编址方式的知识以下涉及到的指令都是汇编指令,如IN、OUT、STI、CLI、MOV等。
一:I/O端口知识1.什么是I/O端口? CPU使用什么指令与外设进行数据交换?答:CPU与I/O设备通过硬件接口或控制器相连接,这些接口或控制器都有数量不等的端口,这些端口有统一的位置编码,CPU通过这些端口使用输入输出指令IN、OUT与外设进行数据交换。
2.CPU为什么不能用MOV指令进行I/O数据传输?答:在80x86微机系统中,I/O端口编址在一个独立的位置空间中,它和存储器是完全分离的。
因此,对于存储器的存取操作使用MOV指令,而与端口进行信息交换的操作使用专门的I/O指令,二者不能混淆。
3.使用查询方式进行输入输出的优缺点是什么?答:使用查询方式编程可直接在端口级上输入输出信息,数据的传送速度和吞吐量比较高,另外在控制多个设备的I/O时,可在程序中安排它们的优先级,最先查询的设备,其工作的优先级也最高。
修改程序中的查询次序,实际上也就修改了设备的优先级,这样以最简便的方法实现了对设备优先级的控制。
查询方式的缺点主要是在查询过程中,要反复的查询等待,浪费了CPU原本可执行大量指令的时间,而且由询问转向相应的处理程序的时间较长,尤其在设备比较多的情况下。
4.什么是中断?答:计算机在执行程序过程中,遇到需要处理的事件时,暂停当前正在运行的程序,转去执行有关的服务程序,处理完后自动返回原程序,这个过程称为中断(interrupt)。
中断在现代计算机系统中是一种非常重要的技术,输入输出设备和主机交换数据、分时操作、实时系统、多处理机系统、计算机网络和分布式计算机系统都要用到这种技术。
5.中断分为几类?答:中断可分为内中断和外中断。
内中断是由计算机内部原因引起的中断,内中断又称为软中断,它通常由三种情况引起:(1) 由中断指令INT引起;(2) 由于CPU的某些错误而引起,如溢出中断、除法错中断等;(3) 为调试程序(DEBUG)设置的中断,如单步中断、断点中断;外中断指由外部事件引起的中断,又称为硬中断。
《单片微型计算机原理及应用》习题参考答案姜志海刘连鑫王蕾编著电子工业出版社目录第1章微型计算机基础 (2)第2章半导体存储器及I/O接口基础 (4)第3章MCS-51系列单片机硬件结构 (11)第4章MCS-51系列单片机指令系统 (16)第5章MCS-51系列单片机汇编语言程序设计 (20)第6章MCS-51系列单片机中断系统与定时器/计数器 (26)第7章MCS-51系列单片机的串行口 (32)第8章MCS-51系列单片机系统扩展技术 (34)第9章MCS-51系列单片机键盘/显示器接口技术 (36)第10章MCS-51系列单片机模拟量接口技术 (40)第11章单片机应用系统设计 (44)第1章微型计算机基础1.简述微型计算机的结构及各部分的作用微型计算机在硬件上由运算器、控制器、存储器、输入设备及输出设备五大部分组成。
运算器是计算机处理信息的主要部分;控制器控制计算机各部件自动地、协调一致地工作;存储器是存放数据与程序的部件;输入设备用来输入数据与程序;输出设备将计算机的处理结果用数字、图形等形式表示出来。
通常把运算器、控制器、存储器这三部分称为计算机的主机,而输入、输出设备则称为计算机的外部设备(简称外设)。
由于运算器、控制器是计算机处理信息的关键部件,所以常将它们合称为中央处理单元CPU(Central Process Unit)。
2.微处理器、微型计算机、微型计算机系统有什么联系与区别?微处理器是利用微电子技术将计算机的核心部件(运算器和控制器)集中做在一块集成电路上的一个独立芯片。
它具有解释指令、执行指令和与外界交换数据的能力。
其内部包括三部分:运算器、控制器、内部寄存器阵列(工作寄存器组)。
微型计算机由CPU、存储器、输入/输出(I/O)接口电路构成,各部分芯片之间通过总线(Bus)连接。
以微型计算机为主体,配上外部输入/输出设备、电源、系统软件一起构成应用系统,称为微型计算机系统。
微机原理与接口技术习题第二章1.简答:(1)8086的时钟周期、总线周期、指令周期(2)8086的基本总线周期及T1、T2、T3、T4四个时钟周期的主要工作(3)在最小系统方式,8086的地址/数据复用线信号如何分离?(4)80386的三种工作方式(5)保护方式下,逻辑地址到物理地址的转换原理2、填空(1)引脚信号和操作的关系操作 WR# RD# M/IO# DT/R# DEN#BHE# 指令举例I/O读 1 0 0 00 1 0 1 1 OUT 30H,AL存储器读(字) 1 0 1 0 0存储器写(字) 0 1 1 MOV [2000H],AX1 1 0 1 MOV AL,[2000H]存储器写(字节) 0 1 1 1 0(2) 8086可以处理()个中断,中断向量表在()存储空间范围,25H号中断的中断向量放在()单元。
(3)两个有符号数运算:70ADH+80ADH,结果是______,对8086标志位的影响:SF=______、CF=______ 、ZF=______ 。
(4)已知12H号中断处理程序放在存储器从3344:5678H开始的地方,则从内存______H开始的连续四个单元中存放着中断向量,依次为______、______、______和______。
(5)8086工作在最小模式下,以下引脚的作用是:ALE______ ;/RD_______ ;/INTR______; /BHE_______ ;RESET______ 。
(6)一个容量为1MB的16位CPU,它的地址线有_____________ 条,数据线有___________条,CPU可寻址的范围是_______________。
(7)设8086的主频为4MHz,则执行一个基本的总线周期要___________ns,基本的总线周期有几个时钟周期__________,当CPU的引脚_________为低时会自动插入Tw周期。
CPU与存储器连接IO接口和总线第22课CPU与存储器的连接I/O接口和总线教学目的:掌握CPU与存储器的连接方式,了解I/O接口的寻址和数据传送,了解总线的类型。
教学重点:CPU与存储器的连接、CPU与外部设备的数据传送。
教学难点:存储器连接时数据线、地址线和控制线的连接。
授课内容:CPU与存储器的连接在CPU对存储器进行读写操作时,首先在地址总线上给出地址信号,然后发出相应的读或写控制信号,最后才能在数据总线上进行数据交换。
连接时要考虑:CPU总线负载能力、CPU 时序和存储器存取速度之间的配合、存储器地址分配和片选、控制信号的连接。
1.存储器的地址选择通常是将低位地址线连到所有存储器芯片,实现片内寻址,将高位地址线通过译码器或线性组合后输出作为芯片的片选信号,实现片间寻址,由地址线的连接决定了存储器的地址分配,有三种存储器地址选择的方法:(1).线性选择方式将某根高位地址线直接作为芯片的片选。
电路简单,但地址分配重叠,且地址空间不连续。
适于用在容量小且不要求扩充的系统中。
(2).全译码选择方式对全部高位地址进行译码,输出作为片选。
译码电路复杂,但所得地址是唯一且连续的,并且便于内存扩充。
(3).部分译码选择方式将高位地址线中的几位经过译码后作为片选控制。
部分译码方式的可寻址空间比线性选择范围大,比全译码选择方式的地址空间要小。
部分译码方式的译码器比较简单,但地址扩展受到一定的限制,并且出现地址重叠区。
使用不同信号作片选控制信号时,它们的地址分配也将不同,此方式经常应用在设计较小的微型计算机系统中。
2.存储器的数据线及控制线的连接与8086CPU相连的存储器分为奇偶两个存储体,用A0和/BHE 分别来选择奇地址和偶地址两个存储体,用A19~A1来选择存储体体内的地址。
若A0=0选中偶地址存储体,它的数据线连到D7~D0,若/BHE=0选中奇地址存储体,它的数据线连到Dl5~D8。
若读写一个字,A0和/BHE均为0,两个存储体全选中。
一、概念1.CMDR:控存数据寄存器,存放从控存读出的微指令2.CMAR:控存地址寄存器,用于存放微指令的地址,当采用增量计数器法形成后续微指令地址时,CMAR有计数功能3.系统并行性:并行包括同时性和并发性两个方面。
前者是指两个或多个事件在同一时刻发生,后者是指两个或多个事件在同一时间段发生。
也就是说,在同一时刻或者同一时间段内完成两种或两种以上性质相同或者不同的功能,只要在时间上互相重叠,就存在并行性。
4.进位链:传递进位的逻辑电路5.间接寻址:通过访存(若是多次间址还需多次访存)得到有效地址6.微程序控制:采用与存储程序类似的方法来解决微操作命令序列的形成,将一条机器指令编写成一个微程序,每一个微程序包含若干条微指令,每一条微指令包含一个或多个微操作命令7.RISC:精简指令系统计算机,通过有限的指令条数简化处理器设计,以达到提高系统执行速度的目的8.中断隐指令:在机器指令系统中没有的指令,是CPU在中断周期内由硬件自动完成的一条指令,功能包括保护断点,寻找中断服务程序入口地址,关中断9.周期挪用/周期窃取:DMA方式中由DMA接口向CPU申请占用总线,占用一个存取周期10.单重分组跳跃进位:n位全加器分成若干小组,小组内进位同时产生,小组与小组间采用串行进位11.双重分组跳跃进位:n位全加器分为若干大组,大组内又分成若干小组,大组中小组的最高进位同时产生,大组与大组间的进位串行传送12.超标量:在每个时钟周期内同时并发多条独立指令,即以并行操作方式将两条或两条以上指令编译执行,在一个时钟周期内需要多个功能部件13超流水线:将一些流水线寄存器插入到流水线段中,好比将流水线再分道,提高了原来流水线的速度,在一个时钟周期内一个功能部件被使用多次14.水平型微指令:一次能定义并执行多个并行操作的微命令。
从编码方式上来看,直接编码、字段直接编码、字段间接编码、直接编码和字段直接和间接混合编码都属于水平型微指令。
关于I/O端口和编址方式的知识以下涉及到的指令都是汇编指令,如IN、OUT、STI、CLI、MOV等。
一:I/O端口知识1.什么是I/O端口? CPU使用什么指令与外设进行数据交换?答:CPU与I/O设备通过硬件接口或控制器相连接,这些接口或控制器都有数量不等的端口,这些端口有统一的地址编码,CPU通过这些端口使用输入输出指令IN、OUT与外设进行数据交换。
2.CPU为什么不能用MOV指令进行I/O数据传输?答:在80x86微机系统中,I/O端口编址在一个独立的地址空间中,它和存储器是完全分离的。
因此,对于存储器的存取操作使用MOV指令,而与端口进行信息交换的操作使用专门的I/O指令,二者不能混淆。
3.使用查询方式进行输入输出的优缺点是什么?答:使用查询方式编程可直接在端口级上输入输出信息,数据的传送速度和吞吐量比较高,另外在控制多个设备的I/O时,可在程序中安排它们的优先级,最先查询的设备,其工作的优先级也最高。
修改程序中的查询次序,实际上也就修改了设备的优先级,这样以最简便的方法实现了对设备优先级的控制。
查询方式的缺点主要是在查询过程中,要反复的查询等待,浪费了CPU原本可执行大量指令的时间,而且由询问转向相应的处理程序的时间较长,尤其在设备比较多的情况下。
4.什么是中断?答:计算机在执行程序过程中,遇到需要处理的事件时,暂停当前正在运行的程序,转去执行有关的服务程序,处理完后自动返回原程序,这个过程称为中断(interrupt)。
中断在现代计算机系统中是一种非常重要的技术,输入输出设备和主机交换数据、分时操作、实时系统、多处理机系统、计算机网络和分布式计算机系统都要用到这种技术。
5.中断分为几类?答:中断可分为内中断和外中断。
内中断是由计算机内部原因引起的中断,内中断又称为软中断,它通常由三种情况引起:(1) 由中断指令INT引起;(2) 由于CPU的某些错误而引起,如溢出中断、除法错中断等;(3) 为调试程序(DEBUG)设置的中断,如单步中断、断点中断;外中断指由外部事件引起的中断,又称为硬中断。
计算机原理-存储器和I/O设备和总线前言前一篇文章介绍了冯诺依曼体系结构的计算机的基本工作原理,其中主要介绍了CPU的结构和工作原理。
这一篇主要来介绍存储区,总线,以及IO设备等其他几大组件,来了解整个计算机是如何工作的。
这些东西都是看得见摸得着的硬件,平时我们买电脑时最关注的就是CPU的速度,内存的大小,主板芯片等等的参数。
1. 存储器前面我们以一个简单通用的计算机模型来介绍了CPU的工作方式,CPU执行指令,而存储器为CPU提供指令和数据。
在这个简单的模型中,存储器是一个线性的字节数组。
CPU可以在一个常数的时间内访问每个存储器的位置,虽然这个模型是有效的,但是并不能完全反应现代计算机实际的工作方式。
1.1 存储器系统层次结构在前面介绍中,我们一直把存储器等同于了内存,但是实际上在现代计算机中,存储器系统是一个具有不同容量,不同访问速度的存储设备的层次结构。
整个存储器系统中包括了寄存器、Cache、内部存储器、外部存储。
下图展示了一个计算机存储系统的层次图。
层次越高速度越快,但是价格越高,而层次越低,速度越慢,价格越低。
相对于CPU来说,存储器的速度是相对比较慢的。
无论CPU如何发展,速度多块,对于计算机来说CPU总是一个稀缺的资源,所以我们应该最大程度的去利用CPU。
其面我们提到过CPU周期,一个CPU周期是取1条指令的最短的时间。
由此可见,CPU周期在很大程度上决定了计算机的整体性能。
你想想如果当CPU去取一条指令需要2s,而执行一个指令只需要2ms,对于计算机来说性能是多么大的损失。
所以存储器的速度对于计算机的速度影响是很大的。
对于我们来说,总是希望存储器的速度能和CPU一样或尽量的块,这样一个CPU周期需要的时钟周期就越少。
但是现实是,这样的计算机可能相当的昂贵。
所以在计算机的存储系统中,采用了一种分层的结构。
速度越快的存储器容量越小,这样就能做到在性能和格之间的一个很好的平衡。
价1.2 存储技术计算机的发展离不开存储器的发展,早起的计算机没用硬盘,只有几千字节的RAM可用。