流体的静压强1
- 格式:ppt
- 大小:939.00 KB
- 文档页数:36
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
流体力学重点知识汇总编者:翟冬毅韩冠宇武红李姗姗孙荣耀柯慧宇刘培放高士奇(以编写的章节排序)第一章连续介质假设:连续介质假设的概念认为流体是由流体质点连续的、没有空隙的充满了流体所在的整个空间的连续介质。
质点(流体微团):流体质点,是指微观上充分大、宏观上充分小的分子团。
粘滞性及其影响因素:对于流动着的流体,若流体质点之间因相对运动的存在,而产生内摩擦力以抵抗其相对运动的性质,称为流体的粘滞性,所产生的内摩擦力也称为粘滞力,或粘性力。
切应力和牛顿内摩擦定律:(1-14)、(1-15)动力粘性系数:μ在国际单位制中单位是Pa·s或N·s/m2,单位中由于含有动力学量纲,一般称为动力粘性系数运动粘性系数:运动粘性系数ν是动力粘性系数μ与流体密度ρ的比值。
梯度与变形的关系:牛顿内摩擦定律(1-14)中反映相对运动的流速梯度du/dt,实际上表示了流体微团的剪切变形速度。
作用力分类:按物理性质,分为惯性力、重力、弹性力、粘滞力、表面张力等;按作用方式,分质量力和表面力两种。
质量力是作用于流体的你每一个质点上,并与被作用的流体的质量成比例的力。
表面力是作用于流体的表面上,并与被作用的表面面积成比例的力。
第二章流体静压强特性:1.作用方向垂直并指向作用面。
2.静止流体内任意一点的流体静压强的大小与其作用面的方位无关,任意一点的流体静压强在各个方向上相等。
等压面性质:1.在平衡流体中等压面就是等势面。
2. 在平衡流体中等压面与质量力正交。
Z:位置水头,又代表位置势能,简称位能。
P/ᵨg:压强水头,又代表压强势能,简称压能。
(P/ᵨg+Z):测压管水头,为常数。
绝对压强=相对压强+大气压强:p’=p+p a真空压强(真空度):pv=pa- p’静压强分布图:1.按一定的比例,用线段的长度代表静水压强大小。
2.用箭头表示静水压强的方向。
压力体:1.受液体作用的曲面本身。
2.自由液面或自由液面的延长面。
第一章绪论 1-2、连续介质的概念:流体占据空间的所有各点由连续分布的介质点组成。
流体质点具有以下四层含义:1、流体质点的宏观尺寸很小很小。
2、流体质点的微观尺寸足够大。
3、流体质点是包含有足够多分子在内的一个物理实体,因而在任何时刻都应该具有一定的宏观物理量。
4、流体质点的形状可以任意划定,因而质点和质点之间可以完全没有空隙。
1-5、流动性:液体与固体不同之处在于各个质点之间的内聚力极小,易于流动,不能自由地保持固定的形状,只能随着容器形状而变化,这个特性叫做流动性。
惯性:物体对抗外力作用而维持其原有状态的性质。
黏性:指发生相对运动时流体内部呈现内摩擦力而阻止发生剪切变形的一种特性,是流体的固有属性。
内摩擦力或黏滞力:由于流体变形〔或不同层的相对运动〕,而引起的流体内质点间的反向作用力。
F :内摩擦力;=du F A dyμ±。
τ:单位面积上的内摩擦力或切应力〔N/m ²〕;==F du A dyτμ±。
A :流体的接触面积〔m ²〕。
μ:与流体性质有关的比例系数,称为动力黏性系数,或称动力黏度。
du dy:速度梯度,即速度在垂直于该方向上的变化率〔1s -〕。
黏度:分为动力黏度、运动黏度和相对粘度。
恩氏黏度:试验液体在*一温度下,在自重作用下从直径2.8mm 的测定管中流出200cm ³所需的时间T1与在20℃时流出一样体积蒸馏水所需时间T2之比。
1t 2T E T =。
牛顿流体:服从牛顿内摩擦定律的流体〔水、大局部轻油、气体等〕温度、压力对黏性系数的影响?温度升高时液体的黏度降低,流动性增加;气体则相反,温度升高时,它的黏度增加。
这是因为液体的黏度主要是由分子间的内聚力造成的。
压力不是特别高时,压力对动力黏度的影响很小,并且与压力的变化根本是线性关系,当压力急剧升高,黏性就急剧增加。
对于可压缩流体来说,运动黏度与压力是密切相关的。
第一节 流体静力学基本方程式流体静力学是研究流体在外力作用下达到平衡的规律。
在工程实际中,流体的平衡规律应用很广,如流体在设备或管道内压强的变化与测量、液体在贮罐内液位的测量、设备的液封等均以这一规律为依据。
1-1-1流体的密度一、密度单位体积流体所具有的质量,称为流体的密度,其表达式为:Vm =ρ (1-1) 式中 ρ——流体的密度,kg/m 3;m ——流体的质量,kg ;V ——流体的体积,m 3。
不同的流体密度不同。
对于一定的流体,密度是压力P 和温度T 的函数。
液体的密度随压力和温度变化很小,在研究流体的流动时,若压力和温度变化不大,可以认为液体的密度为常数。
密度为常数的流体称为不可压缩流体。
流体的密度一般可在物理化学手册或有关资料中查得,本教材附录中也列出某些常见气体和液体的密度值,可供查用。
二、气体的密度气体是可压缩的流体,其密度随压强和温度而变化。
因此气体的密度必须标明其状态,从手册中查得的气体密度往往是某一指定条件下的数值,这就涉及到如何将查得的密度换算为操作条件下的密度。
但是在压强和温度变化很小的情况下,也可以将气体当作不可压缩流体来处理。
对于一定质量的理想气体,其体积、压强和温度之间的变化关系为将密度的定义式代入并整理得'''Tp p T ρρ= (1-2) 式中 p ——气体的密度压强,Pa ;V ——气体的体积,m 3;T ——气体的绝对温度,K ;上标“'”表示手册中指定的条件。
一般当压强不太高,温度不太低时,可近似按下式来计算密度。
RTpM =ρ (1-3a ) 或 000004.22Tp p T Tp p T M ρρ== (1-3b ) 式中 p ——气体的绝对压强,kPa 或kN/m 2;M ——气体的摩尔质量,kg/kmol ;T ——气体的绝对温度,K ;R ——气体常数,8.314kJ/(kmol ·K )下标“0”表示标准状态(T 0=273K ,p 0=101.3kPa )。