第二章-分子筛结构与性质
- 格式:ppt
- 大小:2.13 MB
- 文档页数:50
1.分子筛的概念分子筛是结晶型的硅铝酸盐,具有均匀的孔隙结构。
分子筛中含有大量的结晶水,加热时可汽化除去,故又称沸石。
自然界存在的常称沸石,人工合成的称为分子筛。
它们的化学组成可表示为Mx/n ·ZH2O式中M是金属阳离子,n是它的价数,x是AlO2的分子数,y是SiO2分子数,Z是水分子数,因为AlO2带负电荷,金属阳离子的存在可使分子筛保持电中性。
当金属离子的化合价n = 1时,M的原子数等于Al的原子数;若n = 2,M的原子数为Al原子数的一半。
常用的分子筛主要有:方钠型沸石,如A型分子筛;八面型沸石,如X-型,Y-型分子筛;丝光型沸石(-M型);高硅型沸石,如ZSM-5等。
分子筛在各种不同的酸性催化剂中能够提供很高的活性和不寻常的选择性,且绝大多数反应是由分子筛的酸性引起的,也属于固体酸类。
近20年来在工业上得到了广泛应用,尤其在炼油工业和石油化工中作为工业催化剂占有重要地位。
2.分子筛的结构特征(1)四个方面、三种层次:分子筛的结构特征可以分为四个方面、三种不同的结构层次。
第一个结构层次也就是最基本的结构单元硅氧四面体(SiO4)和铝氧四面体(AlO4),它们构成分子筛的骨架。
相邻的四面体由氧桥连结成环。
环是分子筛结构的第二个层次,按成环的氧原子数划分,有四元氧环、五元氧环、六元氧环、八元氧环、十元氧环和十二元氧环等。
环是分子筛的通道孔口,对通过分子起着筛分作用。
氧环通过氧桥相互联结,形成具有三维空间的多面体。
各种各样的多面体是分子筛结构的第三个层次。
多面体有中空的笼,笼是分子筛结构的重要特征。
笼分为α笼,八面沸石笼,β笼和γ笼等。
(2)分子筛的笼:α笼:是A型分子筛骨架结构的主要孔穴,它是由12个四元环,8个六元环及6个八元环组成的二十六面体。
笼的平均孔径为1.14nm,空腔体积为7603。
α笼的最大窗孔为八元环,孔径0.41nm。
八面沸石笼:是构成X-型和Y-型分子筛骨架的主要孔穴,由18个四元环、4个六元环和4个十二元环组成的二十六面体,笼的平均孔径为1.25nm,空腔体积为8503。
分子筛的一些知识沸石分子筛的广泛应用,在于它具有优异的性能。
为了深刻了解这些性能,就必须弄清分子筛的结构,而深入研究分子筛的结构与性能,反过来又将进一步促进它的应用和发展。
分子筛是一种晶体硅铝酸盐,因而,可以应用X-射线衍射进行结构分析。
通常合成分子筛是10μ以下的粉末,在使用粉末衍射法进行测试时,对于对称性较差的沸石类型,指标化及搜集强度的工作都十分困难,因此,到目前为止,仅确定了四十多种沸石的结构,还有一半左右尚未测定出来。
倘若能够得到较大的佛石单晶,采用X-射线衍射的单晶转动法更为有效。
较大的A型分子筛单晶可由种子晶体的再结晶得到。
用X-射线衍射的单晶转动法,不仅可在指标化之前,引出晶胞参数,确定骨架结构,而且还可以推定出非骨架原子(或离子)和分子和位置。
每一种分子筛都有特征的X-射线粉末衍射图样,因此由衍射图样的比较,可以确定沸石的类型。
非晶态度的凝胶不产生衍射,故X-射线分析也可以用来观察分子筛结晶的情况,混和物的衍射图样,由各组分的粉末线迭合而成,并且衍射强度随含量而变化。
所以X-射线衍射也用以确定分子筛的纯度。
现在又有一种新的红外光谱法测定分子筛的结构。
通过测定已知结构分子筛的红外光谱,找出普带的特征频率与骨架结构基团间的关系,进而测定未知结构的光谱,推导出骨架结构。
一般采用频率1300-200厘米-1的红外线。
因为这一范围包含着(Si,Al)O4四面体的基本振动,反映出骨架结构的特征。
目前,红外光谱已用于测定沸石骨架的结构类型,结构基团、骨架的硅铝组成,热分解过程中结构的变化和脱水、脱羟基过程中阳离子的迁移等。
在分子筛的应用中,表面性质十分重要。
借助红外光谱,我们可以更透彻地了解沸石的表面性质以及在各种处理中的变化,如根据吸附分子引起的光谱变化,就可知道沸石表面与吸附分子相互作用,吸附分子的位置以及催化活性和表面性质的关系等。
由于红外光谱的高度灵敏性,沸石结构的微小变化都在光谱中得到反映。
多孔型分子筛材料的结构、性能与应用摘要:简要介绍了沸石分子筛的基本结构、物理化学性质以及作为多功能材料在吸附剂、阳离子交换剂和催化剂等方面的应用。
关键词:沸石;分子筛;多孔材料;催化剂沸石是一类硅酸铝盐多孔晶体材料,由SiO2, Al2O3, H2O, Na2O, K2O和CaO 等主要成分组成,其结晶水在加热能形成水蒸气释放,因此其英文名(zeolite)源于希腊语沸腾的石头的意思。
沸石失去孔道中的结晶水后,可以吸附多种气体分子,由于其孔道均匀,同时尺寸为分子大小水平,因此显示非常独特的根据分子大小和形状进行选择性吸附和分离的性能。
为此,通常又将沸石称作分子筛(molecular sieve)。
沸石作为天然矿物质18世纪发现于火山岩中,最初仅得到了一部分矿物学家和物理化学家的关注。
此后随着上述沸石的特性和功能的发现,同时认识到沸石是解决石油化工、资源和能源及环境等领域中有关国计民生问题的重要功能材料,20世纪中期模拟自然界沸石生成的条件,兴起了沸石分子筛的水热合成研究,不仅成功合成出与天然沸石具有相同晶体结构的分子筛,而且研发出了一系列结构新型的人工合成沸石分子筛。
目前,晶体结构得到解析并获得国际沸石学会承认的沸石分子筛的种类已接近180种,其中绝大部分是人工合成结构,其数目还在逐年增加。
沸石分子筛作为一类多孔性功能材料被广泛应用于原油裂解生产汽柴油的催化剂、替代液体酸的固体催化剂、吸附剂、阳离子交换剂、气体及烃类分离剂,同时在肥料和动物饲料添加剂、土壤改良剂、造纸用填充剂以及塑料添加剂等方面也有着实质性或潜在的应用。
1 沸石的组成和晶体结构特征沸石分子筛是具有规则的均匀微孔结构的一类硅铝酸盐。
其化学组成为:M2/n • Al2O3 • xSiO2 • yH2O,式中,M:金属阳离子;n:金属阳离子的价态;x:硅铝比;y:饱和水分子数。
构成沸石分子筛骨架的基本结构为硅氧四面体(SiO4)和铝氧四面体(AlO4)。
分子筛的科学和工学分子筛是少见的具有广泛应用领域的机能性物质,分子筛具有吸附作用,离子交换作用,催化作用,被广泛应用于化工和其他工程领域。
多孔材料的孔道大小分类:分子筛的构造:Zeolite: 结晶型多孔质硅铝酸盐的总称。
1756年从天然矿物中发现的 基本结构单位是四面体构造的(SiO 4)4-或者(AlO 4)5-单位(统称TO 4) 。
一个TO 4单位有四个顶点氧,这四个顶点氧分别和相邻的四个TO 4单位的顶点氧共享,逐步连成三维结构,形成结晶。
这种结晶物质具有多孔性,孔道入口处直径为0.4-0.8nm .由于比孔道口小的分子可以进入孔道内,而比孔道口大的分子无法进入孔道.所以这种物质具有筛分分子的作用,称为分子筛.1.除Al 3+之外,3价或4价元素引入硅酸盐的骨骼,可以形成和硅铝酸盐具有同样结晶构造的金属硅酸盐.2.组成为AlPO 4的与分子筛同样多孔构造的磷铝酸盐多孔结晶体.分子筛是硅铝酸盐特有的构造,其他多种氧化物可以构成同样的结晶型多孔构造.组成一个TO4单位有四个顶点氧,这四个顶点氧分别和相邻的四个TO4单位的顶点氧共享,逐步连成三维结构,形成结晶。
Tectosilicate: 网硅酸盐.SiO2以Al3+置换骨骼中的部分Si4+时, 骨架结构呈负电性,必须在结构中引入其他阳离子如Na+,H+, Ca2+等, 补足正电荷,组成为M n Al n Si1-n O2(M为1价阳离子).International Zeolite Association, IZA 分子筛或分子筛类似物的必要条件:形成敞开3维网络体系的化合物,组成为ABn (n≈2), A成4根键,B成2根键,骨骼密度在20.5(TO4单位)以下的物质.骨骼密度:1nm3内T(含Si和Al)原子数总合.骨骼密度在21以上的物质被称为致密网硅酸盐.氧化物以外的物质也可以放在分子筛类似物的范畴. 分子筛(沸石)命名:天然矿物沸石人工合成分子筛天然沸石命名:(1)矿物学家和化学家的名字Faujasite(FAU):France(矿)B.Faujas de Saint-Fond (1741~1819) Ferrierite(FER):Canada(矿)W.F.Ferrier(1865~1950)Gmelinite(GME):German(化)C.G.Gmelin(1792~1860)Heulandite(HEU):British(矿)J.H. Heuland(1778~1856)Offretite(OFF):France(?)A.J.J.Offret(1857~)Paulingite(PAU):USA(化)L.C.Pauling(1901~1994)(2)产地命名Bikitait(BIK):津巴布韦Bikita Goosecreekite(GOO): USA Virginia state Goose Greek Quarry Mordenite(MOR,丝光沸石):Canada nava scoot state morden(3)形态组成命名(希腊语) Analcime(ANA):无Chahazite(CHA,菱沸石): 冰雹Erionite(ERI):羊毛Stibite(STI,束沸石):光泽合成沸石命名:主要有研制的公司和大学等研究机构命名。
分子筛结构和性质分子筛是一种由无机合成的高度有序、多孔的晶体结构材料,具有特殊的孔结构和吸附性能。
它以其丰富的孔道结构和特殊的化学组成而在催化、吸附分离、分子检测以及生物医学等领域得到广泛应用。
在下面的文章中,我将详细介绍分子筛的结构和性质。
首先,让我们来了解分子筛的结构。
分子筛的结构由无机氧化物组成,主要包括硅、铝等元素,常见的分子筛成分有沸石、SAPO、MAPO等。
分子筛具有三维的有序孔道结构,孔道结构可以分为微孔、介孔和大孔。
在微观层面上,分子筛的结构可以看作是由多种不同大小孔道交错组成的网状结构。
这种孔道结构的具体形状和尺寸可以通过合成过程中的模板选择和合成条件来调控。
此外,分子筛的结构中常见的有晶格孔、缺陷孔和层间孔。
其次,让我们来了解分子筛的性质。
分子筛具有许多独特的性质,主要包括吸附性能、催化性能、选择性和分子识别性能。
分子筛的吸附性能是它最重要的特性之一,它可以通过其孔道结构选择性地吸附不同大小、极性和形状的分子。
分子筛的催化性能主要体现在其对分子间相互作用的选择性控制和催化反应的有效性。
分子筛催化剂可以通过表面酸性和结构上的局部环境调控,实现对反应物的选择性吸附和反应速率的控制。
此外,由于分子筛结构的独特性质,它在分子分离、气体和液体吸附以及分子检测等方面具有广泛的应用。
分子筛的独特性质还体现在其对分子大小和极性的选择性吸附。
由于其孔道结构和表面电荷分布的差异,不同类型的分子筛对不同大小的分子具有选择性吸附能力。
这种选择性使得分子筛可以用于分子分离、去除杂质以及储存和释放分子等应用。
此外,分子筛还可以通过调整合成条件和晶体结构,来实现不同孔径和孔隙分布的调控。
这种调控性使得分子筛可以应用于不同领域和不同需求的研究。
另一方面,分子筛的结构和性质与其应用密切相关。
例如,在催化反应中,分子筛的结构可以影响反应的选择性和活性。
通过调控分子筛的孔道结构和表面酸性等特性,可以实现对反应物的选择性吸附和反应速率的调控。
分子筛知识概述(一)分子筛的品种型号分子筛(又称合成沸石)是一种硅铝酸盐多微孔晶体,它是由SiO和AIO四面体组成和框架结构。
在分子筛晶格中存在金属阳离子(如Na,K,Ca等),以平衡四面体中多余的负电荷。
分子筛的类型按其晶体结构主要分为:A型,X 型,Y型等A型:主要成分是硅铝酸盐,孔径为4A(1A=10-10米),称为4A(又称纳A 型)分子筛;用Ca2+交换4A分子筛中的Na+,形成5A的孔径,即为5A(又称钙A型)分子筛;用K+交换4A分子筛的Na+,形成3A的孔径,即为3A(又称钾A型)分子筛。
X型:硅铝酸盐的晶体结构不同(硅铝比大小不一样),形成孔径为9—10A的分子筛晶体,称为13X(又称钠X型)分子筛;用Ca2+交换13X分子筛中的Na+,形成孔径为9A的分子筛晶体,称为10X(又称钙X型)分子筛Y型:Y型分子筛具有X型分子筛烃似的晶体结构,但化学组成不同(硅铝比较大)通常用于催化领域。
(二)分子筛的主要特性1、物理特性:比热:约0.95KJ/KgXK(0.23Kcal/KgX℃导热系数(脱水物):2.09KJ/MXK(0.506Kcal/mX℃水吸附热:约3780KJ/Kg(915Kcal/Kg)2、热稳定性和化学稳定性:分子筛能承受600—700℃的短暂高温,但再生温度一般在400℃以下。
分子筛可在PH值5-10范围的介质中使用;在盐溶液中能交换某些金属阳离子。
3、分子筛的特性分子筛是一类结晶的硅铝酸盐,由于它具有均一的孔径和极高的比表面积,所以具有许多优异的特点。
(1)按分子的大小和形状不同的选择吸附作用,即只吸附那些小于分子筛孔径的分子。
(2)对于小的极性分子和不饱和分子,具有选择吸附性能,极性越大,不饱和度越高,其选择吸附性越强。
(3)具有强烈的吸水性。
哪怕在较高的温度、较大的空速和含水量较低的情况下,仍有相当高的吸水容量。
3.1、基本特性:a)分子筛对水或各种气,液态化合物可逆吸附及脱附。
分子筛结构和性质分子筛是一种孔隙具有有序结构的固体材料,由正交的SiO4和AlO4四面体串联而成。
它广泛应用于分离、吸附、催化等领域,并且具有高稳定性、可调孔径和较大比表面积等优点。
本文将从分子筛的结构和性质两个方面进行详细介绍。
一、分子筛结构1.晶体结构:分子筛晶体结构通常由正交SiO4和AlO4四面体组成。
这些四面体以共边连接形成无限长链,然后通过氧桥键连接成为三维网络。
其中的硅原子可以由铝原子部分取代,形成Si/Al沙雷尔振荡序列,其比例可以调控孔径大小和化学性质。
2.单元胞:分子筛的最小单元胞可由1-3个四面体组成。
其中最基本的单元胞是由一对四面体组成的12元环单元胞,被称为LTA (Linde Type A) 结构。
12元环单元胞是最简单也是最常见的分子筛单元胞,孔径为4.2Å,用于许多应用中。
3.框架类型:分子筛可以分为许多不同的框架类型,例如:ZSM、MFI、Y等。
不同的框架类型能够提供不同的孔径大小和形状,适用于不同的应用需求。
例如,ZSM-5具有较小的孔径(约为0.5nm),适用于分离和催化反应;而Y型分子筛具有较大的孔径(约为1.2nm),适用于吸附和催化反应。
二、分子筛性质1.孔隙结构性质:分子筛具有调控孔径和孔隙结构的能力,可以根据需要设计孔隙结构的大小和形状。
例如,通过选择不同的硅铝比和晶格构造,可以调控孔隙结构的大小,使其适应不同大小的分子。
这种可调控的孔隙结构性质使分子筛在分离、吸附等领域具有广泛的应用前景。
2.表面特性:分子筛具有较大的比表面积,通常可以达到500-800m2/g。
这种较大的比表面积可以增加底物分子与分子筛表面的接触面积,提高吸附、分离和催化反应的效率。
此外,分子筛表面上的羟基和酸性中心可以提供活性位点,实现催化反应。
3.热稳定性:分子筛具有较高的热稳定性,能够在较高温度下保持其结构不变。
这种热稳定性使得分子筛可以在高温催化反应中应用,例如催化裂化反应和选择性催化还原反应等。
分子筛分离分子筛是一种特殊的多孔固体材料,具有特定的孔径大小和形状,可以用来分离和纯化混合物。
它在化学、石油、环保等领域有着广泛的应用。
一、分子筛的结构和性质分子筛由无机氧化物组成,具有非常规则的晶格结构。
它的结构可以由三维的网络氧原子构成,其中的金属离子或簇负离子与氧原子形成化学键。
这种结构决定了分子筛具有特定的孔径大小和形状,可以选择性地吸附不同大小和性质的分子。
分子筛的主要性质是孔径大小和吸附能力。
孔径大小决定了分子筛可以分离的分子大小范围,而吸附能力则决定了分子筛对不同分子的吸附效果。
一般来说,孔径较大的分子筛可以吸附较大分子,而孔径较小的分子筛则可以吸附较小分子。
二、分子筛的应用1. 气相分离分子筛可以用来分离和纯化气体混合物。
在石油化工中,分子筛常被用来从石油或天然气中分离出乙烯、丙烯等烃类物质。
分子筛根据分子的大小和亲疏水性质,选择性地吸附其中的某些组分,从而实现分离。
2. 液相分离分子筛也可以用于液相分离。
例如,在制药工业中,分子筛可以用来从药物合成反应溶液中分离出目标产品。
分子筛的孔径大小可以选择性地吸附目标产品,而其他杂质则可以通过筛选掉。
3. 分子筛的催化作用除了分离,分子筛还可以用作催化剂。
分子筛的孔道可以提供活性位点,使得反应物分子在孔道内发生特定的化学反应。
这种催化作用在石油加工、化学合成等领域具有重要意义。
三、分子筛的发展和前景分子筛技术在近几十年来得到了快速发展,不断涌现出新的材料和应用。
随着科学技术的不断进步,人们对分子筛的结构和性能有了更深入的了解,设计和合成出了更加高效和选择性的分子筛材料。
未来,分子筛技术将继续在化学、石油、环保等领域发挥重要作用。
人们可以通过调控分子筛的孔径和吸附能力,实现更加精确和高效的分离和纯化过程。
同时,结合其他材料和技术,分子筛还可以用于催化反应、气体存储和传感等方面。
分子筛是一种重要的分离材料,具有广泛的应用前景。
通过研究和发展分子筛技术,可以实现更加高效和可持续的化学生产过程,为人们的生活带来更多的便利和福利。
分子筛的概念分子筛的概念一、引言分子筛是一种高度有序的多孔晶体,具有特殊的化学和物理性质。
它们具有非常小的孔径,可以选择性地吸附和分离不同大小和形状的分子。
因此,它们在化学、材料科学、环境科学等领域中具有广泛的应用。
二、分子筛的结构1. 分子筛晶体结构分子筛晶体结构由三维网状骨架组成,其中包含孔道系统。
其骨架由氧化硅或氧化铝等氧化物组成,通过硅氧键或铝氧键连接在一起。
2. 分子筛孔道分子筛晶体中存在不同大小和形状的孔道,这些孔道对于吸附和分离不同大小和形状的分子非常重要。
根据孔径大小,可以将分子筛分类为微孔(直径小于2nm)、介孔(直径为2-50nm)和大孔(直径大于50nm)。
3. 分子筛骨架类型根据不同元素(如硅、铝、钾等)在骨架中的存在情况以及它们之间连接方式的不同,可以将分子筛骨架分为不同类型。
例如,硅铝比为1的ZSM-5是一种常见的分子筛骨架类型。
三、分子筛的制备方法1. 溶胶-凝胶法溶胶-凝胶法是一种常用的制备分子筛晶体的方法。
该方法通常涉及将硅源和铝源(或其他元素源)与模板剂混合,并在适当条件下进行水解和聚合反应。
2. 水热合成法水热合成法是另一种制备分子筛晶体的方法。
该方法涉及将硅源和铝源(或其他元素源)与模板剂混合,并在高温高压下反应。
3. 直接合成法直接合成法是一种简单而有效的制备分子筛晶体的方法。
该方法涉及将硅源和铝源(或其他元素源)与模板剂混合,并在适当条件下进行水解和聚合反应。
四、分子筛的应用1. 催化剂由于其孔道大小和结构可调性,因此分子筛被广泛应用于催化剂领域。
例如,ZSM-5可以用作汽油催化裂化催化剂,而SAPO-34可以用作选择性还原NOx催化剂。
2. 吸附剂分子筛的孔道大小和结构可调性使其在吸附剂领域中具有广泛的应用。
例如,MFI型分子筛可以用于去除甲烷中的水和二氧化碳。
3. 分离剂由于分子筛可以选择性地吸附和分离不同大小和形状的分子,因此它们在分离剂领域中具有广泛的应用。
分子筛小论文摘要:随着分子筛合成与应用研究的深入,研究者发现了磷铝酸盐类分子筛,并且分子筛的骨架元素(硅或铝或磷)也可以由B、Ga、Fe、Cr、Ge、Ti、V、Mn、Co、Zn、Be和Cu等取代,其孔道和空腔的大小也可达到2nm以上,因此分子筛按骨架元素组成可分为硅铝类分子筛、磷铝类分子筛和骨架杂原子分子筛;按孔道大小划分,孔道尺寸小于2nm、2~50nm和大于50nm的分子筛分别称为微孔、介孔和大孔分子筛。
关键词:分子筛应用前景价值分子筛简介分子筛是一种具有立方晶格的硅铝酸盐化合物。
分子筛具有均匀的微孔结构,它的孔穴直径大小均匀,这些孔穴能把比其直径小的分子吸附到孔腔的内部,并对极性分子和不饱和分子具有优先吸附能力,因而能把极性程度不同,饱和程度不同,分子大小不同及沸点不同的分子分离开来,即具有“筛分”分子的作用,故称分子筛。
由于分子筛具有吸附能力高,热稳定性强等其它吸附剂所没有的优点,使得分子筛获得广泛的应用。
在生物大分子领域,常见的有bio-rad SEC分子筛预装柱。
美国科学家发现,通过调整温度,能够精确地控制一种钛硅酸盐材料中的孔洞大小,制造出精密的新型分子筛。
一些晶体材料内部有着大量均匀的微孔,尺寸比孔洞小的分子能够穿过,而大分子不能穿过,因此可以起到分离不同分子的作用,这类材料被称为分子筛。
其实在2001年科学家在英国《自然》杂志上报告说,他们发现一种称为钛硅酸盐ETS-4的物质能够作为良好的分子筛。
当温度升高时,ETS-4会逐渐脱水,微孔的尺寸随之减小。
利用这种方法,可以在3到4埃(1埃等于百亿分之一米)的范围内精细地调整微孔尺寸。
科学家说,一些常见分子如氮气、甲烷、氧气、氩气和水分子等尺寸都在3至4埃左右,彼此大小相差无几,用ETS-4制作的分子筛可以有效地将它们分开。
研究人员已经尝试用ETS-4从氮气和甲烷混合物中将氮气的含量由18%降到5%以下,并在分离氩气与氧气、氮气与氧气的实验中也取得了成功。