最新六下《数学广角- 鸽巢问题》教案
- 格式:doc
- 大小:55.50 KB
- 文档页数:4
小学六年级下册数学《数学广角鸽巢问题》教案(最新4篇)身为一名到岗不久的老师,我们要有很强的课堂教学能力,通过教学反思可以很好地改正讲课缺点,怎样写教学反思才更能起到其作用呢?下面是小编精心为大家整理的4篇小学六年级下册数学《数学广角鸽巢问题》教案,可以帮助到您,就是牛牛范文小编最大的乐趣哦。
小学六年级下册数学《数学广角──鸽巢问题》教案篇一【教学内容】教材第110页第3题,练习二十五第8~13题。
【教学目标】1.进一步掌握三角形的特性及其三边、三角之间的关系,并能解决三角形相关问题。
2.进一步掌握轴对称和平移,能画一个图形的轴对称图形,能画平移后的图形,并能运用平移解决问题。
3.进一步掌握从不同的角度观察物体,能辨认、并画出从不同的角度观察到的物体的形状。
【重点难点】重、难点:解决三角形相关问题,画一个图形的轴对称图形。
【教学过程】一、复习三角形1.复习三角形的特性。
指名说一说三角形有什么特性,并举例说明三角形特性在现实生活中的应用。
2.复习三角形三边之间的关系。
指名说一说三角形三边有什么关系。
强调:三角形任意两边的和都大于第三边。
3.复习三角形的分类。
三角形可以分为哪几类?你是怎么分的?4.完成教材第110页的第3题。
二、复习轴对称、平移1.举例说明生活中常见的轴对称图形。
2.说说轴对称图形的特点。
3.平移。
三、复习观察物体在同一角度观察物体,最多能看到物体的几个面?四、课堂练习完成教材练习二十五第8~13题。
五、课堂小结我们这节课复习了什么内容?你有什么收获?六、同步训练教学至此,敬请选用《新领程》相关习题。
六年级数学下册《数学广角》教学反思篇二设计本节课时,我在准备上还是挺足的,特别在信息的收集上,花费了一定的心思。
用一节课来完成有关编码的内容,这样把重点就放在认识与编码两块内容上,一般老师就教学身份证号码,而对邮政编码少有涉及,往往是一笔带过,这样设计非常有道理。
但教材是怎样的呢?我也查阅了人教版教材,《数字与编码》是人教版教材五年级上册数学广角里内容,教材说明把这部分的内容分三节课教学,我个人认为,第一节课教学例1例2,主要是对一些编码如邮政编码和身份证号码的认识,第二课时教学如何进行编码,第三课时进行综合练习。
六年级下册数学教案5.1 数学广角——鸽巢问题|人教版 (5)一、教学内容今天我们要学习的是人教版六年级下册数学的第五章第一节《数学广角——鸽巢问题》。
这一节主要让我们了解鸽巢问题的概念,学会用一种全新的思路去解决问题。
我们会通过生活中的实例,了解鸽巢问题的实质,以及如何运用它来解决实际问题。
二、教学目标通过这一节课的学习,我希望同学们能够理解并掌握鸽巢问题的解题思路,能够运用它来解决实际问题。
同时也希望同学们能够提高自己的逻辑思维能力,增强自己的解决问题的能力。
三、教学难点与重点本节课的重点是让学生理解并掌握鸽巢问题的解题思路。
难点在于如何让学生理解并接受这种全新的解决问题的方法。
四、教具与学具准备为了更好地进行课堂教学,我已经准备好了相关的教具和学具,包括PPT、鸽巢模型等。
五、教学过程1. 通过一个实际问题引入:假设有一个鸽巢,里面有n只鸽子,我们要如何计算出最多能有多少只鸽子在同一个鸽巢里?2. 引导学生思考,尝试用自己的方法解决问题。
3. 引导学生发现,当我们解决问题的方法不够科学时,可能会得出错误的结论。
4. 引入鸽巢问题的概念,讲解鸽巢问题的解题思路。
5. 通过例题讲解,让学生理解并掌握鸽巢问题的解题思路。
6. 通过随堂练习,让学生运用所学的知识解决实际问题。
六、板书设计板书设计主要包括鸽巢问题的定义、解题思路等关键信息。
七、作业设计作业题目:1. 如果有5只鸽子,最多能有多少只鸽子在同一个鸽巢里?2. 如果有10只鸽子,最多能有多少只鸽子在同一个鸽巢里?答案:1. 5只鸽子2. 10只鸽子八、课后反思及拓展延伸通过这一节课的学习,我发现同学们对鸽巢问题的理解还有待提高。
在今后的教学中,我需要更加深入地引导同学们理解并掌握鸽巢问题的解题思路,提高他们的解决问题的能力。
同时,我也可以尝试引入更多实际问题,让学生更好地理解鸽巢问题的应用。
重点和难点解析一、实际问题引入在教学过程中,我使用了实际问题引入的方法,这是非常重要的一个步骤。
《数学广角——鸽巢问题》教案
教材简析
“鸽巢原理”来源于一个基本的数学事实:将三只鸽子放到两个鸽巢里,要么在一个鸽巢里放两只鸽子,而另一个鸽巢里放一只鸽子;要么在一个鸽巢里放三只鸽子,而另一只鸽巢里不放。
这两种情况可用一句话概括:一定有一个鸽巢里放入两个或两个以上的鸽子。
虽然我们无法断定哪个鸽巢里放入至少两只鸽子,但这并不影响结论。
所谓“鸽巢原理”,实际上是一种解决某种特定结构的数学或生活问题的模型,体现了一种数学的思想方法。
让学生经历将具体问题数学化的过程,初步形成模型思想,体会和理解数学与外部世界的紧密联系,发展抽象能力、推理能力和应用能力。
“鸽巢原理”是数学的重要原理之一,在数论、集合论和组合论中有很多应用。
它也被广泛地应用于现实生活中。
目标导向
知识与技能
1.初步了解“鸽巢问题”。
2.会用“鸽巢问题”解决简单的实际问题。
过程与方法
经历“鸽巢问题”的探究过程,初步了解“鸽巢问题”,学会用“鸽巢问题”解决简单的实际问题。
情感态度与价值观
通过“鸽巢问题”的灵活应用感受数学的魅力,渗透数学模型思维。
教法与学法
在教学中要让学生初步经历“数学证明”的过程,鼓励学生借助学具、实物操作或画草图的方式进行“说理”。
应有意识地培养学生的“模型”思想,引导学生先判断某个问题是否属于用“鸽巢问题”可以解决的范畴,如果属于,再思考如何寻找隐藏在其背后的“鸽巢问题”的一般模型。
人教新课标六年级数学下册 5《数学广角——鸽巢问题》教学设计一. 教材分析《数学广角——鸽巢问题》是人教新课标六年级数学下册中的一课。
本节课主要通过鸽巢问题引导学生理解鸽巢原理,培养学生的逻辑思维能力和解决问题的能力。
教材以生活中的实际问题为背景,让学生在解决实际问题的过程中感受数学与生活的紧密联系,体会数学的价值。
二. 学情分析六年级的学生已经具备了一定的数学基础,对于生活中的问题有一定的认识和理解。
但在解决实际问题时,还需要引导学生将问题转化为数学模型,运用数学知识进行解决。
此外,学生对于抽象的鸽巢原理可能一时难以理解,需要通过具体的例子和操作来进行引导。
三. 教学目标1.让学生理解鸽巢原理,并能运用到实际问题中。
2.培养学生的逻辑思维能力和解决问题的能力。
3.引导学生感受数学与生活的紧密联系,体会数学的价值。
四. 教学重难点1.重点:理解鸽巢原理,能运用到实际问题中。
2.难点:对于抽象的鸽巢原理的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实际问题,引导学生感受数学与生活的联系。
2.案例教学法:通过具体的例子,让学生理解鸽巢原理。
3.问题驱动法:引导学生提出问题,分析问题,解决问题。
4.小组合作法:让学生在小组内讨论问题,共同解决问题。
六. 教学准备1.准备相关的案例和问题,用于引导学生理解和运用鸽巢原理。
2.准备PPT,用于展示问题和案例。
七. 教学过程利用PPT展示一个生活中的问题:“某小区有10栋楼,现有12户居民要入住,请问至少有一栋楼里有2户居民的情况会出现吗?”让学生思考并回答问题。
2.呈现(10分钟)通过PPT呈现鸽巢问题的相关案例,引导学生理解鸽巢原理。
如:“有n个鸽巢,m个鸽子,当m>n时,至少有一个鸽巢里有2只鸽子。
”让学生观察和理解案例。
3.操练(10分钟)让学生分组讨论,每组找一个生活中的问题,运用鸽巢原理进行解决。
如:“某班有30名学生,共有5个小组,每个小组最多有6人,请问至少有一个小组有7人以上的情况会出现吗?”让学生在小组内讨论并回答问题。
六年级数学《数学广角——鸽巢问题》教案1. 教学目标知识目标:-学生能够理解鸽巢问题的基本概念和原理。
-学生能够掌握应用鸽巢问题解决实际问题的基本方法。
能力目标:-培养学生分析问题和解决问题的能力。
-提高学生的逻辑思维能力和推理能力。
情感态度价值观目标:-激发学生对数学的兴趣,培养主动学习、探究的精神。
-培养学生严谨、细致的学习态度。
2. 教学内容具体内容:-鸽巢问题的定义和基本原理。
-典型鸽巢问题的解法和应用。
-实际生活中鸽巢问题的案例。
重点:-鸽巢问题的基本原理。
-应用鸽巢问题解决实际问题的基本方法。
难点:-理解鸽巢问题的抽象概念。
-灵活运用鸽巢原理解决实际问题。
3. 教学方法-讲授法:用于解释鸽巢问题的基本概念和原理。
-讨论法:引导学生分组讨论实际案例,培养合作精神。
-案例分析法:通过具体案例分析,加深理解。
-多媒体教学:利用PPT、视频等多媒体资源,丰富教学手段。
4. 教学资源-教材:《小学六年级数学》(人教版)。
-教具:黑板、粉笔、投影仪。
-多媒体资源:PPT课件、相关视频。
5. 教学过程6. 课堂管理-组织小组讨论时,明确分工,确保每个学生都参与讨论。
-维持课堂纪律,鼓励学生积极发言,及时表扬。
-激励学生提出问题和解题思路,培养主动学习的习惯。
7. 评价与反馈-课堂小测验:用于检测学生对基本概念和原理的理解。
-课后作业:布置相关练习题,巩固所学知识。
-期末考试:考察学生对鸽巢问题的综合应用能力。
-反馈:及时批改作业和测验,给予学生具体反馈和指导。
8. 教学反思-课后反思教学过程中的优点和不足,记录学生反馈。
-总结教学经验,调整教学策略,优化教学内容和方法。
-针对学生的不同需求和学习情况,进行个性化辅导,提高教学效果。
通过以上的教案设计,希望能有效引导学生理解和掌握鸽巢问题,提升他们的数学素养和实际应用能力。
六年级下册数学教案5.1数学广角(鸽巢问题)人教新课标版教案内容:一、教学内容今天我们要学习的教材是六年级下册的数学广角,主要涉及鸽巢问题。
这一章节主要让学生了解和掌握鸽巢问题的基本概念和解决方法。
二、教学目标通过本节课的学习,希望学生能够理解鸽巢问题的实质,掌握解决鸽巢问题的基本方法,并能灵活运用到实际问题中。
三、教学难点与重点重点:掌握鸽巢问题的解决方法。
难点:如何理解和运用鸽巢问题的解决方法到实际问题中。
四、教具与学具准备教具:黑板、粉笔、PPT学具:笔记本、笔五、教学过程1. 实践情景引入:假设有一个鸽巢,里面有若干只鸽子,要求学生想办法计算出最多能有多少只鸽子。
2. 讲解鸽巢问题的概念和解决方法:通过PPT讲解鸽巢问题的定义和解决方法,并举例说明。
3. 例题讲解:给学生出一道鸽巢问题的例题,让学生独立解决,然后讲解答案和解决方法。
4. 随堂练习:给学生出一道类似的题目,让学生独立解决,然后互相交流答案和解决方法。
5. 板书设计:将鸽巢问题的解决方法用板书的形式呈现出来,方便学生理解和记忆。
六、作业设计答案:略2. 请找出一道类似的实际问题,运用今天学习的鸽巢问题的解决方法解决,并写出解题过程。
答案:略七、课后反思及拓展延伸通过本节课的学习,我发现学生们对鸽巢问题的理解还不够深入,需要在今后的教学中多做类似的练习,让学生们更好地理解和掌握鸽巢问题的解决方法。
同时,也可以让学生们尝试自己出一些类似的题目,提高他们的思维能力和解决问题的能力。
重点和难点解析一、教学内容细节在教学内容的设计上,我特别注重了教材章节的安排和详细内容的挑选。
六年级下册的数学广角,主要涉及鸽巢问题。
这一章节的内容,不仅仅是让学生了解和掌握鸽巢问题的基本概念和解决方法,更重要的是,我希望学生能够通过这个问题,培养他们的逻辑思维能力和解决实际问题的能力。
二、教学目标细节在教学目标上,我设定了两个主要目标。
第一,是希望学生能够理解鸽巢问题的实质,第二,是希望他们能够掌握解决鸽巢问题的基本方法,并能灵活运用到实际问题中。
小学六年级下册数学《数学广角──鸽巢问题》教案教学目标:(一)知识与技能通过鸽巢问题的学习,使学生会用“几个几”来说明生活中的简单问题,培养学生的分析、观察、判断和推理能力。
(二)过程与方法经历鸽巢问题探究的过程,初步获得解决问题的经验,并能对结果进行判断。
(三)情感态度和价值观使学生体验到生活中处处有数学,逐步学会用数学的眼光观察世界的方法。
教学重点:使学生理解鸽巢原理,并能运用鸽巢原理解决一些简单的问题。
教学难点:体会解决问题的方法,获得解决问题的经验。
教学用具:课件、鸽巢若干、数字卡片教学过程:一、创设情境,初步感知鸽巢原理。
1. 出示:有5个同学,每人做了8朵花,最少有几朵花?2. 怎样很快地回答出来?揭示课题:这就是我们今天这节课要学习的内容——数学广角──鸽巢问题。
3. 介绍鸽巢原理。
4. 试一试:把3只小熊分别关在3个鸽巢里,任意取出2只小熊,一定在同一鸽巢里吗?为什么?二、合作探究,解决鸽巢问题。
1. 小组交流探究方法。
(1)小组内交流想法。
(2)指名汇报交流情况。
2. 反馈:你是怎样想的?其他同学同意他的想法吗?为什么?3. 引导质疑,解决难点。
(1)提问:为什么一定要用“几个几”来解决问题呢?(引导学生从鸽巢原理出发,逐步推导得出必须用“几个几”才能解决问题)理解“$1$+$x$=$x$+$x$”的道理。
(2)小结:只要$x$不变,几只鸽巢里飞进几只鸽子,一定在某一个鸽巢里。
所以只要用“几个几”就可以解决这类问题。
4. 完成教材做一做第1题。
学生先独立做题,再交流想法。
三、应用鸽巢原理,解决生活中的问题。
1. 独立完成第2题。
说说你的想法和答案与同学是否一样。
如果有不一样的想法,你是怎么想的?2. 生活中的一些问题也可以用鸽巢原理来解决,例如:三年级三个班进行篮球比赛,每班选出2名男生和2名女生参加比赛,一共选出6名运动员,平均分在三个队中,问每个队中有几个运动员?说说你的想法。
人教版数学六年级下册鸽巢问题教案(推荐3篇)人教版数学六年级下册鸽巢问题教案【第1篇】《鸽巢问题》教学设计【教学内容】人教版课标教材小学数学六年级下册第五单元数学广角第70-71页。
【教学目标】1.通过操作、观察、比较、分析、推理、抽象概括,引导学生经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
2.在探究的过程中,渗透模型思想,培养学生的推理和抽象思维能力。
3.使学生感受数学的魅力,培养学习的兴趣。
【教学重点】经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解释生活中的简单问题。
【教学难点】理解抽屉原理,并对一些简单的实际问题加以模型化。
【教学过程】一、开门见山,引入课题。
承接课前谈话内容,直接揭示课题。
二、经历过程,构建模型。
(一)研究“4个小球任意放进3个抽屉”存在的现象。
1.出示结论:4个小球放进3个抽屉里,不管怎么放,总有一个抽屉里面至少放2个小球。
让学生说说对这句话的理解。
2.验证结论的正确性。
让学生用长方形代替抽屉,用圆代替小球画一画,看有几种不同的放法。
3.全班交流。
学生汇报后,教师引导观察每种放法,通过横向、纵向比较,找到每种放法中放得最多的抽屉,然后从最多数里找最少数,发现不管哪种放法,都能从里面找到这样的一个抽屉,里面至少有2个小球。
从而理解并证明了“不管怎么放,总有一个抽屉里至少放2个小球”这个结论是正确的。
(二)研究“5个小球任意放进4个抽屉”存在的现象,找到求至少数的简便方法。
1.猜测:根据刚才的研究经验猜一猜:把5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放几个小球?2.验证。
学生以小组为单位共同研究:先画出不同的放法。
然后观察分析每种放法,看看哪种猜测是正确的。
3.全班交流。
小组汇报研究结果。
教师追问:通过验证,我们发现5个小球放进4个抽屉里,不管怎么放,总有一个抽屉至少放2个小球。
那“总有一个抽屉至少放3个小球”为什么不对?学生通过观察各种放法来说明原因。