电力系统潮流及短路电流计算程序教学教材
- 格式:doc
- 大小:172.00 KB
- 文档页数:13
短路电流培训教材一、短路的种类及产生短路的原因电力系统在运行中,由于多种原因,难免会出现故障,而使系统的正常运行遭到破坏。
根据运行经验,破坏电力系统正常运行的故障最为常见而且危害最大的是各种短路。
所谓短路是指电位不同的点在电气上被短接。
在三相系统中,短路的基本类型有:三相短路、两相短路、两相接地短路、单相短路和单相接地短路等。
三相短路时,三相短路回路中的阻抗相等,三相电压和电流仍然保持对称,属于对称短路。
其他形式的短路,由于短路回路三相阻抗不相等,三相电压和电流均不对称,属不对称短路。
造成短路故障的原因很多,主要有以下几个方面:1、绝缘损坏。
电气设备年久陈旧,绝缘自然老化;绝缘瓷瓶表面污秽,使绝缘下降;绝缘受到机械性损伤;供电系统受到雷电的侵袭或者在切换电路时产生过电压,将电气装臵绝缘薄弱处击穿,都会造成短路。
2、误操作。
例如,带负荷拉切隔离开关,形成强大的电弧,造成弧光短路;或将低压设备勿接入高压电网,造成短路。
3、鸟兽危害。
鸟兽跨越不等电位的裸露导体时,造成短路。
4、恶劣的气候。
雷击造成的闪络放电或避雷针器动作,架空线路由于大风或导线覆冰引起电杆倾倒等。
5、其他意外事故。
挖掘沟渠损伤电缆,起重机臂碰触架空导线,车辆撞击电杆等。
二、短路的危害短路时系统的阻抗大幅度减小,而电流则大幅度增加。
通常短路电流可达正常工作电流的几十倍甚至几百倍,在大电力系统中短路电流可达几万甚至几十万安培。
这样大的短路电流将产生极大的危害,归纳起来其危害有以下几种:(1)损坏电气设备。
短路电流产生的电动力效应和热效应,会使故障设备及短路回路中的其他设备遭到破坏。
(2)影响电气设备的正常运行。
短路时电网电压骤降,使电气设备不能正常运行。
(3)影响系统的稳定性。
严重的短路会使并列运行的发电机组失去同步,造成电力系统解列。
(4)造成停电事故。
短路时,电力系统的保护装臵动作,是使开关跳闸,从而造成大范围停电。
越靠近电源,停电范围越大,造成的经济损失也越严重。
第六章短路电流及计算第一节短路的原因及后果一、短路的原因短路是指系统正常运行情况以外的,一切相与相之间或相与地之间金属性短接或经过小阻抗短接。
供配电系统发生短路故障的主要原因有:1.电气设备载流部分的绝缘损坏。
这种损坏可能是由于设备的绝缘材料自然老化;或由于绝缘强度不够而被正常电压击穿;2.设备绝缘正常而被各种形式的过电压(包括雷电过电压)击穿;3.如输电线路断线、线路倒杆或受到外力机械损伤而造成的短路。
4.工作人员由于未遵守安全操作规程而发生人为误操作,也可能造成短路。
5.一些自然现象(如风、雷、冰雹、雾)及鸟兽跨越在裸露的相线之间或相线与接地物体之间,也是造成短路的一个原因。
二、短路后果1.短路电流增大,会引起电气设备的发热,损坏电气设备。
2.短路电流流过的线路,产生很大的电压降,使电网的电压突然下降,引起电动机的转速下降,甚至停转。
3.短路电流还可能在电气设备中产生很大的机械力(或称电动力)。
此机械力可引起电气设备载流部件变形,甚至损坏。
4.当发生单相对地短路时,不平衡电流将产生较强的不平衡磁场,对附近的通迅线路、铁路信号系统、可控硅触发系统以及其他弱电控制系统可能产生干扰信号,使通讯失真、控制失灵、设备产生误动作。
5.如果短路发生在靠近电源处,并且持续时间较长时,则可导致电力系统中的原本并联同步(不同发电机的幅值、频率、波形、初相角等完全相同吻合)运行的发电机失去同步,甚至导致电力系统的解列(电力网中不同区域、不同电厂的发电机无法并列运行),严重影响电力系统运行的稳定性。
第二节短路故障的种类供电系统中短路类型与电源的中性点是否接地有关,在中性点不接地系统中,可能发生的短路有三相短路、两相短路。
而在中性点接地系统中,可能发生的短路除三相短路及两相短路外,尚有单相接地短路及两相接地短路。
图6-1是不同的短路故障的故障图。
图6-1 短路类型(虚线表示短路电流的路径)一、相间短路1.三相短路三相短路指供电系统中三相导线间同时短接。
电力系统短路电流计算书1短路电流计算的目的a.电气接线方案的比较和选择。
b.选择和校验电气设备、载流导体。
c.继电保护的选择与整定。
<1.接地装置的设计及确定中性点接地方式。
e.大、中型电动机起动。
2短路电流计算中常用符号含义及其用途a.厶-次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。
b.厶厂三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳定及断路器额定断流容量。
c. b —三相短路冲击电流,用于校验电气设备及母线的动稳定。
<1.人-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。
e.S「•次暂态三相短路容量,用于检验断路器遮断容量。
f.Sg -稳态三相短路容量,用于校验电气设备及导体的热稳定.3短路电流计算的几个基本假设前提a.磁路饱和、磁滞忽略不计。
即系统中各元件呈线性,参数恒定,可以运用叠加原理。
b.在系统中三相除不对称故障处以外,都认为是三相对称的。
c・各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。
<1.短路性质为金属性短路,过渡电阻忽略不计。
4基准值的选择为了计算方便,通常取基准容量S b=100MVA,基准电压3取各级电压的平均电压,即U h = U p=1.05U e ,基准电流I h=S b/y/3U h ;基准电抗x 厂常用基准值表(S b=100MVA)各电气元件电抗标么值计算公式其中线路电抗值的计算中,X。
为:a. 6~220kV 架空线取0.4 Q/kMb・3 5kV三芯电缆取0.12 Q/kMc.6〜10 k V三芯电缆取0.08 Q/kM上表中S”、Sb单位为MVA, U N、lh单位为kV, g、八单位为M。
5某炼油厂短路电流计算各主要元件参数5.1系统到长炼1 10kV母线的线路阻抗(标么值)a.峡山变单线路供电时:◊最大运行方式下:正序0. 1 05 2;O最小运行方式下:正序0.2 281b.巴陵变单线路供电时:◊ 最大运行方式下:正序0. 1 49 I ◊最小运行方式下:正序0.2 68 35.2 1 #、2 # 主变:S N =5 0 00 0 kVA;X%=14% 5.3 200分段开关电抗器:I N =4O0 OA : X% = 6%5.4 厂用电抗器:I N =4 0 0 A;X%=4% 5.5配出线电抗器1: I N=7 5 0A ; X%=5%配出线电抗器2:I N = 1 000 A ;X% = 6%5.6 陆城变:UN=35kV ;SN=63k V A;X% = 7.43% 5.7陆城架空线:1= 1 1.3kM;UN=35K v5.8 1#催化 900 OkW 电机电抗器:I N=1500A ; Xk% = 5% 5.9 1 # 催化 5000kW 电机电抗器:lN=1000A;Xk%=4% 5.10 2# 催化 4 2 OOkW 电机电抗器:I^IOOOA ; Xk%=3% 5.11 4#发电机:S N =15MVA ; Xd”=12.4%5.12 1#、2#、3#、6#发电机:S N = 3.7 5MVA : Xd”=9. 8 7% 6各元件阻抗标么值的计算6.11#、2#主变:人;=0.14•器= 0.286.2200分段开关电抗器:"0.06 •聽= 0.1316.3厂用电抗器:^=0.04-^ = 0.8736.4配出线电抗器1:^=0.05.^ = 0.5826.5配出线电抗器2:^=0.06.^ = 0.5236.6陆城变:=0.0743-^ = 1.1796.7陆城架空线:築龍網X*=0.4xll.3x^=0・33*37~6.81井催化9 OOOkW 电机回路出线电抗器:X 厂 0・05 •跆= 0.296.91 #催化5000kW 电机回路出线电抗器:^=0.04.^ = 0.3496.10 2#催化4200 k W 电机回路出线电抗器:X ^=0.03^ = 0.266.11 4#发电机:X (/; =0.124-^^ = 0.8266.12 1 #、2#、3#、6#发电机:X,; =0.0987-^ = 2.6326.13 6kV 三芯电力电缆 ◊ lkM,每回路2根三芯电缆X —哆•器=0.101z6・3~◊ 2kM,每回路2根三芯电缆7最大运行方式(500. 200均合闸运行)下系统及某内部系统标么值阻抗图:V 3:kV J ...h >0.3建筑资料下载就崔筑龙网V — 0.08x2入水一—5—竺=0.202大系统j.i....h JO 架空戋 rc :r::ii :yi<5%岂漏主6kY I 段:.工.1「n.!. .1: ^< 7似交 .叮8 vF 交一点讪门I 段世线、1门9>0.;/3J.78<20吩段电抗A厂軒骨线 >0肿?5CJ 3% <〉[■>0.523俘能三 广二二 厂滤线尹汀!!築龍網H •> =2?.8最大运行方式下,主6 kV I 段母线K1点三相短路电流计算(4#机、2台30 OOkW 机及500、20 0合闸运行):当电源容量大于基准量的7.5 6倍时,即以供电电源的容量为基准的阻抗标么值冷$3 ^i(3/Xb=3 /0.3 97=7. 56),可以将供电电源视为无穷大电源系统。
电力系统的短路电流计算及分析第一章:引言电力系统是现代工业生产以及现代社会运转不可或缺的基础设施。
电力系统中最常见的故障之一就是短路故障,因此短路电流计算及分析是电力系统安全运行的重要组成部分。
本文将介绍电力系统短路电流的定义及计算方法,并探讨短路电流对电力设备运行及保护系统的影响。
第二章:电力系统短路电流的定义短路电流是指由于电力系统中短路故障所引起的电流。
短路故障正常情况下不会发生,但由于设备老化、损坏或者操作疏忽,可能会导致短路故障的发生。
短路电流是电力系统中最大的电流,其大小取决于电力系统的构成、电压等级以及短路元件的电气特性。
第三章:短路电流计算及分析3.1 短路电流计算方法短路电流的计算方法有多种,其中最常用的方法有两种:对称分量法和电抗分布法。
对称分量法是指在三相电力系统中,将短路电流分解为正序、负序和零序三个分量的和。
其中正序短路电流在三相平衡的情况下具有最大值,负序短路电流在不平衡的情况下具有最大值。
电抗分布法是指根据电力系统中各个元件的等效电气特性,采用电抗分布图的方法计算短路电流。
该方法可用于计算任意电力系统的短路电流,精度较高。
3.2 短路电流分析短路电流对电力设备的运行及保护系统有重要影响,常见的影响有以下几个方面:(1)设备的承受能力电力系统中各个设备的额定电流都是有限的,当短路电流超出设备的承受能力时,设备可能会出现损坏或烧毁的情况。
(2)保护装置的选择及设置保护系统中的保护装置需要根据短路电流的大小来选择及设置,如果短路电流被高估或低估,都可能导致保护系统的失效。
(3)接地保护电力系统中的中性点需要接地保护,当短路电流超过中性点接地保护的额定电流时,就会引起接地故障。
(4)电磁暂态短路电流在短时间内变化较大,可能会对电力系统中的电磁暂态产生影响,如引起电气设备的振荡、闪络等故障。
第四章:结论电力系统中的短路电流计算及分析是电力系统安全运行的重要组成部分,正确计算和分析短路电流有助于预防短路故障的发生,保障电力系统的稳定运行。
电力系统潮流及短路电流计算程序班级:姓名:学号:一、作业要求编写程序计算图1所示算例系统的潮流及三相短路电流。
潮流计算:方法不限,计算系统的节点电压和相角。
短路电流:4号母线发生金属性三相短路时(z f=0),分别按照精确算法和近似算法计算短路电流、系统中各节点电压以及网络中各支路的电流分布,并对两种情况下的计算结果进行比较。
二、电路图及参数图1 3机9节点系统表1 9节点系统支路参数表2 9节点系统发电机参数表3 9节点系统负荷参数三、计算步骤(1) 进行系统正常运行状态的潮流计算,求得(0)i U (2) 形成不含发电机和负荷的节点导纳矩阵Y N ;(3) 将发电机表示为电流源i I (/i diE jx ''=)和导纳i y (1/di jx '=)的并联组合;节点负荷用恒阻抗的接地支路表示;形成包括所有发电机支路和负荷支路的节点导纳矩阵Y ,即在Y N 中的发电机节点和负荷节点的自导纳上分别增加发电机导纳i y 和负荷导纳,LD iy (*,,22LD i LDi LDiLD ii i S P jQ y V V -==); (4) 利用1Z Y-=,计算节点阻抗矩阵,从而得到阻抗矩阵中的第f 列;(5)利用公式(6-7)或(6-10)计算短路电流;(6)利用公式(6-8)或(6-11)计算系统中各节点电压;(7)利用公式(6-9)计算变压器支路的电流;对输电线路利用П型等值电路计算支路电流。
四、计算结果节点导纳矩阵Yn:Columns 1 through 50 -17.3611i 0 0 0 +17.3611i 00 0 -16.0000i 0 0 00 0 0 -17.0648i 0 00 +17.3611i 0 0 3.3074 -39.3089i -1.3652 +11.6041i0 0 0 -1.3652 +11.6041i 2.5528 -17.3382i0 0 0 -1.9422 +10.5107i 00 0 +16.0000i 0 0 -1.1876 + 5.9751i0 0 0 0 00 0 0 +17.0648i 0 0Columns 6 through 90 0 0 00 0 +16.0000i 0 00 0 0 0 +17.0648i-1.9422 +10.5107i 0 0 00 -1.1876 + 5.9751i 0 03.2242 -15.8409i 0 0 -1.2820 + 5.5882i0 2.8047 -35.4456i -1.6171 +13.6980i 00 -1.6171 +13.6980i 2.7722 -23.3032i -1.1551 + 9.7843i-1.2820 + 5.5882i 0 -1.1551 + 9.7843i 2.4371 -32.1539i电压幅值:1.0400 1.0250 1.0250 1.0258 0.9956 1.0127 1.0258 1.0159 1.0324电压相角:0 0.1620 0.0814 -0.0387 -0.0696 -0.0644 0.0649 0.0127 0.0343节点有功:0.7164 1.6300 0.8500 0.0000 -1.2500 -0.9000 -0.0000 -1.0000 -0.0000节点无功:0.2705 0.0665 -0.1086 0.0000 -0.5000 -0.3000 -0.0000 -0.3500 -0.0000修正后的节点导纳矩阵Y:Columns 1 through 50 -20.6944i 0 0 0 +17.3611i 00 0 -19.3333i 0 0 00 0 0 -20.3982i 0 00 +17.3611i 0 0 3.3074 -39.3089i -1.3652 +11.6041i 0 0 0 -1.3652 +11.6041i 3.8716 -17.6627i0 0 0 -1.9422 +10.5107i 00 0 +16.0000i 0 0 -1.1876 + 5.9751i0 0 0 0 00 0 0 +17.0648i 0 0Columns 6 through 90 0 0 00 0 +16.0000i 0 00 0 0 0 +17.0648i-1.9422 +10.5107i 0 0 00 -1.1876 + 5.9751i 0 04.1321 -16.0184i 0 0 -1.2820 +5.5882i0 2.8047 -35.4456i -1.6171 +13.6980i 00 -1.6171 +13.6980i 3.7323 -23.6669i -1.1551 + 9.7843i-1.2820 + 5.5882i 0 -1.1551 + 9.7843i 2.4371 -32.1539i节点阻抗矩阵Z的第4列:0.0463 + 0.1252i0.0329 + 0.0693i0.0316 + 0.0707i0.0552 + 0.1493i0.0589 + 0.1204i0.0562 + 0.1226i0.0397 + 0.0838i0.0416 + 0.0814i0.0378 + 0.0845i精确计算结果:短路电流:模值:6.4459相角:-71.9365节点电压模值:0.1831 0.5687 0.5427 0.0000 0.1466 0.1506 0.4537 0.4463 0.4495支路电流:i j Iij1 4 0.5779-3.1264i2 7 1.3702-1.4433i3 9 0.64294-1.4808i4 5 -0.77968+1.5248i4 6 -0.6411+1.477i5 7 -0.89528+1.6436i6 9 -0.73353+1.5487i7 8 0.50734+0.10234i8 9 0.062766+0.056451i近似计算结果:短路电流:模值:6.2838相角:-69.7198节点电压模值:0.1611 0.5214 0.5157 0.0000 0.1827 0.1675 0.4227 0.4348 0.4217五、程序流程图六、程序及输入文件input_data.xls 文件:powerflow_cal.m 文件:l=9;%支路数n=9;%节点数m=6;%PQ节点数Yn=zeros(n);%初始化节点导纳矩阵Y DATA1=xlsread('input_data.xls',1); %计算节点导纳矩阵Yfor k=1:li=DATA1(k,1);j=DATA1(k,2);R=DATA1(k,3);X=DATA1(k,4);B2=DATA1(k,5);Yn(i,i)=Yn(i,i)+1i*B2+1/(R+1i*X);Yn(j,j)=Yn(j,j)+1i*B2+1/(R+1i*X);Yn(i,j)=Yn(i,j)-1/(R+1i*X);Yn(j,i)=Yn(j,i)-1/(R+1i*X);enddisp('节点导纳矩阵Yn:');disp(Yn);G=real(Yn);B=imag(Yn);DATA2=xlsread('input_data.xls',2);P=zeros(1,n);Q=zeros(1,n);U=ones(1,n);P(2:n)=DATA2(2:n,3);Q(4:n)=DATA2(4:n,4);U(1:3)=DATA2(1:3,5);%设置节点电压初值e(1)=DATA2(1,5);e(2:n)=1.0;f(1:n)=0.0;%设置迭代次数t=0;tmax=10;while t<=tmax%计算f(x)a(1:n)=0.0;c(1:n)=0.0;for i=2:nfor j=1:na(i)=a(i)+G(i,j)*e(j)-B(i,j)*f(j); c(i)=c(i)+G(i,j)*f(j)+B(i,j)*e(j);endendfor i=2:ndeltaP(i)=P(i)-e(i)*a(i)-f(i)*c(i);endfor j=4:ndeltaQ(j)=Q(j)-f(j)*a(j)+e(j)*c(j);endfor k=2:3deltaU2(k)=U(k)*U(k)-e(k)*e(k)-f(k)*f(k);endfx=[deltaP(2:n) deltaQ(4:n) deltaU2(2:3)]';%计算雅克比矩阵Jfor i=2:nfor j=2:nif i~=jH(i,j)=-(G(i,j)*e(i)+B(i,j)*f(i));N(i,j)=B(i,j)*e(i)-G(i,j)*f(i);elseH(i,j)=-a(i)-(G(i,i)*e(i)+B(i,i)*f(i)); N(i,j)=-c(i)+(B(i,i)*e(i)-G(i,i)*f(i));endendendfor i=4:nfor j=2:nif i~=jM(i,j)=B(i,j)*e(i)-G(i,j)*f(i);L(i,j)=G(i,j)*e(i)+B(i,j)*f(i);elseM(i,j)=c(i)+(B(i,i)*e(i)-G(i,i)*f(i)); L(i,j)=-a(i)+(G(i,i)*e(i)+B(i,i)*f(i));endendendfor i=2:3for j=2:nif i~=jR(i,j)=0;S(i,j)=0;elseR(i,j)=-2*e(i);S(i,j)=-2*f(i);endendendJ=[H(2:n,2:n) N(2:n,2:n);M(4:n,2:n)L(4:n,2:n);R(2:3,2:n) S(2:3,2:n)];if max(abs(fx))<0.0001%输出结果break;else%求解修正方程获得dxdx=-J^(-1)*fx;dx=dx';e(2:n)=e(2:n)+dx(1:n-1);f(2:n)=f(2:n)+dx(n:2*(n-1));t=t+1;endendif t>tmaxstr='潮流计算不收敛';disp(str);elsea(1:n)=0.0;c(1:n)=0.0;for i=1:nfor j=1:na(i)=a(i)+G(i,j)*e(j)-B(i,j)*f(j); c(i)=c(i)+G(i,j)*f(j)+B(i,j)*e(j);endendfor i=1:nU(i)=e(i)+1i*f(i);amp(i)=abs(U(i));arg(i)=angle(U(i));P(i)=e(i)*a(i)+f(i)*c(i);Q(i)=f(i)*a(i)-e(i)*c(i);enddisp('电压幅值:');disp(amp);disp('电压相角:');disp(arg);disp('节点有功:');disp(P);disp('节点无功:');disp(Q);end%计算短路电流f=4;zf=0.0;%修正节点导纳矩阵Xd=DATA2(1:3,6);E=DATA2(1:3,7);for i=1:3Ii(i)=E(i)/(1i*Xd(i));endY=Yn;for i=1:3Y(i,i)=Y(i,i)+1/(1i*Xd(i));endfor j=4:nY(j,j)=Y(j,j)+(-P(j)+1i*Q(j))/(U(j)*U(j)); enddisp('修正后的节点导纳矩阵Y:');disp(Y);Z=Y^(-1);disp('节点阻抗矩阵Z的第4列:');disp(Z(:,4));%精确计算disp('精确计算结果:');U0=U;If=U0(f)/(Z(f,f)+zf);amp=abs(If);arg=atand(imag(If)/real(If));disp('短路电流:');disp('模值:');disp(amp);disp('相角:');disp(arg);for i=1:nU(i)=U0(i)-Z(i,f)*If;amp=abs(U);enddisp('节点电压模值:');disp(amp);disp('支路电流: ');str=['i ''j '' Iij'];disp(str);for k=1:li=DATA1(k,1);j=DATA1(k,2);r=DATA1(k,3);x=DATA1(k,4);z=r+1i*x;I=(U(i)-U(j))/z;str=[num2str(i) ' ' num2str(j) ' ' num2str(I)]; disp(str);end%近似计算disp('近似计算结果:');U0(1:n)=1.0;If=U0(f)/(Z(f,f)+zf);amp=abs(If);arg=atand(imag(If)/real(If));disp('短路电流:');disp('模值:');disp(amp);disp('相角:');disp(arg);for i=1:nU(i)=U0(i)-Z(i,f)*If;amp=abs(U);enddisp('节点电压模值:');disp(amp);。