双曲线的性质
- 格式:ppt
- 大小:137.50 KB
- 文档页数:1
双曲线性质双曲线性质双曲线,数学术语,简称双曲线。
指具有两个渐近线的函数图形,即渐近线垂直相交的两条曲线,常用I表示。
其中渐近线是一组平行于x轴的直线,其距离为常数。
1。
任何双曲线都可以用“割线法”求出其渐近线。
2。
一般地,双曲线可以分为一般双曲线和极限双曲线。
3。
双曲线和圆有着密切的联系。
4。
双曲线的渐近线是由双曲线和一点构成的向量组成的一个平面区域。
5。
双曲线有无数条渐近线,由这些渐近线所围成的平面区域就是所谓的“双曲面”。
6。
双曲线有无数条渐近线,由这些渐近线所围成的平面区域就是所谓的“双曲面”。
7。
两个双曲线相交,它们的公共点就是交点;不在同一个单位球上的双曲线,它们的公共点也不是交点。
8。
任意两个双曲线都可以通过坐标轴化简为一个平面区域。
9。
已知任意两个双曲线的一个面积和另一个面积之比,那么它们的公共面积也可以求出来。
10。
两个双曲线相交,只要它们的面积之比不超过两个公共点之间的距离的平方,就可以说这两个双曲线相互平行。
11。
一条双曲线与两条直线相交,若一条双曲线在此直线的左方,则这两条直线在这条双曲线右方;若一条双曲线在此直线的右方,则这两条直线在这条双曲线的左方。
12。
如果双曲线的一支过(0, 1),且方程是x=ax+b,另一支过(-1, 0),且方程是x=bx+c,则两者在y轴的截距分别为|a-b|与|c-a|。
13。
若两双曲线相交,两双曲线的交点在(0, 1),且方程是x=ax+b,则(-b, a)在双曲线y轴的截距为|-b|与|a-b|之和。
14。
设双曲线的一支过(a, b),另一支过(0, -b),且方程是x=ax+b,则y轴的截距为|a-b|与|-b|之差。
15。
若两条相交双曲线的交点在(0, b),且方程是x=ax+b,则y轴的截距为|-b|与|-b|之和。
16。
若两双曲线相交,两双曲线的交点在(-b, a),且方程是x=ax+b,则y轴的截距为|-b|与|a-b|之差。
双曲线的简单几何性质【知识点1】双曲线22a x -22b y =1的简单几何性质(1)范围:|x |≥a,y∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点:A 1(-a,0),A 2(a,0),两顶点间的线段为实轴长为2a ,虚轴长为2b ,且(4)=1中的1(5)(6)e =2(7)注意:且λ(2)与椭圆2a +2b =1(a >b >0)共焦点的曲线系方程可表示为λ-2a -λ-2b =1(λ<a 2,其中b 2-λ>0时为椭圆,b 2<λ<a 2时为双曲线)(3)双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =a c(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =c b 2,与椭圆相同.1、写出双曲线方程1254922-=-y x 的实轴长、虚轴的长,顶点坐标,离心率和渐近线方程2、已知双曲线的渐近线方程为x y 43±=,求双曲线的离心率3、求以032=±y x 为渐近线,且过点p (1,2)的双曲线标准方程4、已知双曲线的中心在原点,焦点在y 轴上,焦距为16,离心率为43,求双曲线的标准方程。
5、求与双曲线221169x y -=共渐近线,且经过()23,3A -点的双曲线的标准方及离心率.【知识点2】弦长与中点弦问题(1).直线和圆锥曲线相交时的一般弦长问题:一般地,若斜率为k 的直线被圆锥曲线所截得的弦为AB ,A 、B 两点分别为A(x 1,y 1)、B(x 2,y 2),则弦长]4))[(1(1212212122x x x x k x x k AB -++=-⋅+=]4)[()11(11212212122y y y y ky y k -+⋅+=-⋅+=,这里体现了解析几何“设而不求”的(2)设A(x 1;对于y 2【变1变4】7、过双曲线2212y x -=的右焦点F 作直线l 交双曲线于A,B 两点,若|AB|=4,这样的直线有几条?【题型2】双曲线离心率的求法一、根据离心率的范围,估算e :即利用圆锥的离心率的范围来解题,有时可用椭圆的离心率e ∈()01,,双曲线的离心率e >1,抛物线的离心率e =1来解决。
双曲线的几何性质
双曲线是几何学中非常有趣的一类曲线,它形状十分壮观,常被广泛应用到许多不同的领域,例如机械设计、工业设计和计算机图形学等。
双曲线之所以能受到人们的独特关注,是因为它具有着独特的几何性质,这些性质具体如下:
1、双曲线无论在何处取一点,边缘上总是相同的准则来决定它的方向,因此称之为曲线的确定性性质。
这种性质决定了双曲线的方向跟某一点的距离是固定的,任何时候对曲线做相同的位移等价于对某一点做相同的位移,因而看起来双曲线的每一段都是一模一样的。
2、双曲线的另一种性质是它的宽度性质。
在双曲线上确定一点,然后在此点向两方平行平移某一个距离,不可能让它离原点越来越远,如果再加上长度性质,可以发现双曲线不会变宽。
3、另外,双曲线是没有重复部分的,也就是说双曲线是一种不局限的曲线,具有无限性质,永远不会重复。
4、双曲线具有反射性,这就是说可以以一个定点作为基准点,以这个点左右对称地折叠,双曲线的两端点可以映射到另一条线上。
5、最后,双曲线的斜率具有渐变性质,斜率逐渐增加,直到极限是无穷大。
双曲线拥有非常独特的几何性质,而这些性质也使得双曲线在很多不同的领域有着重要的应用价值。
根据上述描述可以知道,双曲线不仅独特,而且还有多种优越的特性,有很大的实用价值。
双曲线的定义和性质
双曲线(Hyperbolic Curve)是数学中一种特殊的曲线,它具有两条反曲线(Hyperbolic curve),沿着直线封闭,它被认为是一种极限曲线,可以收敛到两个不同
的焦点。
虽然双曲线也称为平行双曲线,但它们可以按照任意方向曲折,但不会超过可以
认为是一个自治空间内的某个最大距离。
双曲线常用来描述流动的几何形状,可以用来解
释力的重力学传播效应。
(1)双曲线的最重要的性质就是它收敛到两个焦点,且这两个焦点之间的距离可以
通过一个称为双曲线的焦距的值来衡量。
(2)另外,双曲线完全由两个反曲线(Hyperbolic curves)组成,沿着直线封闭,
且双曲线具有节点,这些节点与直线联系在一起,称为切点,切点与双曲线的凹角相关联。
(3)此外,双曲线还具有两个定点,它们位于曲线上,且称为双曲线的交点,即双
曲线截止点。
双曲线的曲率(Curvature)取决于双曲线的焦距,曲率越大,双曲线的弯
曲越明显。
(4)双曲线的面积是负的,这意味着它的形状并不完全似圆,而是更加具有弯曲性,因此它在空间中形状更复杂。
(5)双曲线具有相反性,也就是说,当它在一个方向运行时,它会在相反的方向运行。
(6)另外,双曲线的拉伸性也很高,可以曲折的的角度和弯曲程度要比普通圆弧更大,这也使它具有很多实用价值。
(7)双曲线可以用于许多不同的几何计算,如极限几何的计算,倒立曲线的计算以
及复杂的曲面的几何计算。
双曲线的定义与性质双曲线是二次曲线中的一种,它是平面上到两个给定焦点的距离之差等于常数的点的轨迹。
双曲线的定义和性质对于数学研究和应用都非常重要,下面将对双曲线的定义、性质和一些实际应用进行简要介绍。
一、双曲线的定义双曲线的定义可以通过两个焦点和常数的关系来描述。
假设平面上有两个给定的焦点F1和F2,并且设距离两个焦点的距离之差等于常数2a,那么满足这个条件的点的轨迹就是一条双曲线。
二、双曲线的方程双曲线的方程可以通过焦点的坐标和常数来表示。
设焦点F1的坐标为(c, 0),焦点F2的坐标为(-c, 0),则满足条件的双曲线的方程可以表示为:(x-c)^2/a^2 - (y-0)^2/b^2 = 1或者(x+c)^2/a^2 - (y-0)^2/b^2 = 1其中,a和b分别为双曲线的两个主轴,c为焦点到坐标原点的距离。
三、双曲线的性质1. 焦点与双曲线的关系:双曲线上的每个点到两个焦点的距离之差都等于常数2a,这个性质决定了双曲线的形状。
2. 双曲线的对称性:双曲线关于x轴和y轴都有对称性。
即当(x, y)是双曲线上的一个点时,(-x, y)、(x, -y)和(-x, -y)也是双曲线上的点。
3. 双曲线的渐近线:双曲线有两条渐近线,分别与双曲线的两个分支无限靠近。
这两条渐近线的方程分别为y=(b/a)x和y=-(b/a)x。
4. 双曲线的焦点和定点:双曲线的焦点是双曲线的一部分,而焦点之间连线上的点叫做定点。
双曲线的定点到焦点的距离等于a。
四、双曲线的应用双曲线在物理学、工程学和经济学等领域中都有广泛的应用。
1. 物理学中,双曲线可以用来描述相对论效应下的时间与空间的关系。
2. 工程学中,双曲线可以用来描述电磁波在天线中的传播特性。
3. 经济学中,双曲线可以用来描述供需均衡时的市场行为。
总结:双曲线是平面上到两个给定焦点的距离之差等于常数的点的轨迹。
双曲线的方程可以用焦点的坐标和常数来表示。
双曲线具有一些特点,如焦点与双曲线的关系、双曲线的对称性、渐近线以及焦点和定点等。
双曲线的知识点
双曲线是一类空间曲线,即通过三维空间中某点的双曲线来定义曲线的切线方向和斜率。
双曲线用双曲线方程表示,由椭圆和双曲线的混合形式构成的。
双曲线的定义:双曲线是一种曲线,它是由双曲线方程表示的,这个方程一般可以表
述为x2/a2-y2/b2=1。
其中a、b叫做双曲线的离心率。
双曲线的概念:双曲线既包括椭圆表示的偶双曲线, 也包括双曲线表示的奇双曲线。
双曲线特别重要的概念是渐近线,即双曲线上每条切线和本身曲线的交点。
渐近线有两类:正因线和负因线。
双曲线的性质:双曲线的主要性质包括椭圆的部分性质:它的轴对称、它的离心率是
固定的。
其他性质有:它的曲线是可对称的、它的两个焦点相等。
双曲线的性质:双曲线也有一些独有的性质:曲线穿越渐近线具有序列性(即从穿过
左边渐近线的点到右边渐近线的点是有序排列的);曲线也有切线方向和斜率,这是双曲
线与其他曲线区别的地方。
双曲线的图形:双曲线的图形可分为偶双曲线和奇双曲线。
偶双曲线的图形是一个椭圆,而奇双曲线的图形由两条抛物线组成,两条抛物线的中心点成直线,称为心线。
双曲线的重要应用:双曲线有着重要的应用,用双曲线方程式求速度的问题就是一个
例子,同时双曲线对几何求解有重要的作用,用双曲线可以确定空间直线点积和空间点型
曲线点积。
总之,双曲线是一类重要的空间曲线,它可以用双曲线方程表示,并且双曲线也有一
些独有的性质,此外,它也具有重要的应用概念。
双曲线的知识点总结双曲线作为数学中的一种重要曲线,具有独特的特点和性质。
在解决各种实际问题中,双曲线有着广泛的应用,如电磁场的分布、天体运动和经济学中的供求关系等。
本文将就双曲线的定义、公式、性质和应用等方面进行探讨,帮助读者更全面地了解双曲线。
一、双曲线的定义和基本公式双曲线通常由两个分离的曲线枝组成,其特点是离心率大于1。
在直角坐标系中,双曲线可表达为以下形式:(x^2 / a^2) - (y^2 / b^2) = 1 (当双曲线方程为横轴的方程时)或(x^2 / a^2) - (y^2 / b^2) = -1 (当双曲线方程为纵轴的方程时)其中,a和b分别是双曲线的半轴长度。
双曲线的中心为原点O(0,0)。
二、双曲线的性质和特点1. 焦点和离心率:双曲线的焦点是与两条曲线枝的交点,用F1和F2表示。
焦点到曲线上任意一点的距离之和等于常数2a。
双曲线的离心率表示焦点到曲线枝的距离与焦点与中心的距离之比。
双曲线的离心率大于1,可以通过焦点和离心率的关系来判断双曲线。
2. 渐近线:双曲线有两条渐近线,它们分别与曲线枝趋于无穷远。
这两条渐近线的斜率分别为±b/a,即y=(b/a)x和y=-(b/a)x。
在这两条渐近线的范围内,双曲线的形状与直线逐渐靠近。
3. 对称轴:双曲线的对称轴是连接两条曲线枝的直线,过中心且垂直于渐近线。
对称轴的方程可以由双曲线的方程中x和y的系数的交换得到;若双曲线方程为横轴类型,则对称轴方程为y=0;若双曲线方程为纵轴类型,则对称轴方程为x=0。
三、双曲线的应用1. 电磁场分布在电场和磁场的研究中,双曲线常被用来描述特定范围内的电荷分布或者磁场强度。
利用双曲线的性质,可以确定特定区域内的电场强度或磁场强度的分布规律,为电磁场的研究提供重要的工具和理论支持。
2. 天体运动在天文学中,双曲线在描述天体运动时也有着广泛的应用。
例如,彗星的轨迹往往是双曲线状的,通过对双曲线性质的研究,可以了解到彗星的运动轨迹、速度和轨道参数等信息。
双曲线的简单几何性质【基础知识精讲】1.双曲线22a x -22by =1的简单几何性质(1)范围:|x |≥a,y ∈R.(2)对称性:双曲线的对称性与椭圆完全相同,关于x 轴、y 轴及原点中心对称.(3)顶点:两个顶点A 1(-a,0),A 2(a,0),两顶点间的线段为实轴,长为2a ,虚轴长为2b ,且c 2=a 2+b 2.与椭圆不同.(4)渐近线:双曲线特有的性质,方程y =±abx ,或令双曲线标准方程22a x -22b y =1中的1为零即得渐近线方程.(5)离心率e =ac>1,随着e 的增大,双曲线张口逐渐变得开阔. (6)等轴双曲线(等边双曲线):x 2-y 2=a 2(a ≠0),它的渐近线方程为y =±x,离心率e =2.(7)共轭双曲线:方程22a x -22b y =1与22a x -22by =-1表示的双曲线共轭,有共同的渐近线和相等的焦距,但需注意方程的表达形式.注意:1.与双曲线22a x -22b y =1共渐近线的双曲线系方程可表示为22a x -22by =λ(λ≠0且λ为待定常数)2.与椭圆22a x +22b y =1(a >b >0)共焦点的曲线系方程可表示为λ-22a x -λ-22b y =1(λ<a 2,其中b 2-λ>0时为椭圆, b 2<λ<a 2时为双曲线)2.双曲线的第二定义平面内到定点F(c,0)的距离和到定直线l :x =c a 2的距离之比等于常数e =ac(c >a >0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p =cb 2,与椭圆相同. 3.焦半径(22a x -22b y =1,F 1(-c,0)、F 2(c,0)),点p(x 0,y 0)在双曲线22a x -22by =1的右支上时,|pF 1|=ex 0+a,|pF 2|=ex 0-a;P 在左支上时,则 |PF 1|-(ex 1+a),|PF 2|=-(ex 1-a).本节学习要求:学习双曲线的几何性质,可以用类比思想,即象讨论椭圆的几何性质一样去研究双曲线的标准方程,从而得出双曲线的几何性质,将双曲线的两种标准方程、图形、几何性质列表对比,便于掌握.双曲线的几何性质与代数中的方程、平面几何的知识联系密切;直线与双曲线的交点问题、弦长间问题都离不开一元二次方程的判别式,韦达定理等;渐近线的夹角问题与直线的夹角公式.三角函数中的相关知识,是高考的主要内容.通过本节内容的学习,培养同学们良好的个性品质和科学态度,培养同学们的良好的学习习惯和创新精神,进行辩证唯物主义世界观教育.【重点难点解析】1.学习双曲线的几何性质,也可以与椭圆的几何性质对比进行,着重指出它们的联系和区别.2.本节重点是双曲线的几何性质,双曲线的第二定义及其应用,难点是双曲线的渐近线方程,第二定义,几何性质的应用.例1 (1)求中心在原点,对称轴是坐标轴,一条渐近线方程是y =-23x,且经过点Q(8,63)的双曲线方程.(2)已知双曲线满足:两准线间的距离为564,渐近线方程为y =±43x ,求双曲线方程. 分析 (1)据双曲线的渐近线方程,可求出a,b 之间的关系,以Q 点的坐标代入双曲线方程,即可求a,b 的值,亦可据共渐近线的双曲线系方程求出,这样可据焦点所在坐标轴的讨论.即设双曲线方程为42x -92y =λ(λ≠0),将Q 点坐标代入求得 λ=4故所求双曲线方程为 162x -362y =1.(2)当双曲线的焦点在x 轴上时,设其方程为22a x -22by =1,依题意有 ⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,43,56422222b a c a b c a 解得⎪⎩⎪⎨⎧==.366422b a 故所求双曲线方程为 642x -362y =1当双曲线焦点在y 轴上时,同理求得其方程为:22)332(x -22)9128(y =1综上所述,所求双曲线的方程为642x -362y =1或22)332(x -22)9128(y =1.例2 过双曲线92x -162y =1的右焦点F 2,作斜率为2的弦AB ,求|AB |的长.分析 运用焦半径知识较为简便. 依题意有a =3,c =5,e =35,F 2(5,0) 联立方程组⎪⎩⎪⎨⎧=--=1169)5(222y x x y 消去y 得 5x 2-90x+261=0. 设方程的两根为x 1,x 2. 于是|AB |=e(x 1+x 2)-2a =35×590-6=24. 注:若用弦长|AB |=221+·212214)(x x x x -+解计算量显然大一些,本例中AB 为过焦点弦,所以运用焦半径解题就较自然了.例3 已知直线l 和双曲线22a x -22by =1(a >0,b >0)及其渐近线依次交于A 、B 、C 、D 四点,求证:|AB |=|CD |.分析 若直线l 和x 轴垂直,结论显然成立;若直线l 不与x 轴垂直,则可设l 的方程为y=kx+m,代入双曲线方程并整理得:(b 2-a 2k 2)x 2-2a 2kmx-a 2(m 2+b 2)=0,设A(x 1,y 1),D(x 2,y 2),则x 1+x 2=22222ka b kma -再将y=kx+m 代入双曲线渐近线方程b 2x 2-a 2y 2=0 并整理得 (b 2-a 2k 2)x 2-2a 2kmx-a 2m 2=0.设B(x 3,y 3),C(x 4,y 4),则x 3+x 4=22222ka b kma - ∴x 1+x 2=x 3+x 4表明线段AD 的中点和线段BC 的中点重合,故问题得到证明.【难题巧解点拨】例1 求与双曲线162x -92y =1有共同渐近线且过点(2,3)的双曲线方程.分析一 只要判断清楚已知点(2,3)与渐近线的位置关系,便可知双曲线方程的表达式,进而可求出方程.解法一:双曲线162x -92y =1的渐近线方程为:y =±43x将x =2代入方程y =43x 得y =43·2=23<3 ∴点(2,3)在直线y =43x 的上方,于是设所求的双曲线方程为:22a y -22bx =1 ∴⎪⎪⎩⎪⎪⎨⎧=-=123432222b a b a )2()1( 由(1)设a =3k,b =4k ,代入(2)得:299k -2164k =1∴k =±23(舍负) ∴a =323b =23∴所求方程为:4272y -122x =1即2742y -122x =1分析二 与双曲线162x -92y =1有共同渐近线的双曲线方程表示为162x -92y =λ,待定系数λ便可求出双曲线方程.解法二:设所求双曲线方程为162x -92y =λ,(1)将点(2,3)代入(1)得:164-99=λ ∴λ=-43 所求方程为:162x -92y =-43即:2742y -122x =1为所求说明:(1)由渐近线及一点可以确定双曲线的位置,解法一正是利用此性质先定位再求出a 、b ,进而求出双曲线方程.(2)方程22αx -22βy =λ 当λ=0时,表示两条直线:αx +βy =0和αx -βy=0,正是双曲线的渐近线方程.因此当λ≠0时,方程表示以直线22αx -22βy =0为渐近线的双曲线系.解法二正是利用了此原理,设方程再代入点坐标便可求出双曲线方程比较简捷.例2 在双曲线122y -132x =1的一支上不同的三点A(x 1,y 1)、B(26,6)、C(x 2,y 2)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 2;(2)证明线段AC 的垂直平分线经过某一定点,并求该定点的坐标. 分析 (1)从双曲线的焦半径分析往往用第二定义. (2)证明过定点可采取求点坐标的方法.解:(1)∵a =23,b =13,c =5,∴e =a c=325=635.根据双曲线的第二定义,可得:|AF |=e(y 1-c a 2)=ey 1-a =635y 1-23, |CF |=e(y 2-c a 2)=ey 2-a =635y 2-23, |BF |=e(6-c a 2)=6e-a =6×635-23=33. 又|AF |、|BF |、|CF |成等差数列,∴|AF |+|CF |=2|BF |,即(635y 1-23)+( 635y 2-23)=2×33,∴y 1+y 2=12. (2)证明:设x 1+x 2=t ,则线段AC 的中点为(2t,6).∵1221y -1321x =1, 1222y -1322x =1.∴12))((2121y y y y -+-13))((2121x x x x -+=0,∴2121x x y y --=131(x 1+x 2)=13t .∴线段AC 的垂直平分线的斜率k =-t 13,从而其方程为y-6=-t 13 (x-2t),即(y-225)t+3x =0,显然它过定点(0,225). 点评:涉及焦半径问题往往考虑第二定义,一般来讲,双曲线22a x -22by =1上一点P(x 1,y 1)的左、右焦半径长为|PF 1|=±(ex 1+a),|PF 2|=±(ex 1-a)(其中P 在右支上取正号,在左支上取负号).【典型热点考题】例1 已知双曲线22a x -22by =1(a >0,b >0)左、右焦点分别为F 1和F 2,P 是它左支上点,P 到左准线距离为d.问:是否存在这样的点P ,使d,|PF 1|,|PF 2|成等比数列,说明理由.分析 对于存在性问题,先假设存在满足题意的对象,然后结合题设条件进行判断.设存在P(x 0,y 0)且x 0≤-a ,使d ,|PF 1|,|PF 2|成等比数列,则|PF 1|2=d |PF 2|, 设d ′为P 点到右准线的距离,由双曲线第二定义得:dPF 1='2d PF =e ∴|PF 1|=ed,∴(ed)2=d ·ed ′,∴ed=d ′,∴e(-c a 2-x 0)=-x 0+ca 2, ∴x 0=e e a -+1)11( ∵x 0≤-a,∴ee a -+1)11(≤-a,∴e 2-2e-1≤0,∴1-2≤e ≤2+1,又e >1, ∴1<e ≤2+1.故当双曲线的离心率e ∈(1, 2+1)时,存在满足条件的P ,而当e ∈(2+1,+∞)时,不存在满足条件的点P.注:利用双曲线的第二定义解题是非常有效的方法.本例还可以利用双曲线的两种定义再结合不等式|PF 1|+|PF 2|≥|F 1F 2|求解,请同学们自己完成.例2 如图,已知梯形ABCD 中,|AB |=2|CD |,点E 分有向线段AC 所成的比为λ,双曲线过C 、D 、E 三点,且以A 、B 为焦点.当(32≤λ≤43)时,求双曲线离心率e 的取值范围.分析 如图,以AB 的垂直平分线为y 轴,直线AB 为x 轴,建立直角坐标系,则CD ⊥y 轴.因为双曲线经过点C 、D ,且以A 、B 为焦点,由双曲线的对称性知C 、D 关于y 轴对称.依题意,记A(-C ,0),C(2c ,h),E(x 0,y 0,)其中c=21|AB |为双曲线的半焦距,h 是梯形的高.由定比分点坐标公式得x 0=λλ++-12cc =)1(2)2(+-λλc ,y 0=λλ+1h 42e -22b h =1,①42e (12+-λλ)2-(1+λλ)222b h =1 ②由①式得22bh =42e -1③把③式代入②式,整理得42e (4-4λ)=1+2λ 故λ=1-232+e由题设32≤λ≤43得32≤1-232+e ≤43.解得 7≤e ≤10.所以双曲线的离心率的取值范围为[7,10].注:本例先求出C 点纵坐标,用a 、b 、c 表示,然后将E 点坐标用λ表示,并代入双曲线方程,而得到含有e 与λ的等式,由λ范围求出e 的范围.例3 已知双曲线的两个焦点分别为M 、N ,点M 的坐标为(-2,-12),点S(-7,0)、T(7,0)在双曲线.(1)利用双曲线定义,求点N 的轨迹方程;(2)是否存在过P(1,m)的直线与点N 的轨迹有且只有两个公共点A 、B ,且点P(1,m)恰是线段AB 的中点?若存在,求出实数m 的取值范围;若不存在,说明理由.分析 (1)设点N 的坐标为(x,y),它不同于点M(-2,-12).由双曲线定义知 ||SM |-|SN ||=||TM |-|TN ||≠0 ∵S(-7,0),T(7,0),∴|SM |=13,|TM |=15.1°当|SM |-|SN |=|TM |-|TN |时,有|TN |-|SN |=2<14=|ST |,∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的双曲线C 的左支,除去M(-2,-12)和D(-2,12)两点.双曲线C 的方程:x 2-482y =1(x <0). ∴点N 的轨迹方程为x 2-482y =1(x <0,y ≠±12). 2°当|SM |-|SN |=-(|TM |-|TN |)时,有|TN |+|SN |=28>14=|ST |,∴点N 的轨迹是中心在ST 的中点(0,0),焦点为S 、T 的椭圆Q ,除去M(-2,-12)和D(-2,12)两点.椭圆Q 方程:1962x +1472y =1.∴点N 的轨迹方程为1962x +1472y =1(y ≠±12).综合1°、2°,点N 的轨迹方程为x 2-482y =1(x <0=和1962x +1472y =1,其中y ≠±12.(2)1°当过点P(1,m)的直线的斜率k 不存在时,直线l 的方程为x=1,可得m=1.2°当k 存在时,设直线l :y=kx+m-k.若l 过点M 或点D.∵两点M 、D 既在双曲线C 上,又在椭圆Q 上,但不在点N 的轨迹上 ∴l 与点N 的轨迹只有一个公共点,不合题意;若l 不过M 、D 两点.当-43<k 2<43时(双曲线C 的渐近线方程为y ±43=0),利用图像知,直线l 与点N 的轨迹有三个公共点,不合题意.当-∞<k ≤-43或43<k ≤+∞时,直线l 与点N 的轨迹有两个公共点A 、B ,且点P(1,m)是AB 的中点. 设A(x 1,y 1),B(x 2,y 2),则在 3x 21+4y 21=12×49, ① 3x 22+4y 22=12×49, ② ①-②,得3(x 1+x 2)(x 1-x 2)=-4(y 1+y 2)(y 1-y 2) ③ 将x 1+x 2=2,y 1+y 2=2m,2121x x y y -- =k 代入③,得k=-m43.当43≤k <+∞,即43≤-m43<+∞时,有-163≤m <0.【同步达纲练习】A 级一、选择题1.已知双曲线kx 2-2ky 2=4的一条准线是y=1,则实数k 的值等于( ) A.23 B.-32 C.-23 D.32 2.双曲线与其共轭双曲线有相同的( )A.顶点B.焦点C.准线D.渐近线3.过点(2,-2)且与双曲线x 2-2y 2=2有公共渐近线的双曲线方程是( )A.-42x +22y =1B. 42x -22y =1C.- 22x +42y =1D. 22x +42y =14.已知双曲线的半焦距为C ,两准线间的距离为d ,且c=d,则双曲线的离心率等于( ) A. 3B.2C.3D.25.当8<k <17时,曲线k x -172+ky -82=1与82x +172y =1有相同的( )A.焦距B.准线C.焦点D.离心率二、填空题 6.以y=±21x 为渐近线,且焦点在坐标轴上,焦距为10的双曲线 . 7.双曲线42x -82y =1的两准线相距 ,两渐近线所夹的锐角等于 ;8.若双曲线的离心率为2,则其共轭双曲线的离心率为 .三、解答题9.试求以椭圆1692x +1442y =1的右焦点为圆心,且与双曲线9x 2-162y=1的渐近线相切的圆方程.10.过双曲线92x -162y =1的右焦点F 作倾斜角为4的弦AB ,求弦AB 的长及AB 的中点M到右焦点F 的距离.AA 级一、选择题1.在下列双曲线中,与双曲线32x -y 2=1的离心率和渐近线都相同的是( )A.3y 2-x 2=9 B.x 2-3y 2=9C.3y 2-9x 2=1D.3x 2-y 2=3 2.双曲线的两条渐近线方程为y=±43x,则双曲线的离心率为( ) A.45 B.2 C.45或35D.25或215 3.过双曲线的一个焦点且与双曲线的实轴垂直的弦叫做双曲线的通径,则双曲线162y -92x =1的通径的长是( )A.49 B.29C.9D.104.已知双曲线642x -362y =1上的一点P 到右焦点的距离为14,则P 点到左准线的距离为( )A.22B.24C.26D.285.已知双曲线x 2-y 2=1的左焦点为F ,点P 为双曲线在第三象限内的任意一点,则斜率k PF 的取值范围是( )A.k ≤0或k ≥1B.k <0或k >1C.k ≤-1或k ≥1D.k <-1或k >1二、填空题6.双曲线16x 2-9y 2=144上一点P(x 0,y 0)(x 0<0)到左焦点距离为4,则x 0= .7.双曲线32x -y 2=1的共轭双曲线的准线方程是 .8.双曲线22ax -22b y =1的准线和渐近线的交点到双曲线的中心的距离等于 .三、解答题9.直线y=kx+1与双曲线x 2-y 2=1的左支交于A 、B 两点,直线l 过点(-2,0)和AB 中点,求直线l 在y 轴上截距b 的取值范围.10.求证:以过双曲线的一个焦点的弦为直径的圆,必与对应的准线相交,且这条准线截得的劣弧的弧度数为定值.【素质优化训练】1.过点A(1,1)且与双曲线x 2-y 2=2有且只有一个公共点的直线的条数是( ) A.1 B.2 C.3 D.42.双曲线的两条准线分焦点间的距离成三等分,则双曲线的离心率为( )A.33B. 2C.3D.23.若双曲线的两条渐近线是y=±23x ,焦点F 1(-26,0),F 2(26,0),那么它的两条准线间的距离是( )A.26138B.26134C.261318D.261394.已知双曲线的两个焦点是椭圆16x 2+25y 2=160的两个顶点,双曲线的两准线分别过椭圆的两个焦点,则此双曲线的方程是( )A. 62x -42y =1B. 42x -62y =1C.52x -32y =1D.32x -52y =15.已知E 、F 分别是离心率为215 的双曲线22a x -22by =1(a >0,b >0)的左顶点与右焦点,记M(0,b),则∠EMF 等于( )A.45°B.60°C.90°D.120°二、填空题6.已知双曲线162x -92y =1和点A(6,2)、B(5,0),M 是双曲线上的一个动点,则45|MA |+|MB |的最小值为 .7.双曲线的离心率是e=3,则两渐近线的夹角是 .8.渐近线为y=±21x,且和直线5x-6y-8=0有且仅有一个公共点的双曲线方程为 .三、解答题9.已知点A(5,0)和曲线y=142x (2≤x ≤25)上的点P 1,P 2,…,P n ,若|P 1A |,|P 2A |,…,|P n A |成等差数列并且公差d ∈(51,51),求n 的最大值.10.已知双曲线22a x -22by =1(a >0,b >0)离心率e=323,过点A(0,-b)和B(a,0)的直线与原点间距离23. (1)求双曲线方程;(2)直线y=kx+m(k ≠0,m ≠0)与双曲线交于不同的两点C 、D ,且C 、D 两点都在以A 为圆心的同一圆上,求m 的取值范围.【生活实际运用】1.运用双曲线的光学性质,设计并制作一台灯或吊灯.2.双曲线型自然通风塔的外形,是双曲线的一部分绕其虚构旋转所成的曲面,它的最小半径是6米,最小半径处的截口平面到地面距离是5米,底面截口半径是10米,求此双曲线的标准方程.注:这是一个有实际意义的题目.解这类题目时,首先要确认以下两个问题:(1)选择适当的坐标系;(2)将实际问题中的条件借助坐标系用数学语言表达出来.双曲线的标准方程为362x -225162y =1.【知识验证实验】1.已知双曲线2x 2-y 2=2,试问过点N(1,1)能否作一直线与双曲线交于C 、D 两点,且使N 为CD 的中点?这样的直线如果存在,求出它的方程,如果不存在,则说明理由.将问题一般化:N(x 0,y 0),双曲线方程为22a x -22by =1,若过点N 的双曲线的中点弦存在,则N 点应在什么位置?其方程又为何?2.点P 是双曲线32x -122y =1右分支上任意一点,F 1,F 2分别为左、右焦点,设∠PF 1F 2=α,∠PF 2F 1=β,求证:3tan2α=tan 2β. 解:在△PF 1F 2中,利用正弦定理及分比定理得βsin 1PF =αsin 2PF =)sin(21βα+F F =αβsin sin 21--PF PF ,∴2cos2sin28βαβα++=2sin2cos24αββα-+,即2sin2αβ-=sin2βα+,展开并简化,得3sin2αcos 2β=sin 2βcos 2β, ∴3tan 2α=tan 2β.【知识探究学习】舰A 在舰B 的正东6km 处,舰C 在舰B 的北偏西30°且与B 相距4千米处,它们准备围捕海洋动物.某时刻A 发现动物信号,4s 后B 、C 同时发现这种信号,A 发射麻醉炮弹.设舰与动物均为静止的,动物信号的传播速度是1km/s ,炮弹的速度是3320gkm/s ,其中g 为重力加速度.若不计空气阻力与舰高,问舰A 发射炮弹的方位角和仰角应是多少?解:取AB 所在直线为x 轴,AB 中点为原点建立直角坐标系,则A 、B 、C 舰的坐标分别为(3,0)、(-3,0)、(-5,23).记动物所在位置为P ,则|PB |=|PC |,于是P 在BC 中垂线上,其方程为3x-3y+73 =0.又A 、C 两舰发现信号的时间差为4秒,有|PB |-|PA |=4,于是P 在双曲线42x -52y =1的右支上,求得P 点坐标是(8,53)且|PA |=10.又k PA =3,∴直线PA 的倾斜角为60°,于是舰A 发射炮弹的方位角是北偏东30°,设发射的仰角是θ,初速度为v 0=3320g ,则g v θsin 20=θcos 100v ,∴sin2θ=210v g =23, ∴仰角θ=30°参考答案:【同步达纲练习】A 级1.B2.D3.A4.B5.A6. 202x -52y =1或202x -52y =-1 7. 334,arctan228.332 9.解:由椭圆1692x +1442y =1的右焦点为(5,0),∴圆心为(5,0),又圆与双曲线92x -162y =1的渐近线相切,即圆心到直线y=±34x 的距离为圆的半径.∴r=50354⨯-⨯±=4 于是圆的方程为(x-5)2+y 2=16.10.解:∵F(5,0),∴AB:y=x-5,将AB 的方程代入双曲方程,得7x 2+90x-369=0,设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=-790,x 1x 2=-7369,∴|AB |=212214)(2x x x x -+=7184322=7192,又x m =221x x +=-745,∴|MF |=2|x M -5|=7280 AA 级1.B2.C3.B4.B5.B6.-5217.y=±21 8.a9.解:由⎩⎨⎧=-+=1122y x kx y 消去y 得,(1-k 2)x 2-2kx-2=0,若令f(x)=(1-k 2)x 2-2kx-2,则直线与双曲线左支相交于A 、B 两点,等价于方程f(x)=0有两个不大于-1的不等实根,即:⎪⎪⎩⎪⎪⎨⎧≥---<-=+>-+=0)1()1(2120)1(84222122f k k k x x k k △ 解得1<k <2,又AB 中点为(221k k -,211k -),∴直线l 的方程为211k y-=2122+-+k kx ⇒y=2222++-+k k x ,令x=0,b=2222++-k k =1617)41(12+--k ,由k ∈(1, 2)知b <-2-2或b >2,故直线l 在y 轴上的截距b 的取值范围为(-∞,-2-2)∪(2,+∞).10.证明:设PQ 是过焦点F 的弦,M 是PQ 的中点,l 是与F 相应的准线,分别过P 、Q 、M 作l 的垂线,垂足为P 1、Q 1、M 1,则|MM 1|=21||PP 1|±|QQ 1||=21·|e PF 1±e PF 2|=e21|PQ |=e R<R ,当P 、Q 位于同一支时,取“+”,否则取“-”,∴以PQ 为直径的圆必与准线l 相交,且截得的劣弧的弧度数θ=2arccos RMM 1=2arccose1为定值. 【素质优化训练】1.B2.C3.A4.A5.C6. 277.arctan 724 8. 42x -y 2=19.解:题设中的曲线是双曲线中的一段,即42x -y 2=1,(2≤x ≤25,y ≥0),A(5 ,0)是它的右焦点,其右准线为l :x=54,e=25,设P n (x n ,y n )(2≤x n ≤25,y n ≥0),则|P n A |=e(x n -54)=25x n -2,∴|P n A |min=5-2,|P n A |max=3,依题意,可设等差数列首项a 1=5-2,第n 项a n =3=5-2+(n-1)d,得d=155--n (n >1),又51<d <51,∴51<155--n <51,得55-4<n <26-55,而7<55-4且26-55<15,∴7<n <15,故n 可取最大值为14.10.解:(1)过AB 的直线方程为bx-ay-ab=0,由点到直线距离公式可得22b a ab +=23①,又e=a b a 22+=332 ②,由①、②得b=1,a=3,即所求双曲线方程为32x -y 2=1(2)由⎪⎩⎪⎨⎧=-+=132y x mkx y 消去y,得(3k 2-1)x 2+6kmx+3(m 2+1)=0,当3k 2-1≠0即k ≠±33时,△=12(m 2-3k 2+1)>0,即m 2-3k 2+1>0 ③,设C(x 1,y 1),D(x 2,y 2),CD 中点为M(x 0,y 0).则x 0=221x x +=1332--k km ,y 0=kx 0+m=-132-k m,因C 、D 两点都在以A 为圆心的同一圆上,∴AM ⊥CD,而k AM =km m k 313--- k CD =k ,∴km m k 313---=-k1⇒3k 2=4m+1 ④,由④得:4m+1>0m >-41 ⑤,将④代入③:m 2-(4m+1)+1>0,得m <0或m >4,综合⑤得m 的取值范围为(-41,0)∪(4,+∞)。