实验六频率混叠与采样定理
- 格式:doc
- 大小:56.50 KB
- 文档页数:3
页眉内容
实验六
题目:采样定理的建模和验证
实验目的:通过建模与仿真验证采样定理,理解采样定理的物理实质实验要求:学习和回顾采样定理内容,对采样定理作建模和仿真
实验内容:
卷
乘
fs=1/Ts
2、建模参数要求:
设计模型,验证采样定理.
设基带波形频谱在 0Hz~200Hz 内. Fh=200Hz(信号最高频率),采样率就应该大于 400Hz 。
用窄脉冲采样,要求窄脉冲宽度是采样周期的 1/10。
从而得到系统仿真步长: 小于等于 1/4000,仿真系统的仿真步长取 1/4000。
采样器用乘法器实现. 而恢复时用低通滤波器实现. 低通滤波器的带宽等于信
号最高频率 Fh,即等于 200Hz.
4、修改基带信号最高频率,如最高频率为200Hz、250Hz 等等,观察采样前后以及恢复的
波形和频谱。
请用实验方法得到频谱混叠后的频谱图和相应的波形。
5. 将被采样信号修改为正弦波、三角波和方波,观察采样前后和恢复非波形和频谱。
实验报告内容和要求:(!!注意每部分得分情况!!)
1.建立采样和恢复模型,说明关键模块的参数设置(30分)
仿真模型建立:
参数设置:
信源与滤波器参数:
2.修改采样率,如采样率为150Hz,200Hz、300Hz等等,观察采样前后以及恢复的波形和频谱。
请用实验方法得到频谱混叠后的频谱图和相应的波形。
(40分)
150Hz:
200Hz:
300Hz:。
数字信号处理实验指导书实验名称:采样定理依托实验室:信号系统与处理实验室二00六年十二月数字信号处理实验一:采样定理一.实验目的1.熟练掌握SYSTEMVIEW软件工具的使用2.掌握采样定理的精髓3.了解采样定理在实际中的应用4.了解巴特沃斯滤波器的设计与仿真二.实验原理及方案1.采样定理的内容:奈奎斯特采样定理说明要从抽样信号中无失真地恢复原信号,抽样频率应大于或等于信号最高频率的2倍。
抽样频率小于信号最高频率的2倍时,抽样信号的频谱有混叠,用低通滤波器不可能恢复原始信号。
2.实验方案:三.实验内容系统参数设置:(1)系统时钟采样频率:最好大于4000HZ(2)观察时间0—0.1秒(3)低通滤波器:巴特沃斯滤波器(5阶,截止频率150HZ)(4)信号预处理:低通滤波器+放大器(5)抽样脉冲宽度:0.002秒1.信号源是100HZ的正弦波;抽样信号的频率分别设置为180HZ,350HZ,800HZ,分别观察信号的输出波形是否有失真,记录结果。
180HZ:350HZ:800HZ:2.信号源是20HZ的方波抽样信号的频率分别设置为180HZ,350HZ,800HZ,分别观察信号的输出波形是否有失真,记录结果。
180HZ:350HZ:800HZ:四.实验结果分析分析实验内容中信号的频率改变以及抽样脉冲频率改变对结果的影响,在分析的基础上得出结论。
答:180HZ的采样频率会使结果失真。
五.思考题1.方波信号的最大频率如何确定?2.为什么180HZ的采样频率会使结果失真?3.滤波器的阶数改变时对结果有何影响?4.系统的时钟抽样频率如何确定,为什么越大越好?。
一、实验目的1. 熟悉信号采样过程,了解采样定理的基本原理。
2. 通过实验观察采样时信号频谱的混叠现象。
3. 加深对采样前后信号频谱变化的理解,验证采样定理的正确性。
4. 掌握采样频率的选择对信号恢复的影响。
二、实验原理采样定理(Nyquist-Shannon采样定理)指出,一个频率为f的连续时间信号,如果以至少2f的频率进行采样,则采样后的信号可以无失真地恢复原信号。
本实验主要验证这一定理。
三、实验设备1. 信号发生器2. 示波器3. 采样器4. 低通滤波器5. 采样定理验证软件四、实验步骤1. 信号生成:使用信号发生器产生一个频率为f的连续时间信号。
2. 采样:将信号通过采样器进行采样,采样频率分别为f、2f、3f。
3. 频谱分析:使用示波器观察采样信号的时域波形,并使用频谱分析软件观察采样信号的频谱。
4. 信号恢复:对采样信号进行低通滤波,滤波器的截止频率为f/2,观察恢复后的信号。
5. 结果对比:对比不同采样频率下信号恢复的结果,分析采样频率对信号恢复的影响。
五、实验结果与分析1. 采样频率为f时:采样信号的频谱出现混叠现象,无法恢复原信号。
2. 采样频率为2f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
3. 采样频率为3f时:采样信号的频谱没有混叠现象,恢复后的信号与原信号基本一致。
实验结果表明,当采样频率为2f时,采样信号可以无失真地恢复原信号,验证了采样定理的正确性。
同时,实验也表明,采样频率越高,信号恢复的效果越好。
六、实验结论1. 采样定理是信号处理中重要的基本原理,它为信号的数字化提供了理论依据。
2. 采样频率的选择对信号恢复的影响很大,采样频率越高,信号恢复的效果越好。
3. 在实际应用中,应根据信号的频率特性和系统要求选择合适的采样频率。
七、实验心得体会通过本次实验,我对采样定理有了更深入的理解,认识到采样频率选择的重要性。
同时,实验也让我体会到实验在验证理论、提高动手能力方面的作用。
动态信号采样定理验证与抗混叠实验一、实验目的通过实验,加深理解采样定理;观察频率混淆现象并解释产生的原因;学习避免频率混淆的方法。
二、实验仪器①数据采集系统②信号发生器(信号源)③抗混滤波器三、实验原理1、香农采样定理如果信号是带限的,并且采样频率高于信号带宽的一倍,那么,原来的连续信号可以从采样样本中完全重建出来。
也即:为保证信号分析时不产生“频混”,采样频率fs应大于被采集信号最高频率成分fm 的两倍,fs>2fm。
从采样定理中,我们可以得出以下结论:①如果已知信号的最高频率fm,采样定理给出了保证完全重建信号的最低采样频率。
这一最低采样频率称为临界频率,通常表示为fs②相反,如果已知采样频率,采样定理给出了保证完全重建信号所允许的最高信号频率。
③以上两种情况都说明,被采样的信号必须是带限的,即信号中高于某一给定值的频率成分必须是零,或至少非常接近于零,这样在重建信号中这些频率成分的影响可忽略不计。
在第一种情况下,被采样信号的频率成分已知,比如声音信号,由人类发出的声音信号中,频率超过5kHz的成分通常非常小,因此以10kHz的频率来采样这样的音频信号就足够了。
在第二种情况下,我们得假设信号中频率高于采样频率一半的频率成分可忽略不计。
这通常是用一个低通滤波器来实现的。
2.混叠如果不能满足上述采样条件,采样后信号的频率就会重叠,即高于采样频率一半的频率成分将被重建成低于采样频率一半的信号。
这种频谱的重叠导致的失真称为混叠,而重建出来的信号称为原信号的混叠替身,因为这两个信号有同样的样本值。
一个频率正好是采样频率一半的弦波信号,通常会混叠成另一相同频率的波弦信号,但它的相位和幅度改变了以下两种措施可避免混叠的发生:①提高采样频率,使之达到最高信号频率的两倍以上;②引入低通滤波器或提高低通滤波器的参数;该低通滤波器通常称为抗混叠滤波器。
抗混叠滤波器可限制信号的带宽,使之满足采样定理的条件。
从理论上来说,这是可行的,但是在实际情况中是不可能做到的。
一、实验目的1. 理解频谱采样定理的基本概念。
2. 掌握采样频率与信号频率之间的关系。
3. 通过实验观察和分析采样过程中信号频谱的变化。
4. 理解频谱混叠现象及其对信号恢复的影响。
二、实验原理频谱采样定理(奈奎斯特定理)指出,为了不失真地恢复一个连续信号,采样频率必须大于信号中最高频率成分的两倍。
即,如果信号的最高频率为\( f_{max} \),则采样频率\( f_s \)应满足:\[ f_s > 2f_{max} \]当采样频率低于此值时,会发生频谱混叠现象,导致信号无法恢复。
三、实验仪器与软件1. 实验仪器:示波器、信号发生器、低通滤波器等。
2. 实验软件:MATLAB。
四、实验步骤1. 信号生成:利用信号发生器生成一个连续的正弦信号,设定其频率为\( f_{max} \)。
2. 采样:利用示波器观察连续信号,并设置示波器的采样频率。
记录不同采样频率下的信号波形。
3. 频谱分析:利用MATLAB对采样后的信号进行频谱分析,绘制其频谱图。
4. 信号恢复:利用低通滤波器对采样后的信号进行滤波,去除高频混叠成分,然后利用MATLAB对滤波后的信号进行频谱分析,绘制其频谱图。
5. 结果分析:对比分析不同采样频率下的信号波形、频谱图以及恢复后的信号波形和频谱图,验证频谱采样定理。
五、实验结果与分析1. 不同采样频率下的信号波形:随着采样频率的降低,信号波形逐渐失真,出现频谱混叠现象。
2. 不同采样频率下的频谱图:当采样频率高于\( 2f_{max} \)时,频谱图中信号频谱清晰,没有混叠现象;当采样频率低于\( 2f_{max} \)时,频谱图中信号频谱发生混叠,无法区分不同频率成分。
3. 信号恢复:利用低通滤波器去除高频混叠成分后,恢复出的信号波形与原始信号基本一致,频谱图也恢复出原始信号的频谱。
六、实验结论1. 实验验证了频谱采样定理的正确性,即采样频率必须大于信号中最高频率成分的两倍,才能不失真地恢复信号。
实验六 信号与系统实验1.信号的采样与恢复实验1.1实验目的(1)熟悉信号的采样与恢复的过程(2)学习和掌握采样定理(3)了解采样频率对信号恢复的影响1.2实验原理及内容(1)采样定理采样定理论述了在一定条件下,一个连续时间信号完全可以用该信号等时间间隔上瞬时值表示,这些值包含该信号全部信息,利用这些值可以恢复原信号。
采样定理是连续时间信号与离散时间信号的桥梁。
采样定理:对于一个具有有限频谱且最高频率为max w 的连续信号进行采样,当采样频率s w >=2max w 时,采样函数能够无失真地恢复出原信号。
(2)采样信号的频谱连续周期信号经过周期矩形脉冲抽样后,抽样信号的频谱为)]([)2()(s n s s nw w j F nw Sa T A jw F -=∑+∞-∞=ττ 它包含了原信号频谱以及重复周期为s w 的原信号频谱的搬移,且幅度按)2(ττs nw Sa T A 规律变化。
所以抽样信号的频谱便是原信号频谱的周期性拓延。
(3)采样信号的恢复将采样信号恢复成原信号,可以是用低通滤波器。
低通滤波器的截止频率c f 应当满足max max f f f f x c -≤≤。
实验中采用的低通滤波器的截止频率固定为Hz RCf 8021≈=π (4)单元构成本实验电路由脉冲采样电路和滤波器两部分构成,滤波器部分不再赘述,其中采样保持部分电路由一片CD4052完成。
此电路有两个输入端,其中IN1端输入被采样信号,Pu 端输入采样脉冲。
1.3实验步骤本实验在脉冲与恢复单元完成。
(1)信号的采样1)使波形发生器第一路输出幅值3V 、频率10Hz 的三角波信号;第二路输出幅值5V 、频率100Hz 、占空比50%的脉冲信号,将第一路信号接入IN1端;作为输入信号,第二路信号接入Pu 端,作为采样脉冲。
2)用示波器分别测量IN1端和OUT1端,观察采样前后波形的差异。
3)增加采样脉冲的频率为200、500、800等值。
采样定理实验报告采样定理实验报告一、实验目的本实验旨在通过对采样定理的实际应用,验证采样定理的有效性,并了解采样频率对信号恢复的影响。
二、实验原理采样定理,又称奈奎斯特定理,是指在进行信号采样时,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。
否则,会出现混叠现象,导致信号失真。
三、实验器材1. 示波器:用于观测信号波形。
2. 信号发生器:用于产生不同频率的信号。
3. 低通滤波器:用于恢复被混叠的信号。
四、实验步骤1. 将信号发生器连接到示波器上,设置合适的信号频率和幅度。
2. 观察信号波形,记录信号的最高频率。
3. 根据采样定理,计算出合适的采样频率。
4. 调整示波器的采样频率,确保其大于信号最高频率的两倍。
5. 观察采样后的信号波形,记录观察结果。
6. 将采样后的信号通过低通滤波器进行恢复。
7. 观察恢复后的信号波形,记录观察结果。
五、实验结果与分析在实验过程中,我们选择了不同频率的信号进行采样,并观察了采样前后的信号波形。
实验结果表明,当采样频率小于信号最高频率的两倍时,混叠现象会导致信号失真。
而当采样频率大于信号最高频率的两倍时,通过低通滤波器可以完全恢复原始信号。
通过实验数据的观察和分析,我们可以得出以下结论:1. 采样定理的有效性得到了验证,采样频率必须大于信号最高频率的两倍,才能完全恢复原始信号。
2. 低通滤波器在信号恢复中起到了关键作用,通过滤除混叠信号的高频成分,使得信号恢复更加准确。
六、实验应用采样定理在现代通信领域有着广泛的应用。
例如,在音频和视频传输中,为了保证信号的质量和准确性,需要按照采样定理的要求进行信号采样和恢复。
此外,在数字信号处理、图像处理、雷达和医学成像等领域中,采样定理也扮演着重要的角色。
七、实验总结通过本次实验,我们深入了解了采样定理的原理和应用,并通过实际操作验证了其有效性。
采样定理对于信号的采样和恢复具有重要意义,是保证信号质量和准确性的基础。
实验六 信号抽样与重建1 实验目的(1) 掌握信号的抽样及抽样定理。
(2) 掌握利用MA TLAB 分析抽样信号的频谱。
(3) 掌握和理解信号抽样以及信号重建的原理。
(4) 理解频率混叠的概念。
2实验原理及方法2.1信号的抽样及抽样定理抽样就是从连续时间信号中抽取一系列的信号样本,从而得到一个离散时间序列,这个离散序列经量化后,就成为所谓的数字信号。
今天很多信号在传输与处理时,都是采用数字系统进行的,但是数字系统只能处理数字信号,不能直接处理连续时间信号或模拟信号。
为了能够处理模拟信号,必须先将模拟信号进行抽样,使之成为数字信号,然后才能进行传输与处理。
所以,抽样是将连续时间信号转换成离散时间信号必要过程。
模拟信号经抽样、量化、传输和处理之后,其结果仍然是一个数字信号,为了恢复原始连续时间信号,还需要将数字信号经过所谓的重建和平滑滤波。
图6-1给出了信号理想抽样的原理图。
图6-1 (a) 抽样原理图 (b)带限信号的频谱上图中,假设连续时间信号x(t)是一个带限信号,其频率范围为m m ωω~-,抽样脉冲为理想单位冲激串,其数学表达式为: ∑∞∞--=)()(snT t t p δ 6-1由图可见,模拟信号x(t)经抽样后,得到已抽样信号x s (t): )()()(t p t x t x s = 6-2 将p(t)的数学表达式代入上式得到:∑∞∞--=)()()(sss nT t nT x t x δ 6-3显然,已抽样信号x s (t) 也是一个冲激串,只是这个冲激串的冲激强度被x(nT s ) 加权了。
从频域上来看,p(t) 的频谱也是冲激序列,且为: ∑∞∞--=)()}({ssn t p F ωωδω 6-4(a)根据傅里叶变换的频域卷积定理,时域两个信号相乘,对应的积的傅里叶变换等于这两个信号的傅里叶变换之间的卷积。
所以,已抽样信号x s (t)的傅里叶变换为:∑∞-∞=-=n sss n j X T j X ))((1)(ωωω 6-5表达式6-5告诉我们,如果信号x(t)的傅里叶变换为X(j ω),则已抽样信号x s (t) 的傅里叶变换X s (j ω)等于无穷多个加权的移位的X(j ω)之和,或者说,已抽样信号的频谱等于原连续时间信号的频谱以抽样频率ωs 为周期进行复制的结果。
采样定理实验报告实验报告⼀、实验⽬的熟悉信号采样过程,并通过本实验观察⽋采样时信号频谱的混叠现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定⽅法。
⼆、实验原理模拟信号经过(A/D )变换转为熟悉信号的过程称之为采样,信号采样后其频谱产⽣了周期延拓,在⼀定条件下,⼀个连续时间信号完全可以⽤该信号在等时间间隔上的瞬时样本值表⽰,这些样本值包含了该连续时间信号的全部信息,利⽤这些样本值可以恢复原连续时间信号。
采样定理的完整描述如下:⼀个频谱在(-ωm ,ωm )以外为零的频带有限信号f(t),可唯⼀的由其在均匀时间间隔T s (T s <12f m )上的样点值f s (t)=f(n T s )确定。
要从采样信号f s (t)中顺利恢复原信号f(t),必须满⾜两个条件:(1)f(t)必须是频带有限信号;(2)取样频率不能过低,必须满⾜f s ?2f m ,称f s =2f m 为奈奎斯特速率。
f m 为f(t)最⾼截⽌频率。
如前所述f(t)为带限信号其最⾼截⽌频率为f m 其频谱F(j ω)如图(a )所⽰,采样时间间隔为Ts ,则f(t)经采样后的离散序列f(n)为:f (n )=f s (t )=f (nT s )=f(t)∑δ(t ?nT s )=∑f(t)δ(t ?nT s )∞n=?∞∞n=?∞其中,g(t)= ∑δ(t ?nT s )∞n=?∞—采样信号(周期单位脉冲时序列)G(t)的频谱如图(b )所⽰。
F s (jω)的频谱如图(c )所⽰,图中相当于原模拟信号的频谱称为基带频谱。
如果f s <2f m 则F s (jω)按照采样频率f s 进⾏周期延拓时,形成频谱混叠现象如图(d )所⽰。
f s (t )的频谱函数为:F s (jω)=12πF(jω)×ωs ∑δ(ω?nωs )=1T s ∑F[j (ω?nωs )∞n=?∞∞n=?∞];其中ωs =2πT s可以看出,抽样信号的频谱F s (jω)是原信号频谱F(jω)的⽆数次平移之后的叠加。
实验六频率混叠与采样定理
一.实验目的:
熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。
二.实验内容和原理:
模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。
为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。
a) 正常采样b) 欠采样
x(t)=3sin(2π·f·t)
采样频率=5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。
三.实验仿真
1.Matlab源代码:
x=-10:0.1:10;
m=0:0.05:10;
y1=sin(2*pi*x);
y2=sin(4*pi*x);
y3=sin(6*pi*x);
y4=sin(8*pi*x);
y5=sin(9*pi*x);
y6=sin(12*pi*x);
transf1=abs(fft(y1))/100;
transf2=abs(fft(y2))/100;
transf3=abs(fft(y3))/100;
transf4=abs(fft(y4))/100;
transf5=abs(fft(y5))/100;
transf6=abs(fft(y6))/100;
subplot(6,2,1);
plot(x,y1);
subplot(6,2,2);
plot(m(1:100),transf1(1:100));
subplot(6,2,3);
plot(x,y2);
subplot(6,2,4);
plot(m(1:100),transf2(1:100));
subplot(6,2,5);
plot(x,y3);
subplot(6,2,6);
plot(m(1:100),transf3(1:100));
subplot(6,2,7);
plot(x,y4);
subplot(6,2,8);
plot(m(1:100),transf4(1:100));
subplot(6,2,9);
plot(x,y5);
subplot(6,2,10);
plot(m(1:100),transf5(1:100));
subplot(6,2,11);
plot(x,y6);
subplot(6,2,12);
plot(m(1:100),transf6(1:100));
对于一个信号,采样频率只有大于信号最高频率的2倍时,得到的FFT变换才真实的反映原信号。
而当采样频率低于信号最高频率的2倍时发生混频现象,这时所得到的FFT变换不能真实的反映原信号。
因此不能由IFFT来恢复出原来的信号。
四.比较x(t)=3sin(2π·f·t)
采样频率=5120Hz,取信号频率f=150Hz(正常采样)和f=3000Hz(欠采样)两种情况进行采样分析。
1.代码:
x=0:1/5120:1;
m=0:1:5120
y1=sin(2*pi*150*x);
y2=sin(2*pi*3000*x);
transf1=abs(fft(y1))/2560;
transf2=abs(fft(y2))/2560;
subplot(2,2,1);
plot(x,y1);
axis([0,1,-1.2,1.2]);
title('sin(2*pi*150*x)');
subplot(2,2,2);
plot(m(1:2560),transf1(1:2560));
title('fft(sin(2*pi*150*x))');
subplot(2,2,3);
plot(x,y2);
axis([0,1,-1.2,1.2]);
title('sin(2*pi*3000*x)');
subplot(2,2,4);
plot(m(1:2560),transf2(1:2560));
title('fft(sin(2*pi*3000*x))');
由上面的图可以看出当信号的频率为150Hz时,FFT变换得到信号的频率是150Hz。
而当信号的频率是3000Hz时,我们做FFT变换得到的信号频率是2120Hz,这与实际的情况不相符合。
说明了采样定理的正确性。