模电数电及电力电子技术知识点
- 格式:docx
- 大小:53.78 KB
- 文档页数:4
数电模电基础知识总结在现代科技的快速发展下,电子技术已经渗透到我们生活的方方面面。
而作为电子技术的基础,数电模电知识的掌握显得尤为重要。
本文将对数电模电基础知识进行总结。
一、数电基础知识1. 二进制二进制是数电领域最为基础的概念之一。
它由0和1组成,是计算机系统中最常用的进位制。
在二进制中,每一位的权值是2的幂,例如1表示2^0,2表示2^1,4表示2^2,以此类推。
二进制在计算机内部用于表示和处理数据,是研究数电和计算机组成原理的基石。
2. 逻辑门逻辑门是计算机系统中基本的电子器件,用于实现逻辑运算。
常见的逻辑门包括与门、或门、非门等。
与门接受两个输入,当两个输入同时为1时,输出为1;否则输出为0。
或门接受两个输入,当两个输入中至少有一个为1时,输出为1;否则输出为0。
非门只有一个输入,当输入为1时,输出为0;当输入为0时,输出为1。
通过组合不同类型的逻辑门,可以实现复杂的逻辑运算。
3. 翻转器和触发器翻转器和触发器是将电路的输出状态保持在某个时间点的器件。
翻转器是一种双稳态电路,有两个互逆的输出状态,常见的翻转器有RS翻转器、JK翻转器等。
触发器是一种带有时钟输入的翻转器,常用于存储和处理数据。
二、模电基础知识1. 电阻、电容和电感电阻、电容和电感是模电领域中最基础的电路元件。
电阻用于限制电流大小,电容用于存储电荷和能量,电感用于存储磁能和抵抗电流变化。
它们在电路中起到不同的作用,对电路性质有重要影响。
2. 放大器放大器是模电领域中常见的电路元件,用于将输入信号放大到一定的幅度。
常见的放大器包括运放放大器、功放等。
运放放大器是一种具有高增益的差模放大器,广泛应用于模拟电路设计中。
功放用于放大音频信号,常见于音响设备中。
3. 滤波器滤波器用于将频率范围内的信号通过,而将其他频率范围内的信号抑制。
常见的滤波器包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
滤波器在电子设备中起到重要的作用,例如音频设备中用于剔除噪音和杂音。
集成运算放大电路输入级采用高性能的恒流源差动放大电路要求输入阻抗高、差摸放大倍数大、共模抑制比高、差摸输入电压及共模输入电压范围大且静态电流小作用减少零点漂移和抑制共模干扰信号中间级采用共射放大电路作用提供较高的电压增益输入级要求其输出电压范围尽可能宽、输出电阻小以便有较强的带负载能力且非线性失真小采用准互补输出级偏置电路确定合适的静态工作点采用准互补输出级综合高差摸放大倍数、高共模抑制比、高输入阻抗、高输出电压、低输出阻抗的双端输入单端输出的差动放大器交直流反馈的判断电容隔直通交直流:短路交流:开路串并联反馈的判断输入信号与反馈信号同时加在一个输入端上的是并联,反之电压电流反馈的判断反馈电路直接从输出端引出的是电压反馈从负载电阻RL的靠近“地”端引出的是电流反馈直流脉宽调制PWM变换器将固定电压的直流电源变换成大小可调的直流电源的DC-DC变换器又称直流斩波器。
它能从固定输入的直流电压产生出经过斩波的负载电。
负载电压受斩波器工作率的控制。
变更工作率的方法与脉冲宽度调制(斩波频率f=1/T不变,改变导通时间t on)和频率调制(导通时间t on或关断时间t off不变,改变斩波周期T即斩波频率f=1/T)两种。
斩波器的基本回落方式有升压(斩波器所产生的输出电压高于输入电压)和降压两种,改变回落元件的连接就可改换回路的方式。
用晶闸管作为开关的斩波器,由于晶闸管无自关断能力,它在直流回路里工作是,必须有一套使其关断的(强迫)换相(流)电路。
晶闸管的换流方式有:电源换流、负载换流和强迫换流。
负载换流缺点主要是电骡的揩振频率与L和C的大小有关,随着负载与频率的变化,换流的裕量也随之改变。
为了可靠换流,换流脉冲的幅值应足以消去晶闸管中的电流,脉冲的宽度应保证大于晶闸管的关断时间。
晶闸管斩波器的缺点是需要庞大的强迫换流电脑,是设备体积增大和损耗增加;而且斩波开关频率也低,致使斩波器电流的脉动幅度大,电源揩波也大,往往需加滤波器。
《电力电子技术》期末复习题第1章绪论1 电力电子技术定义:是使用电力电子器件对电能进行变换和控制的技术,是应用于电力领域的电子技术,主要用于电力变换。
2 电力变换的种类(1)交流变直流AC-DC:整流(2)直流变交流DC-AC:逆变(3)直流变直流DC-DC:一般通过直流斩波电路实现,也叫斩波电路(4)交流变交流AC-AC:可以是电压或电力的变换,一般称作交流电力控制3 电力电子技术分类:分为电力电子器件制造技术和变流技术。
4、相控方式;对晶闸管的电路的控制方式主要是相控方式5、斩空方式:与晶闸管电路的相位控制方式对应,采用全空性器件的电路的主要控制方式为脉冲宽度调制方式。
相对于相控方式可称之为斩空方式。
第2章电力电子器件1 电力电子器件与主电路的关系(1)主电路:电力电子系统中指能够直接承担电能变换或控制任务的电路。
(2)电力电子器件:指应用于主电路中,能够实现电能变换或控制的电子器件。
广义可分为电真空器件和半导体器件。
2 电力电子器件一般特征:1、处理的电功率小至毫瓦级大至兆瓦级。
2、都工作于开关状态,以减小本身损耗。
3、由电力电子电路来控制。
4、安有散热器3 电力电子系统基本组成与工作原理(1)一般由主电路、控制电路、检测电路、驱动电路、保护电路等组成。
(2)检测主电路中的信号并送入控制电路,根据这些信号并按照系统工作要求形成电力电子器件的工作信号。
(3)控制信号通过驱动电路去控制主电路中电力电子器件的导通或关断。
(4)同时,在主电路和控制电路中附加一些保护电路,以保证系统正常可靠运行。
4 电力电子器件的分类根据控制信号所控制的程度分类(1)半控型器件:通过控制信号可以控制其导通而不能控制其关断的电力电子器件。
如SCR晶闸管。
(2)全控型器件:通过控制信号既可以控制其导通,又可以控制其关断的电力电子器件。
如GTO、GTR、MOSFET和IGBT。
(3)不可控器件:不能用控制信号来控制其通断的电力电子器件。
模拟电路和数电电路必备的基础知识作为一位硬件工程师,必须面对的就是两个基本电路:模拟电路和数字电路。
下面我们就来了解一下这两个电路的基本知识。
一、模拟电路与数字电路的定义及特点模拟电路(电子电路)处理模拟信号的电子电路。
“模拟”二字主要指电压(或电流)对于真实信号成比例的再现,它最初来源于希腊语词汇,意思是“成比例的”。
其主要特点是:1、函数的取值为无限多个;2、当图像信息和声音信息改变时,信号的波形也改变,即模拟信号待传播的信息包含在它的波形之中(信息变化规律直接反映在模拟信号的幅度、频率和相位的变化上)。
3、初级模拟电路主要解决两个大的方面:1放大、2信号源。
4、模拟信号具有连续性。
数字电路((进行算术运算和逻辑运算的电路))用数字信号完成对数字量进行算术运算和逻辑运算的电路称为数字电路,或数字系统。
由于它具有逻辑运算和逻辑处理功能,所以又称数字逻辑电路。
其主要特点是:1、同时具有算术运算和逻辑运算功能数字电路是以二进制逻辑代数为数学基础,使用二进制数字信号,既能进行算术运算又能方便地进行逻辑运算(与、或、非、判断、比较、处理等),因此极其适合于运算、比较、存储、传输、控制、决策等应用。
2、实现简单,系统可靠以二进制作为基础的数字逻辑电路,可靠性较强。
电源电压的小的波动对其没有影响,温度和工艺偏差对其工作的可靠性影响也比模拟电路小得多。
3、集成度高,功能实现容易集成度高,体积小,功耗低是数字电路突出的优点之一。
电路的设计、维修、维护灵活方便,随着集成电路技术的高速发展,数字逻辑电路的集成度越来越高,集成电路块的功能随着小规模集成电路(SSI)、中规模集成电路(MSI)、大规模集成电路(LSI)、超大规模集成电路(VLSI)的发展也从元件级、器件级、部件级、板卡级上升到系统级。
电路的设计组成只需采用一些标准的集成电路块单元连接而成。
对于非标准的特殊电路还可以使用可编程序逻辑阵列电路,通过编程的方法实现任意的逻辑功能。
数电模电基础知识总结
数电模电基础知识是电子工程领域的重要基础,掌握好这些知识对于电子工程
师来说至关重要。
本文将对数电模电基础知识进行总结,希望能够帮助读者更好地理解和掌握这些知识。
首先,我们来谈谈数电基础知识。
数字电子学是研究数字电子系统的原理、设
计和应用的学科,它主要研究数字电路的设计、分析和应用。
数字电路是由数字信号来控制和处理信息的电路,它主要包括逻辑门电路、触发器电路、计数器电路等。
在数字电子学中,我们需要了解数字信号的特点、布尔代数、半导体存储器、寄存器、移位寄存器等知识。
其次,我们来看看模电基础知识。
模拟电子学是研究模拟电子系统的原理、设
计和应用的学科,它主要研究模拟电路的设计、分析和应用。
模拟电路是由模拟信号来控制和处理信息的电路,它主要包括放大电路、滤波电路、振荡电路等。
在模拟电子学中,我们需要了解模拟信号的特点、放大器、运算放大器、滤波器、振荡器等知识。
在实际应用中,数电和模电的知识经常会相互结合,比如在数字信号处理中需
要用到模拟信号的采集和转换,这就需要用到模数转换器和数模转换器。
因此,掌握好数电模电基础知识对于电子工程师来说非常重要。
总的来说,数电模电基础知识涉及到数字电子学和模拟电子学两个方面,它们
在电子工程领域中起着至关重要的作用。
通过本文的总结,希望读者能够对数电模电基础知识有一个更加清晰的认识,为今后的学习和工作打下良好的基础。
模电数电知识点整理与面试一、引言模拟电子技术(模电)和数字电子技术(数电)是电子工程师在学习和从事电子领域工作中必须掌握的基础知识。
无论是学术研究还是实际应用,对模电和数电的理解都是至关重要的。
本文将从模电和数电的基础知识点出发,对其进行整理和总结,希望能够帮助读者在面试中更好地理解和回答相关问题。
二、模电知识点整理1. 电路基本理论•电流、电压、电阻的概念和关系•基尔霍夫定律和欧姆定律•戴维南定理和诺顿定理•电路的等效电阻和电压分压与电流分流•电源、电荷和功率的概念和计算方法2. 二端网络•二端网络的基本概念和性质•电阻、电容和电感的特性与计算•串联与并联电路的分析方法•稳态与瞬态响应分析•交流电路中的频率响应和相位差3. 放大器•放大器的基本概念和分类•放大器的增益、输入电阻、输出电阻与带宽•共射、共集和共基放大器的特性和应用•放大器的失真和稳定性分析•放大器电路中的负反馈原理和应用4. 滤波器•滤波器的基本概念和分类•一阶和二阶滤波器的特性和设计•有源滤波器和无源滤波器的特点与应用•滤波器的频率响应和相位特性•滤波器的阶数和带宽的关系5. 振荡器•振荡器的基本概念和分类•LC振荡器、RC振荡器和晶体振荡器的原理和特性•振荡器的稳定性和频率稳定度•振荡器电路中的正反馈原理和应用•压控振荡器和相位锁定环路的工作原理三、数电知识点整理1. 数字系统基础•二进制、八进制和十六进制的相互转换•算术运算和逻辑运算的基本规则•布尔代数和逻辑函数的表示与化简•编码器、译码器和复用器的功能和应用•触发器和计数器的原理和设计2. 组合逻辑电路•组合逻辑电路的基本概念和特点•与门、或门、非门和异或门的实现与应用•多路选择器和译码器的工作原理•加法器、减法器和比较器的功能和设计•组合逻辑电路的分析与设计方法3. 时序逻辑电路•时序逻辑电路的基本概念和特点•触发器的工作原理和种类•移位寄存器和计数器的功能和设计•状态机的基本概念和设计方法•同步与异步电路的特性与应用4. 存储器•存储器的基本概念和分类•静态随机存储器(SRAM)和动态随机存储器(DRAM)的原理和特点•可编程逻辑器件(CPLD)和场可编程门阵列(FPGA)的功能和应用•存储器的读写操作和时序控制•存储器的容量和速度的关系与权衡四、面试准备建议•熟悉模电和数电的基本概念和理论知识•多做习题和实验,提高动手能力和实际操作经验•关注电子技术领域的最新发展与应用趋势•注意培养自己的表达能力和逻辑思维能力•在面试中展现自己的学习态度和问题解决能力以上是对模电和数电知识点的整理和总结,希望能够对读者在面试中有所帮助。
模电数电基础知识在现代电子技术的领域中,模拟电子技术(模电)和数字电子技术(数电)是两个至关重要的基础分支。
它们就像是电子世界的基石,支撑着各种电子设备和系统的运行。
让我们先来聊聊模拟电子技术。
模电主要处理的是连续变化的电信号,就像一条平滑的曲线,没有明显的跳跃和中断。
比如说,声音信号就是一种典型的模拟信号,它在时间上是连续变化的,没有明确的界限将其分割成不同的部分。
在模电中,有几个重要的概念需要了解。
首先是放大器,它能把微弱的电信号放大到我们需要的强度。
想象一下,一个小小的声音信号通过放大器后,能够变成响亮清晰的声音,让更多人听到。
然后是滤波器,它可以让特定频率范围内的信号通过,而阻止其他频率的信号。
这就好像一个筛子,只留下我们想要的“颗粒”。
二极管和三极管也是模电中的关键元件。
二极管具有单向导电性,只允许电流在一个方向上流动。
三极管则可以实现电流的放大和开关控制。
再来说说数字电子技术。
数电处理的是离散的、不连续的数字信号,只有 0 和 1 两种状态,就像是开关的开和关。
这种简单的二进制表示方式使得数字信号在处理和传输过程中更加稳定和可靠。
数字电路中的基本逻辑门包括与门、或门、非门等。
与门只有当所有输入都为 1 时,输出才为 1;或门只要有一个输入为 1 ,输出就为 1 ;非门则是将输入的 0 变为 1 ,1 变为 0 。
通过这些逻辑门的组合,可以实现各种复杂的逻辑功能。
计数器和寄存器在数电中也有着重要的作用。
计数器能够对脉冲信号进行计数,寄存器则用于存储数字信息。
那么,模电和数电在实际应用中有哪些区别和联系呢?模电通常用于处理那些需要连续变化的信号,比如音频放大、电源管理等领域。
而数电则更擅长于数字计算、数据存储和传输等方面。
在很多电子系统中,模电和数电是相互结合的。
比如,在一个音频播放设备中,音频信号的前期处理可能是模电,而后续的数字编码、存储和处理则是数电的范畴。
学习模电和数电需要掌握一些基本的分析方法和工具。
数电模电基础知识总结数字电子技术是指利用数字信号进行信息处理和传输的一种电子技术。
它是电子工程的一部分,是现代电子技术的重要组成部分。
本文将对数字电子技术的基础知识进行总结,主要包括数字电路的基本概念、数字信号和数字系统的表示方法、数字电路的逻辑运算和布尔代数、数字电路的设计和实现、数字信号处理等方面。
数字电路是指由逻辑门组成的电路,逻辑门是基本的数字电路组件,它具有输入和输出端口。
数字电路中的信号是离散的,只有两个可能的值,分别为高电平(表示逻辑"1")和低电平(表示逻辑"0")。
数字信号通常用二进制数字表示,例如"1010"表示数值为10。
数字系统是由数字电路组成的,它可以实现各种数字功能。
数字系统可以分为组合逻辑和时序逻辑两种类型。
组合逻辑是指输出只取决于当前的输入值,而不受过去的输入的影响;时序逻辑是指输出取决于当前的输入和过去的输入。
数字信号可以用多种方式进行表示,常见的有逻辑电平表示、时序波形表示和逻辑函数表示。
逻辑电平表示是指使用高电平和低电平表示逻辑"1"和逻辑"0";时序波形表示是指使用波形图表示信号的变化;逻辑函数表示是指使用逻辑函数表示信号的逻辑关系。
数字电路的逻辑运算和布尔代数是数字电路设计的基础。
布尔代数是一种数学工具,用于描述逻辑运算的规则。
逻辑运算包括与、或、非、异或等运算。
这些逻辑运算可以通过逻辑门实现,例如与门、或门、非门、异或门等。
数字电路的设计和实现是将逻辑功能转化为电路实现的过程。
数字电路可以通过门电路、触发器、计数器等元件实现。
门电路包括与门、或门、非门、异或门等,它们由逻辑门组成;触发器是一种时序逻辑元件,可以存储一位二进制信息;计数器是一种用于计数的电路,可以进行二进制计数。
数字信号处理是指使用数字信号进行信号处理的一种技术。
数字信号处理可以实现滤波、变换、编码等操作,广泛应用于通信、音频、图像等领域。
模电数电知识总结1.模电和数电的主要内容,研究目的。
参考要点:①模电主要讲述对模拟信号进行产生、放大和处理的模拟集成电路;数电主要是通过数字逻辑和计算去分析、处理信号,数字逻辑电路的构成及运用。
由于数字电路稳定性高,结果再现性好;易于设计等诸多优点,因此是今后的发展方向。
但现实世界中信息都是模拟信息,模电是不可能淘汰的。
单就一个系统而言模电部分可能会减少,理想构成为:模拟输入—AD采样(数字化)--数字处理—DA转换—模拟输出。
②电力专业学生研究模电数电,了解常见的模拟数字集成电路,掌握简单的电路设计,对于以后工作中遇到的弱电控制强电等情况很有帮助。
而且目前我国正在建设智能电网,模电数电的这些知识为电网高速通信网络,智能表计等智能电网核心设备打下了基础。
模电一、模拟信号和数字信号。
在时间上和幅值上均是继续的旌旗灯号称为模拟旌旗灯号,时间离散、数值也离散的旌旗灯号称为数字信号。
随着计算机的广泛应用,绝大多数电子系统都采用计算机来对信号进行处理,由于计算机无法直接处理模拟信号,所以需要将模拟信号转换成数字信号。
①电压放大、电放逐大、互阻放大和互导放大。
电压放大电路主要斟酌电压增益,电放逐大电路主要斟酌电流增益,需要将电流旌旗灯号转换为电压旌旗灯号可使用互阻放大电路,把电压信号转换成与之相应的电流输出,这种电路为互导放大电路。
这四种放大电路模型可实现相互转换。
②输入电阻、输出电阻、增益、频次响应和非线性失真。
输入电阻等于输入电压与输入电流的比值,它的大小决定了放大电路从信号源吸取信号幅值的大小;输出电阻的大小决定了它带负载的能力,在信号源短路和负载开路情况下,在放大电路输出端加一个测试电压,相应产生一测试电流就能求得输出电阻;增益实际上反映了放大电路在输入信号控制下,将供电电源能量转换为信号能量的能力;放大电路频率响应指在输入正弦信号情况下,输出随输入信号频率连续变化的稳态响应;由于元器件特性的非线性和放大电路工作电源受有限电压的限制而造成的失真为非线性失真。
电子技术(知识点)电子技术是指运用电子学原理和技术来进行电子设备的研发、制造和应用的学科。
它是现代科技发展中的重要组成部分,广泛应用于通信、计算机、医疗、工业、航天等各个领域。
本文将介绍电子技术的一些基础知识点。
一、电子元器件电子元器件是构成电子设备的基本组成部分,主要包括电子器件和电子元件。
电子器件包括二极管、三极管、场效应管、集成电路等,它们具有不同的功能和特性,用于实现电流的控制、放大、开关等操作。
电子元件是电子器件的基本单元,如电阻、电容、电感等。
了解和熟悉各种电子元器件的性质和用途是进行电子技术工作的前提。
二、模拟电子技术和数字电子技术电子技术可分为模拟电子技术和数字电子技术两大类。
模拟电子技术是指以连续变化的电信号为基础,进行电压、电流的放大、滤波、调制等处理。
模拟电子技术广泛应用于音频、视频信号的处理和传输。
数字电子技术是指以离散的电信号为基础,采用数字逻辑电路进行信息的存储、处理和传输。
数字电子技术具有高精度、稳定性好等特点,在计算机和通信领域得到广泛应用。
三、嵌入式系统嵌入式系统是应用于各个领域的一种特定用途的计算机系统。
它通常集成在所控制的设备中,具有系统功能的同时,可实现对设备的控制和监测。
嵌入式系统通过集成电路技术,将多个电子器件、模拟电路、数字电路等集成在一起,形成一个独立的系统。
在现代科技发展中,嵌入式系统在汽车、家电、医疗器械等方面发挥着重要作用。
四、通信系统通信系统是指通过电磁波传输信息的系统,其中包括发送端、接收端和传输媒介。
电子技术在通信系统中起到核心作用,通过调制、解调、编码、解码等技术,实现信息的可靠传输。
现代通信系统包括有线通信和无线通信两种方式,如电话通信、移动通信、卫星通信等。
电子技术的发展促进了通信方式的快速发展,使得人们能够迅速、高效地进行信息交流。
五、电子技术的发展趋势随着科技的进步,电子技术也在不断发展和进步。
未来,电子技术的发展将围绕以下几个方向展开:1. 微电子技术的进一步发展,实现电子器件的微型化、高集成度和低能耗。
数电和模电知识点————————————————————————————————作者:————————————————————————————————日期:模电复习资料第一章半导体二极管一.半导体的基础知识1.半导体---导电能力介于导体和绝缘体之间的物质(如硅Si、锗Ge)。
2.特性---光敏、热敏和掺杂特性。
3.本征半导体----纯净的具有单晶体结构的半导体。
4. 两种载流子----带有正、负电荷的可移动的空穴和电子统称为载流子。
5.杂质半导体--在本征半导体中掺入微量杂质形成的半导体。
体现的是半导体的掺杂特性。
*P型半导体:在本征半导体中掺入微量的三价元素(多子是空穴,少子是电子)。
*N型半导体: 在本征半导体中掺入微量的五价元素(多子是电子,少子是空穴)。
6. 杂质半导体的特性*载流子的浓度---多子浓度决定于杂质浓度,少子浓度与温度有关。
*体电阻---通常把杂质半导体自身的电阻称为体电阻。
*转型---通过改变掺杂浓度,一种杂质半导体可以改型为另外一种杂质半导体。
7. PN结* PN结的接触电位差---硅材料约为0.6~0.8V,锗材料约为0.2~0.3V。
* PN结的单向导电性---正偏导通,反偏截止。
8. PN结的伏安特性二. 半导体二极管*单向导电性------正向导通,反向截止。
*二极管伏安特性----同PN结。
*正向导通压降------硅管0.6~0.7V,锗管0.2~0.3V。
*死区电压------硅管0.5V,锗管0.1V。
3.分析方法------将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
1)图解分析法该式与伏安特性曲线的交点叫静态工作点Q。
2) 等效电路法直流等效电路法*总的解题手段----将二极管断开,分析二极管两端电位的高低:若 V阳 >V阴( 正偏 ),二极管导通(短路);若 V阳 <V阴( 反偏 ),二极管截止(开路)。
数电模电第一章
知识点一杂质半导体
N型半导体:多子是电子,少子是空穴
1. 起导电作用的主要是多子
P型半导体:多子是空穴,少子是电子
2. 多子扩散PN结变宽;少子漂移PN结变窄
3. P端接低电位,N端接高电位,PN结反偏,处于高电阻截至状态;
4. P端接高电位,N端接低电位,PN结正偏,处于低电阻导通状态;
知识点二二极管
P N
电流方向
1.伏安特性曲线
2.二极管限幅
题型(书P10例1-2)
3.稳压二极管工作与反向击穿状态
知识点三三极管
1.e—发射区;b—基区;c—集电区
2.I E=I C+I B;IE≈IC>>IB ;I E=I EBS(e UBE/UT-1)
3.三极管输出特性
截止区:Uc>Ue>Ub 放大区:Uc>Ub>Ue 饱和区:Ub>Uc>Ue。
电子工程师必考知识点总结一、基础电路理论1. 电压、电流、功率和电阻的基本概念。
2. 电容、电感、电阻的基本性质及其在电路中的应用。
3. 串联、并联电路的基本表达式及其应用。
4. 交流电路中的复数表示法及其在电路分析中的应用。
二、模拟电子技术1. 晶体管的基本原理及其应用。
2. 操作放大器的基本性质及其应用。
3. 信号处理电路的设计与分析。
4. 模拟滤波器设计及其应用。
5. 模拟电子电路的仿真与优化技术。
三、数字电子技术1. 逻辑门的基本原理及其逻辑功能。
2. 数字电路的设计与分析技术。
3. 计算机组成原理及其应用。
4. 微处理器与嵌入式系统设计。
5. 数字电子电路的综合与验证技术。
四、电磁场与电磁波1. 麦克斯韦方程组的基本形式与物理意义。
2. 电磁场中的波动方程及其解析解。
3. 电磁场与电磁波在电子射频技术中的应用。
4. 电磁相容技术及其应用。
五、电子元器件与器件制造技术1. 半导体材料的基本性质及其对器件特性的影响。
2. 晶体管、场效应管、二极管、光电器件的结构与工作原理。
3. 硅基微纳加工技术及其应用。
4. 典型电子器件的封装与封装工艺。
5. 电子器件制造与测试技术。
六、电力电子技术1. 电力半导体器件的工作原理及其特性。
2. 电力电子器件的应用与控制技术。
3. AC/DC、DC/DC、DC/AC电力变换器的结构及其工作原理。
4. 电能质量调节技术及其应用。
七、通信与信息处理1. 信号传输与调制技术的基本原理。
2. 数字通信系统与调制技术。
3. 通信网络与协议技术。
4. 通信与信息系统的设计与仿真技术。
5. 数据处理与智能算法技术。
八、电子系统集成与封装技术1. 电子系统集成的基本原理与技术。
2. 多芯片及系统级封装技术。
3. 三维封装与多尺度封装技术。
4. 系统级封装中的热管理与电磁兼容技术。
九、电子系统可靠性与测试技术1. 电子系统的可靠性评估与改善技术。
2. 电子系统的测试与诊断技术。
电路、数电和模电的内容电路、数电和模电是电子学的重要组成部分,它们分别涉及了电路的基本原理、数字电子技术和模拟电子技术。
本文将从概念、应用和发展等方面介绍这三个内容。
一、电路电路是指由电子元件(如电阻、电容、电感)和电子器件(如二极管、晶体管)等组成的路径,用于电流的传输和控制。
电路通常分为直流电路和交流电路。
直流电路中电流方向不变,交流电路中电流方向周期性变化。
电路的分析和设计是电子学的基础,也是其他领域的基础。
电路的应用非常广泛,从小到大,从简单到复杂。
在日常生活中,电路存在于电池、手机充电器和电脑等设备中。
在工业领域,电路应用于各种电子设备和自动化控制系统中。
在通信领域,电路应用于电话、电视和互联网等通信系统中。
在科学研究中,电路被用于实验控制和数据采集等方面。
电路学的发展也非常迅速。
从最初的直流电路到现在的高速数字电路、微电子电路和集成电路,电路学在不断推动着科技的进步。
同时,随着能源和环境问题的日益突出,节能和可再生能源电路也成为研究的热点。
二、数电数电是指数字电子技术,它研究的是数字信号的产生、处理和传输。
数字信号是由离散的数值表示的信号,与模拟信号相对。
数电的基本元件是逻辑门,如与门、或门和非门等。
通过逻辑门的组合和连接,可以实现各种逻辑运算和数字电路的设计。
数电的应用非常广泛。
在计算机领域,数电应用于各种计算机硬件和逻辑设计中。
在通信领域,数电应用于数字通信系统和网络设备中。
在消费电子领域,数电应用于手机、平板电脑和电视等产品中。
数电的发展也极为迅猛,从最初的门电路到现在的微处理器、FPGA 和ASIC等高度集成的芯片,数电技术在信息时代扮演着重要的角色。
三、模电模电是指模拟电子技术,它研究的是模拟信号的产生、处理和传输。
模拟信号是连续变化的信号,与数字信号相对。
模电的基本元件是放大器、滤波器和振荡器等。
通过这些元件的组合和连接,可以实现各种模拟电路的设计。
模电的应用也非常广泛。
For personal use only in study and research; not for commercial use《数字电子技术》重要知识点汇总一、主要知识点总结和要求1.数制、编码其及转换:要求:能熟练在10进制、2进制、8进制、16进制、8421BCD 、格雷码之间进行相互转换。
举例1:(37.25)10= ( )2= ( )16= ( )8421BCD解:(37.25)10= ( 100101.01 )2= ( 25.4 )16= ( 00110111.00100101 )8421BCD2.逻辑门电路:(1)基本概念1)数字电路中晶体管作为开关使用时,是指它的工作状态处于饱和状态和截止状态。
2)TTL 门电路典型高电平为3.6 V ,典型低电平为0.3 V 。
3)OC 门和OD 门具有线与功能。
4)三态门电路的特点、逻辑功能和应用。
高阻态、高电平、低电平。
5)门电路参数:噪声容限V NH 或V NL 、扇出系数N o 、平均传输时间t pd 。
要求:掌握八种逻辑门电路的逻辑功能;掌握OC 门和OD 门,三态门电路的逻辑功能;能根据输入信号画出各种逻辑门电路的输出波形。
举例2:画出下列电路的输出波形。
解:由逻辑图写出表达式为:C B A C B A Y ++=+=,则输出Y 见上。
3.基本逻辑运算的特点:与 运 算:见零为零,全1为1;或 运 算:见1为1,全零为零;与非运算:见零为1,全1为零;或非运算:见1为零,全零为1;异或运算:相异为1,相同为零;同或运算:相同为1,相异为零;非 运 算:零 变 1, 1 变 零;要求:熟练应用上述逻辑运算。
4. 数字电路逻辑功能的几种表示方法及相互转换。
①真值表(组合逻辑电路)或状态转换真值表(时序逻辑电路):是由变量的所有可能取值组合及其对应的函数值所构成的表格。
②逻辑表达式:是由逻辑变量和与、或、非3种运算符连接起来所构成的式子。
集成运算放大电路
输入级采用高性能的恒流源差动放大电路
要求输入阻抗高、差摸放大倍数大、共模抑制比高、差摸输入电压及共模输入电压范围大且静态电流小
作用减少零点漂移和抑制共模干扰信号
中间级采用共射放大电路
作用提供较高的电压增益
输入级要求其输出电压范围尽可能宽、输出电阻小以便有较强的带负载能力且非线性失真小
采用准互补输出级
偏置电路确定合适的静态工作点
采用准互补输出级
综合高差摸放大倍数、高共模抑制比、高输入阻抗、高输出电压、低输出阻抗的双端输入单端输出的差动放大器交直流反馈的判断电容隔直通交直流:短路交流:开路
串并联反馈的判断输入信号与反馈信号同时加在一个输入端上的是并联,反之
电压电流反馈的判断反馈电路直接从输出端引出的是电压反馈从负载电阻RL的靠近
“地”端引出的是电流反馈
直流脉宽调制PWM变换器
将固定电压的直流电源变换成大小可调的直流电源的DC-DC变换器又称直流斩波器。
它能从固定输入的直流电压产生出经过斩波的负载电。
负载电压受斩波器工作率的控制。
变
更工作率的方法与脉冲宽度调制(斩波频率f=1/T不变,改变导通时间t on)和频率调制(导
通时间t on或关断时间t off不变,改变斩波周期T即斩波频率f=1/T)两种。
斩波器的基本回落方式有升压(斩波器所产生的输出电压高于输入电压)和降压两种,改变回落元件的连接就可改换回路的方式。
用晶闸管作为开关的斩波器,由于晶闸管无自关断能力,它在直流回路里工作是,必须有一套使其关断的(强迫)换相(流)电路。
晶闸管的换流方式有:电源换流、负载换流和
强迫换流。
负载换流缺点主要是电骡的揩振频率与L和C的大小有关,随着负载与频率的变化,换流的裕量也随之改变。
为了可靠换流,换流脉冲的幅值应足以消去晶闸管中的电流,脉冲的宽度应保证大于晶闸管的关断时间。
晶闸管斩波器的缺点是需要庞大的强迫换流电脑,是设备体积增大和损耗增加;而且斩波开关频率也低,致使斩波器电流的脉动幅度大,电源揩波也大,往往需加滤波器。
直流PWM变换器分不可逆、可逆输出两大类。
前者输出只有一种极性的电压,而后者可输出正或负极性电压。
如果在一个斩波周期中输出电压正、负相间的称为双极式可逆PWM
变换器;如果在一个斩波周期中输出电压只有一种极性电压的称为单极式可逆PWM变换
器。
双极式可逆PWM变换器的输出电压Uab在一个周期正、负相间。
单机式可逆PWM变换器只在一个阶段中输出某一极限的脉冲电压+Uab或—Uab,在另一阶段中Uab=0.
无制动作用的不可逆输出PWM变换器电流始终是一个方向,因此不能产生制动作用,电动机只能作单象限运行,又称为受限式脉宽调制电路。
受限单极式可逆PWM变换器与单极式可逆PWM变换器的不同是避免了上下两个开关直通的可能性。
双极式脉宽调制器由三角波振荡器、电压比较器构成,单极式脉宽调制器由两只运算放
大器构成的电压比较器构成
PWM 变换器的控制电路一般有产生调制信号的振动器、电压---脉冲变换器与分配器以及功率变换电路中开关的驱动保护电路组成。
PWM 变换器的控制电路中的振动器的作用是产生一个频率固定的调制信号作为时间比较的基准,因此要求线性度高和频率稳定。
脉宽调制逆变器
将直流电变为频率、电压可调的交流点的变换器称为逆变器(DA/AC 逆变器)
变成的交流电能送回交流电网叫有源逆变。
变成的交流电能供给负载用叫无源逆变。
PWM 方式:输出的电压是一系列脉冲(等幅值等宽或宽度按正炫分布),调节脉冲的宽度就可改变输出交流电压的有效值,改变逆变器中器件的换流速度就可调节输出交流电压的频率。
由晶闸管构成的逆变器换流方式有负载换流和强制换流。
PWM 逆变电路的控制方式有同步调制、异步调制、分段调制(普遍用)
逆变器关断方法有自然关断法和强迫关断法。
自然关断法是利用负载回路中的电感L 和电容C 在产生震荡时,电路中的电流具有自然过零从而使晶闸管发生自然关断。
逆变器工作可靠的关键是使晶闸管承受反压的时间大于晶闸管的关断时间。
负载u d
+
-
VD R
VT
L U S T = t on + t off α = t on / T U o = αU s
升压斩波器 U o = U s /1—α
逆变器(直流电源的
性质) 工作方式
晶闸管导电角度 幅值 基波有效值
换流电路 滤波器 输出波形 三相电压型 180°导电方式 180°
线电压Ud (180)
相2/3Ud
(120)
本桥 电容器 矩形(电压正弦波电流方波) 三相电流型 120°导电方式 120
0.78Id 异桥 电感
矩形。