高级心理统计2-多元方差分析
- 格式:ppt
- 大小:525.00 KB
- 文档页数:42
第20章多元方差分析(MANOVA)20.1 复习笔记一、多元方差分析简介(一)多元方差分析的概念多元方差分析是用于考查类目型变量在多个等距因变量上的主效应和交互作用的统计方法。
(二)MANOVA与ANOVA的比较1.相似之处(1)均可以有一个或几个类目型自变量作为预测源。
(2)计算性质和逻辑相同。
MANOVA可以看成是ANOVA在多个因变量情境下的延伸。
ANOVA是在一个因变量上进行检验,检测组间的差异是否是随机出现的;MANOVA 是在因变量的组合上进行检验,检测组间的差异是否是随机出现的。
2.不同之处MANOVA与ANOVA根本的不同在于因变量的个数。
MANOVA中因变量的个数多于一个,而ANOVA中只有一个因变量。
而且,MANOVA所测量的因变量彼此之间是有相关的。
(三)不能用多个ANOVA的分析来代替MANOVA的分析1.MANOVA的优点(1)首先,通过测量多个因变量而不是一个因变量,MANOVA减少了忽略某个会被自变量和自变量的交互作用影响的因变量的机率;(2)其次,对多个相关的因变量进行多个ANOVA检验,会造成I类错误的膨胀,使用MANOVA能够同时检验多个因变量,而又避免I类错误的膨胀;(3)第三,在特定的情况下,MANOVA能够检验出单独ANOVA分析无法检验出的差异。
2.MANOVA的局限(1)首先,在MANOVA中,有几个非常重要的前提假设需要考虑。
(2)其次,MANOVA在解释自变量对于某个因变量的效果时存在着一些模糊不清。
(3)MANOVA的统计效力高于ANOVA的情境并不是很多。
(四)多元协方差分析MANCOVA与MANOVA类似,因变量个数大于或者等于2,以等距自变量作为“协变量”。
多元协方差分析是协方差分析(ANCOVA)的扩展,应用多元协方差分析。
要回答的问题是:如果控制了一个或者多个协变量对新创建的因变量的影响之后,各组之间是否存在着统计上可靠的均值差异。
第六章方差分析第一节方差分析概述一.方差分析的定义[用途]定义:用途方差分析也称为变异数分析,是在教育与心理研究中最常用的变量分析方法,其主要功能在于分析测量或实验数据中不同来源的变异对总变异的贡献大小,从而确定测量或实验中因素对反应变量是否存在显著影响。
即用于置信度不变情况下的多组平均数之间的差异检验。
它既可以比较两个以上的样本平均数的差异检验,也可以应用于一个因素多种水平以及多个因素有多种水平的数据分析。
二.方差分析的作用方差分析主要应用于两种以上实验处理的数据分析,同时匕徽两个以上的样本平均数,推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义。
在这个意义,也可以将其理解为平均数差异显著性检验的扩展。
当我们用多个t检验来完成这一过程时,相当于从t分布中随机抽取多个t值,这样落在临界范围之外的可能大大增加,从而增加了I型错误的概率,我们可以把方差分析看作t检验的增强版。
方差分析一次检验多组平均数的差异,降低了多次进行两组平均数检验所带来的误差。
在进行方差分析时,设定的假设是综合虚无假设,即假设样本所归属的所有总体的平均数都相等。
如果检验的结果是存在显著性差异,只能说明多组平均数之间存在显著性差异,但是无法确定究竟哪些组之间存在显著性差异,此时需要运用事后检验的方法来确定。
三.方差分析的相关概念一(一)数据的变异(1)变异:统计中的变异是普遍存在的7一般意义上的变异是指标志(包括品质标志和数量标志)在总体单位之间的不同表现。
可变标志的属性或数值表现在总体各单位之间存在的差异,统计上称之为变异,这是广义上的变异,即包括了品质标志和数量标志,有时仅指品质标志和在总体单位之间的不同表现。
注:随机性,即变异性。
(2)组间变异[组间差异]:组间变异表示处理间变异,主要指由于接受不同的实验处理(实验处理效应)而造成的各组之间的变异,可以用两个平均数之间的离差来表示,可将组间离差平方和记为SS AO组间差异可用组间方差来表征,用符号MS B表示。
SPSS超详细操作:两因素多元方差分析(Two医咖会在之前的推文中,推送过多篇方差分析相关的文章,包括:单因素方差分析(One-Way ANOVA)双因素方差分析(Two-way ANOVA)三因素方差分析(Three-way ANOVA)单因素重复测量方差分析两因素重复测量方差分析三因素重复测量方差分析单因素多元方差分析(One-way MANOVA)每种方差分析的应用场景,以及该如何进行SPSS操作和解读结果,各位伙伴请点击相应的文章链接查看~~今天,我们再来介绍一种统计方法:两因素多元方差分析(Two-way Manova)。
一、问题与数据某研究者想研究三种干预方式(regular—常规干预;rote—死记硬背式干预;reasoning—推理式干预)对学生学习成绩的影响。
研究者记录了学生两门考试的成绩:文科成绩(humanities_score)和理科成绩(science_score)。
另外,基于之前的知识,研究者假设干预方式对男女两种性别学生的效果可能不同。
换言之,研究者想知道不同干预方式对学习成绩的影响在男女学生中是否不同。
也就是说,干预方式和性别两个自变量之间是否存在交互作用(interaction effect)。
注:交互作用是指某一自变量对因变量的效应在另一个自变量的不同水平会不同。
在本例中,就是要比较①男性中干预方式对学习成绩的影响和②女性中干预方式对学习成绩的影响。
这两个效应就成为单独效应(simple main effects),也就是说,单独效应是指在一个自变量的某一水平,另一个自变量对因变量的影响。
因此,交互作用也可以看做是对单独效应间是否存在差异的检验。
在本研究中,共有三个效应:性别的主效应;干预方式的主效应;性别和干预方式的交互作用。
研究者选取30名男学生和30名女学生,并将其随机分配到三个干预组中,每个干预组中共有10名男学生和10名女学生。
部分数据如下:二、对问题的分析使用两因素多元方差分析法进行分析时,需要考虑10个假设。
应用多元统计知识点总结在多元统计分析中,我们经常会涉及到一些常用的方法和技术,比如多元方差分析(MANOVA)、主成分分析(PCA)、聚类分析(Cluster Analysis)、因子分析(Factor Analysis)等。
下面我们来总结一下这些知识点的应用和要点。
一、多元方差分析(MANOVA)多元方差分析(MANOVA)是一种比较多组样本均值差异的统计方法,其基本思想是同时分析多个因变量的均值差异,以便全面地考察自变量对因变量的影响。
在实际应用中,我们经常会遇到多组变量之间的比较问题,比如不同品牌的产品在多个指标上的表现如何?不同地区的消费者在多个方面的行为有何差异?这些问题都可以通过MANOVA来进行分析。
MANOVA的要点在于,首先需要对数据进行正态性和方差齐性的检验,以确保分析结果的可靠性。
其次,需要注意变量的选择和方差分析的模型建立,要仔细考虑自变量和因变量之间的关系,以避免产生误导性的结果。
二、主成分分析(PCA)主成分分析(PCA)是一种多元统计方法,其主要目的是通过线性变换,将原始变量转化为一组新的互相无关的综合变量(主成分),以减少数据的维度和提取数据中的主要信息。
在实际应用中,PCA常用于数据降维和变量筛选,尤其适用于处理大量相关性较强的变量。
比如,在市场营销中,我们需要从众多消费者行为指标中提取出最重要的因素进行分析,这时就可以运用PCA来进行变量选择和数据降维。
在进行PCA分析时,需要注意的是,要对数据进行标准化处理,以避免因量纲不同而产生误导性的结果。
同时,要仔细考虑主成分的解释性和累计方差贡献率,以确保提取的主成分能够较好地反映原始变量的信息。
三、聚类分析(Cluster Analysis)聚类分析(Cluster Analysis)是一种将样本划分为若干个类别的统计方法,其主要目的是将相似的样本归为一类,以便对样本进行分类和归纳。
在实际应用中,聚类分析常用于市场细分和用户分群,以识别出具有相似特征和行为的消费者群体。
第七章 方差分析、统计效力方差分析原理:综合的F检验应用:两个以上平均数之间的差异检虚无假设:H0:μ1 = μ2 = μ3方差可分解,实验数据的总变异分解为若干不同来源的分变异,一般分为组内变异和组间变异组内变异:实验误差、被试差异等组间变异:不同实验条件造成的变异考察F = 组间均方/ 组内均方的显著性方差分析的前提总体正态分布变异互相独立各实验条件的方差齐性方差分析的步骤a. 求总和方、组间和方、组内和方b. 求总自由度、组间自由度、组内自由度c. 求组间均方、组内均方d. 计算F观测值e. 列方差分析表f. 查F表求F临界值g. 作判断符号系统K = 处理条件或组的数目n i = 第i 组的被试数目,若每组被试相等,则为n N = Σn i = 总被试数T i = ΣX ij = 每个组分数值的和 G = ΣX ij = 所有分数的总和 P = 每个被试的观察数目 单因素完全随机方差分析例:检验三个不同的学习方法的效应。
将学生随机分配到3个处理组 方法 A :让学生只读课本, 不去上课. 方法 B :上课,记笔记,不读课本.方法 C :不读课本,不去上课, 只看别人的笔记解:虚无假设H 0:μ1 = μ2 = μ3 ,三种方法学习效果没有差异 备择假设:至少有一个组和其他不同G=30, N=15, 215G ==, 2106,3XK ==∑SS 总= ΣX 2 - G 2 / N =106 – 900 / 15 = 106 – 60 = 46 SS 组内= SS 1 + SS 2 + SS 3 = 6 + 6 + 4 = 16SS组间= Σ(T2/n i) - G2/N = 52/5 + 202/5 + 52/5 - 302/15 = 5 + 80 + 5 –60 = 30实际SS组间可以用SS总- SS组内快速求得,但不推荐df总= N – 1 = 15 -1 = 14df组内= N –K = 15 - 3 = 12df组间= K – 1 = 3 – 1 = 2MS组内= SS组内/ df组内= 16/12 = 1.333MS组间= SS组间/ df组间= 30/2 = 15F obs = MS组间/ MS组内= 15 / 1.333 = 11.25F0.05(2, 12) = 3.88F obs = 11.25 > F0.05(2, 12) = 3.88所以拒绝H0,至少有一组和其他不同事后检验N-K检验HSD检验Scheffe检验……注意:不能用两两之间t检验,P = 1 - (1 - α)n,例如本例P = 1 - (1 –0.05)3 = 0.143随机区组设计的方差分析又称重复测量方差分析,单因素组内设计,相关组设计,被试内设计解:G = 305.5,N = 32,ΣX2 = 2934.91,K = 4, n = 8SS总= ΣX2 - G2 / N = 2934.91 –305.52 / 32 = 18.33SS组内= SS1 + SS2 + SS3 + SS4 = 2.8 + 3.14 + 1.535 + 1.429 = 8.894SS组内= SS被试间+ SS误差SS被试间=Σ(P2/K) - G2/N = 1544.49/4 + 1482.25/4 + 1584.04/4 + 1310.44/4 + 1303.21/4 + 1444/4 + 1755.61/4 + 1274.49/4 - 305.52/32 = 8.062SS误差= SS组内- SS被试间= 8.894 - 8.062 = 0.832SS组间= Σ(T2/n i) - G2/N = 80.82/8 + 79.62/8 + 75.42/8 + 69.72/8 –305.52/32 = 816.08 + 792.02 + 710.645 + 607.261 –2916.57 = 9.436df总= N – 1 = 32 -1 = 31df组内= N –K = 32 - 4 = 28df组间= K – 1 = 4 – 1 = 3df被试= n – 1 = 8 – 1 = 7df误差= df组内–df被试= 28 –7 = 21MS误差= SS误差/ df误差= 0.832/21 = 0.040MS组间= SS组间/ df组间= 9.436/3 = 3.145F obs = MS组间/ MS误差= 3.145 / 0.040 = 78.63F0.01(3, 21) = 4.87F obs = 78.63 > F0.01(3, 21) = 4.87所以拒绝H0,至少有一组和其他不同事后检验:略协方差分析在某些实际问题中,有些因素在目前还不能控制或难以控制,如果直接进行方差分析,会因为混杂因素的影响而无法得出正确结论。