广东省汕头市潮阳南侨中学人教版高中数学选修2-2课件:211合情推理-归纳推理(共49张PPT)
- 格式:ppt
- 大小:3.22 MB
- 文档页数:48
2.1 合情推理与演绎推理2.1.1 合情推理问题导学一、归纳推理及其应用活动与探究1(1)已知数列{a n }的第1项a 1=1,且a n +1=a n 1+a n(n =1,2,3,…),试归纳出这个数列的一个通项公式.(2)观察下列各式:1=1,1+11+2=43, 1+11+2+11+2+3=64, 1+11+2+11+2+3+11+2+3+4=85. 由上述等式能得出怎样的结论?请写出结论,并证明.迁移与应用1.把1,3,6,10,15,21,…这些数叫做三角形数,这是因为这些数目的点可以排成一个正三角形(如图),则第七个三角形数是( )A .27B .28C .29D .302.(2012陕西高考,理11)观察下列不等式1+122<32, 1+122+132<53, 1+122+132+142<74, ……照此规律,第五个不等式为____________________.(1)根据给出的几个具体等式归纳其一般结论时,要注意从等式的项数、次数、分式的分子与分母各自的特点及变化规律入手进行归纳,要注意等式中项数、次数等与等式序号n 的关系,发现其规律,然后用含有字母的等式表示一般性结论.(2)解决数列中的归纳推理问题时,通常是将所给等式中的n 取具体值1,2,3,4,…,然后求得a 1,a 2,a 3,a 4,…的值或S 1,S 2,S 3,S 4,…的值,根据这些结果进行归纳得到结果.(3)对于图形中的归纳推理问题,这类问题一般涉及某固定图形的个数,可从图形的变化规律入手求解,也可转化为数列问题求解.二、类比推理及应用活动与探究2(1)若数列{a n }(n ∈N *)是等差数列,则有数列b n =a 1+a 2+a 3+…+a n n(n ∈N *)也是等差数列,类比上述性质,相应地有:若数列{C n }(n ∈N *)是等比数列,且C n >0,则数列d n =__________(n ∈N *)也是等比数列.(2)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行.类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件.充要条件①___________________________________________________________; 充要条件②___________________________________________________________. (写出你认为正确的两个充要条件)迁移与应用1.三角形的面积为S =12(a +b +c )r ,a ,b ,c 为三角形三条边的边长,r 为三角形内切圆的半径.利用类比推理可以得出四面体的体积为( )A .V =13abc B .V =13Sh C .V =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4分别为四个面的面积,r 为四面体内切球的半径)D .V =13(ab +bc +ac )h (h 为四面体的高) 2.若S n 是等差数列{a n }的前n 项和,则有S 2n -1=(2n -1)a n ,类似地,若T n 是等比数列{b n }的前n 项积,则有T 2n -1=________.3.我们知道:在周长一定的所有矩形中,正方形的面积最大;在周长一定的矩形和圆中,圆的面积最大.将这个结论类比到空间,可以得到的结论是___________________________.(1)对于数列中的类比问题,除了等差数列和等比数列是一类重要的类比对象外,还可以将等差数列、等比数列的定义、性质等进行推广,与其他相关数列问题进行类比.(2)进行类比推理时,注意比较两个对象的相似之处和不同之处,找到可以类比的两个量,然后加以推测,最好能加以证明,以保证类比的正确性.(3)平面与空间的类比是一种常见的类比,一般地:平面图形中的点与空间图形中的线(线段)相类比;平面图形中的线与空间图形中的线或平面相类比;平面图形中的周长与空间图形中的表面积相类比;平面图形中的面积与空间图形中的体积相类比.平面中的三角形、正方形与空间中的四面体、正方体相类比;平面中的圆与空间中的球相类比等.答案:课前·预习导学【预习导引】1.(1)全部对象 个别事实 (2)部分 整体 个别 一般预习交流1 (1)提示:不一定.归纳推理是依据若干已知的、没有穷尽的现象推断尚属未知的现象,其推理的结论必然带有一定的猜测性,即由归纳推理得到的结论可能是正确的,也可能是错误的.(2)答案:123 454 3212.(1)另一类对象也具有这些特征 (2)特殊 特殊预习交流2 提示:当给出的是两类不同的对象,且它们具有一些类似的特征时,可以使用类比推理.它得出的结论也是猜测性的,不一定正确.3.(1)已有的事实 观察 分析 比较 联想 归纳 类比 提出猜想预习交流3 提示:(1)前提为真时结论可能为真的推理,是一种或然性推理.(2)是根据已有的事实、正确的结论、试验和实践结果以及个人经验推测某些结果的推理过程.(3)结论往往超出前提所控制的范围.课堂·合作探究【问题导学】活动与探究1 思路分析:(1)先写出这个数列的前几项,再根据写出的项,归纳出通项公式.(2)观察给出的4个式子的特点,等式左边的部分注意从分式的项数、每个分式的分母找变化规律,等号右边的分数从分子、分母两个方面进行归纳.解:(1)当n =1时,a 1=1;当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13; 当n =4时,a 4=131+13=14; …通过观察可得:数列的前四项都等于相应序号的倒数,由此归纳出a n =1n. (2)通过观察上面给出的各个式子,可以发现这些等式中蕴涵的基本规律,这个规律可以用一个等式来表示,即1+11+2+11+2+3+…+11+2+3+…+n =2n n +1(n ∈N *). 这一结论的证明如下:由于11+2+3+…+n =2n (n +1)=2⎝⎛⎭⎫1n -1n +1, ∴1+11+2+11+2+3+…+11+2+3+…+n=2⎝⎛⎭⎫1-12+12-13+13-14+…+1n -1n +1 =2⎝⎛⎭⎫1-1n +1 =2n n +1. 迁移与应用 1.B 解析:由已知图形的规律可知第七个三角形数是1+2+3+4+5+6+7=28.2.1+122+132+142+152+162<116 解析:由前几个不等式可知1+122+132+142+…+1n 2<2n -1n. 所以第五个不等式为1+122+132+142+152+162<116. 活动与探究2 思路分析:(1)等差与等比类比,和与积类比,倍数与乘方类比,由此猜想.(2)运用类比,由平面到空间,由四边形到四棱柱,四棱柱为平行六面体时其底面是平行四边形.答案:(1)n C 1C 2C 3…C n(2)两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形等(答案不唯一)迁移与应用 1.C 解析:连结四面体内切球的球心与四面体的各个顶点,由分割法求体积的原理知V =13S 1h 1+13S 2h 2+13S 3h 3+13S 4h 4=13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r (S 1,S 2,S 3,S 4分别为四个面的面积,r 为四面体内切球的半径).2.b 2n -1n 解析:T 2n -1=b 1·b 2·b 3·…·b 2n -1=b 2n -1n. 3.在表面积一定的长方体中,正方体的体积最大;在表面积一定的长方体和球中,球的体积最大解析:平面图形的周长类比到空间应该是空间图形的表面积;平面图形的面积类比到空间应该是空间图形的体积;平面中的矩形、圆类比到空间中的图形应该是长方体、球.当堂检测1.如图所示的是一串黑白相间排列的珠子,按这种规律往下排列,那么第36颗珠子的颜色是()A .白色B .黑色C .白色可能性大D .黑色可能性大答案:A 解析:由图可知,三白二黑,为一周期进行排列,∵36=5×7+1,则第36颗珠子与第一颗颜色相同,为白色.2.下面类比推理中恰当的是( )A .“若a ·3=b ·3,则a =b ”类比推出“若a ·0=b ·0,则a =b ”B .“(a +b )c =ac +bc ”类比推出“(a ·b )c =ac ·bc ”C .“(a +b )c =ac +bc ”类比推出“a b a b c c c+=+(c ≠0)” D .“(ab )n =a n b n ”类比推出“(a +b )n =a n +b n ”答案:C3.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质 ②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180° ③某次考试张军成绩是100分,由此推出全班同学成绩都是100分 ④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°A .①②B .①③④C .①②④D .②④答案:C 解析:①是类比推理,②和④是归纳推理,它们都是合情推理.4.在平面上,若两个正方形的边长比为1∶2,则它们的面积比为1∶4;类似地,在空间中,若两个正方体的棱长比为1∶2,则它们的体积比为__________.答案:1∶8 解析:由于正方体的体积等于棱长的立方,因此当两个正方体棱长比为1∶2时,体积比为1∶23=1∶8.5.在数列{a n }中,a 1=1,a n +1=22n na a +(n ∈N *),试猜想这个数列的通项公式. 答案:解:在{a n }中,a 1=1,1212223a a a ==+,232212224a a a ===+,3432225a a a ==+,…, ∴{a n }的通项公式21n a n =+.。