第八章 单因素方差分析
- 格式:pdf
- 大小:463.79 KB
- 文档页数:58
单因素⽅差分析(one-wayANOVA)单因素⽅差分析(⼀)单因素⽅差分析概念是⽤来研究⼀个控制变量的不同⽔平是否对观测变量产⽣了显著影响。
这⾥,由于仅研究单个因素对观测变量的影响,因此称为单因素⽅差分析。
例如,分析不同施肥量是否给农作物产量带来显著影响,考察地区差异是否影响妇⼥的⽣育率,研究学历对⼯资收⼊的影响等。
这些问题都可以通过单因素⽅差分析得到答案。
(⼆)单因素⽅差分析步骤第⼀步是明确观测变量和控制变量。
例如,上述问题中的观测变量分别是农作物产量、妇⼥⽣育率、⼯资收⼊;控制变量分别为施肥量、地区、学历。
第⼆步是剖析观测变量的⽅差。
⽅差分析认为:观测变量值的变动会受控制变量和随机变量两⽅⾯的影响。
据此,单因素⽅差分析将观测变量总的离差平⽅和分解为组间离差平⽅和和组内离差平⽅和两部分,⽤数学形式表述为:SST=SSA+SSE。
第三步是通过⽐较观测变量总离差平⽅和各部分所占的⽐例,推断控制变量是否给观测变量带来了显著影响。
(三)单因素⽅差分析原理总结在观测变量总离差平⽅和中,如果组间离差平⽅和所占⽐例较⼤,则说明观测变量的变动主要是由控制变量引起的,可以主要由控制变量来解释,控制变量给观测变量带来了显著影响;反之,如果组间离差平⽅和所占⽐例⼩,则说明观测变量的变动不是主要由控制变量引起的,不可以主要由控制变量来解释,控制变量的不同⽔平没有给观测变量带来显著影响,观测变量值的变动是由随机变量因素引起的。
(四)单因素⽅差分析基本步骤1、提出原假设:H0——⽆差异;H1——有显著差异2、选择检验统计量:⽅差分析采⽤的检验统计量是F统计量,即F值检验。
3、计算检验统计量的观测值和概率P值:该步骤的⽬的就是计算检验统计量的观测值和相应的概率P值。
4、给定显著性⽔平,并作出决策(五)单因素⽅差分析的进⼀步分析在完成上述单因素⽅差分析的基本分析后,可得到关于控制变量是否对观测变量造成显著影响的结论,接下来还应做其他⼏个重要分析,主要包括⽅差齐性检验、多重⽐较检验。
11-第8章单因素方差分析仅供学习与交流,如有侵权请联系网站删除 谢谢140+第八章 单因素方差分析第一节 方差分析的基本问题一、方差分析要解决的问题t 检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验;而多个平均数间的差异显著性检验,必须用方差分析法。
1、检验过程繁琐一试验包含5个处理,采用t 检验法要进行25C 10=次两两平均数的差异显著性检验;若有k 个处理,则要作k (k-1)/2次类似的检验。
2、无统一的试验误差,误差估计的精确性和检验的灵敏性低 12X -X s如表8-1,试验有5个处理,每个处理重复6次,共有30个观测值。
进行t 检验时,每次只能利用两个处理共12个观测值估计试验误差,误差自由度为2(6-1)=10;若利用整个试验的30个观测值估计试验误差,显然估计的精确性高,且误差自由度为5(6-1)=25。
可见在用t检法进行检验时,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。
3、推断的可靠性低,检验的I型错误率大用t检验法进行多个处理平均数间的差异显著性检验,由于没有考虑相互比较的两个平均数的秩次问题,因而会增大犯I型错误的概率,降低推断的可靠性。
假设每一对检验接受零假设的概率都是1-α=0.95,而且这些检验都是相互独立的,那么10对检验都接受概率是(0.95)10=0.60,犯错误的概率α׳=1-0.60=0.40犯I型错误的概率明显增加。
由于上述原因,多个平均数的差异显著性检验不宜用t检验,须采用方差分析法。
二、方差分析的几个概念方差分析(analysis of variance)是由英国统计学家R.A.Fisher于1923年提出的。
这种方法是将a个处理的观测值作为一个整体看待,把观测值总变异的平方和及自由度分解为相应于不同变异来源的平方和及自由度,进而获得不同变异来源总体方差估计值;通过计算这些总体方差的估计值的适当比值,就能检验各样本所属总体平均数是否相等。
幻灯片1【例】调查了5个不同小麦品系的株高,结果如下。
试判定这5个品系的株高是不是存在显著性不同。
5个小麦品系株高(cm)调查结果幻灯片2第八章单因素方差分析One-factor analysis of variance幻灯片3本章内容第一节方差分析简述第二节固定效应模型第三节随机效应模型第四节多重比较第五节方差分析应具有的条件幻灯片4第一节方差分析简述一、方差分析的一样概念一、概念方差分析( analysis of variance,ANOVA):是同时判定多组数据平均数之间不同显著性的统计假设查验,是两组数据平均数不同显著性t 查验的延伸。
ANOV A 由英国统计学家R.A.Fisher首创,用于推断多个总体均数有无差异。
幻灯片5单因素方差分析(一种方式分组的方差分析):研究对象只包括一个因素(factor)的方差分析。
单因素实验:实验只涉及一个因素,该因素有a个水平(处置),每一个水平有n次实验重复,如此的实验称为单因素实验。
水平(level):每一个因素不同的处置(treatment)。
幻灯片6方差分析Analysis of Variance (ANOVA )幻灯片7【例】随机选取4窝动物,每窝中均有4只幼仔,称量每只幼仔的诞生重,结果如下。
判定不同窝的动物诞生重是不是存在显著性不同。
4窝动物的诞生重 单位:g幻灯片8二、单因素方差分析的数据格式:32.9 31.4 25.7 28.0 118.0 29.50027.1 23.3 27.8 26.7 104.9 26.22533.2 26.0 28.6 32.3 120.1 30.02534.7 33.3 26.2 31.6 125.8 31.4501 2 3 4 和 平均数Ⅳ Ⅲ Ⅱ Ⅰ窝 别 动物号因素也称为处理因素(factor )(名义分类变量),每一处理因素至少有两个水平(level)(也称“处理组”)。
一个因素(水平间独立) ——单向方差分析(第八章)两个因素(水平间独立或相关)——双向方差分析(第九章)一个个体多个测量值——重复测量资料的方差分析 ANOV A 与回归分析相结合——协方差分析目的:用这类资料的样本信息来推断各处理组间多个总体均数的差别有无统计学意义。
单因素方差分析单因素方差分析也称作一维方差分析。
它检验由单一因素影响的一个(或几个相互独立的)因变量由因素各水平分组的均值之间的差异是否具有统计意义。
还可以对该因素的若干水平分组中哪一组与其他各组均值间具有显著性差异进行分析,即进行均值的多重比较。
One-Way ANOVA过程要求因变量属于正态分布总体。
如果因变量的分布明显的是非正态,不能使用该过程,而应该使用非参数分析过程。
如果几个因变量之间彼此不独立,应该用Rep eated Measur e过程。
[例子]调查不同水稻品种百丛中稻纵卷叶螟幼虫的数量,数据如表5-1所示。
表5-1 不同水稻品种百丛中稻纵卷叶螟幼虫数数据保存在“DATA5-1.SAV”文件中,变量格式如图5-1。
图5-1分析水稻品种对稻纵卷叶螟幼虫抗虫性是否存在显著性差异。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量“幼虫”和因素水平变量“品种”,然后输入对应的数值,如图5-1所示。
或者打开已存在的数据文件“DATA5-1.SAV”。
2)启动分析过程点击主菜单“Analyz e”项,在下拉菜单中点击“Compar e Means”项,在右拉式菜单中点击“0ne-Way ANOVA”项,系统打开单因素方差分析设置窗口如图5-2。
图5-2 单因素方差分析窗口3)设置分析变量因变量:选择一个或多个因子变量进入“Depend ent List”框中。
本例选择“幼虫”。
因素变量:选择一个因素变量进入“Factor”框中。
本例选择“品种”。
4)设置多项式比较单击“Contra sts”按钮,将打开如图5-3所示的对话框。
该对话框用于设置均值的多项式比较。
图5-3 “Contra sts”对话框定义多项式的步骤为:均值的多项式比较是包括两个或更多个均值的比较。
单因素方差分析
单因素方差分析是一种测试,用于检查两组以上的数据之间是否存在显著差异,它可以用来检验一个因素对结果的影响。
单因素方差分析是一种比较几组数据样本平均值之间的差异,用来确定这些样本是否源于相同的总体。
此外,它还可以用来确定不同因素(如性别、年龄等)是否会对结果产生显著的影响。
单因素方差分析通常使用F检验,也可以使用t检验或z检验。
简而言之,单因素方差分析是一种统计技术,用于检验两组以上的数据样本之间的显著差异,以及判断单个因素是否对结果产生显著的影响。