动量守恒和能量守恒定律习题
- 格式:doc
- 大小:186.00 KB
- 文档页数:7
第2章 动量守恒定律与能量守恒定律一 基本要求1 理解冲量、动量等概念。
掌握动量定理及动量守恒定律,能运用它们解简单系统在平面内运动的力学问题。
2 理解功的概念,能计算变力做功的问题 。
3 理解保守力做功的特点和势能的概念,会计算重力、弹性力和万有引力做的功及对应的势能 。
4 理解动能定理、功能原理和机械能守恒定律,掌握运用守恒定律解问题 的思想和方法 。
二 基本概念 1 质点的动量、冲量质点的动量定义:m =p υ,p 为矢量,也是状态量。
质点的冲量定义 :21t t dt =⎰I F ,它也是矢量,是过程量。
2 冲力 在解决冲击、碰撞问题时,将两个物体在碰撞瞬间的相互作用力称为冲力,冲力作用时间短,量值变化也很大,所以很难确定每一时刻的冲力,常用平均冲力的冲量来代替变力的冲量 。
3内力和外力 对于质点系,其内部各个质点之间的相互作用力称为内力,质点系以外的其他物体对其中的任一质点的作用力称为外力。
4功 功率(1)功 力对质点所作的功为力在质点位移方向的分量与位移大小的乘积。
cos BBAAW dW d F dr θ==⋅=⎰⎰⎰F r(2) 功率 功随时间的变化率,反映的是做功的快慢。
dW P dt =cos d d P F dt dtυθ⋅==⋅=⋅=F r r F F υ5动能 质量为m 的物体,当它具有速度υ时,定义212m υ为质点在速度为υ时的动能,用k E 表示。
6保守力和非保守力 如果力F 对物体做的功只与物体初、末位置有关而与物体所经过的路径无关,我们把具有这种特点的力称为保守力,否则称为非保力。
保守力做功0ld ⋅=⎰F l ,非保守力作功 0ld ⋅≠⎰F l 。
重力、弹性力、万有引力均为保守力,而摩擦力、汽车的牵引力等都是非保守力。
7势能 系统某点的势能等于在保守力作用下将物体从该点沿任意路径移动到零势能点保守力做的功,用p E 表示。
8机械能,系统的动能和势能统称为机械能,用E 表示。
第三章 动量守恒定律和能量守恒定律(一) 教材外习题1 功与能习题一、选择题:1.一质点受力i x F 23 (SI )作用,沿X 轴正方向运动。
从x = 0到x = 2m 进程中,力F 作功为(A )8J. (B )12J. (C )16J. (D )24J.( )2.如图所示,圆锥摆的小球在水平面内作匀速度圆周运动,下列说法正确的是(A )重力和绳索的张力对小球都不作功.(B )重力和绳索的张力对小球都作功.(C )重力对小球作功,绳索张力对小球不作功.(D )重力对小球不作功,绳索张力对小球作功.( )3.已知两个物体A 和BB 的大,则A 的动能E KA 与B 的动能E KB 之间的关系为(A )E KB 必然大于E KA . (B )E KB 必然小于E KA(C )E KB =E KA(D )不能判定谁大谁小 ( )4.如图所示,一个小球前后两次从P 点由静止开始,别离沿着滑腻的固定斜面l 1和圆弧面l 2下滑,则小球滑到两面的底端Q 时的(A )动量相同,动能也相同(B )动量相同,动能不同(C )动量不同,动能也不同(D )动量不同,动能相同 ( )5.一质点在外力作用下运动时,下述哪一种说法正确?(A )质点的动量改变时,质点的动能必然改变(B )质点的动能不变时,质点的动量也必然不变(C )外力的冲量是零,外力的功必然为零(D )外力的功为零,外力的冲量必然为零( )二、填空题: 1.某质点在力F =(4+5x )i (SI )的作用下沿x 轴作直线运动,在从x =0移动到x =10m 的进程中,力F 所作功为___________________。
QP l 2 l 12.如图所示,一斜面倾角为θ,用与斜面成α角的恒力F 将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ,摩擦力在此进程中所作的功W f =____________________________。
动量守恒能量守恒练习题动量守恒和能量守恒是物理学中两个重要的守恒定律。
它们在解决物理问题中起着关键的作用,尤其在力学和能量转化的问题中应用广泛。
下面是一些关于动量守恒和能量守恒的练习题,让我们来一起进行练习,加深对这两个定律的理解。
练习题1:碰撞问题两个相互靠近的物体质量分别为m1和m2,初始速度分别为v1和v2。
它们发生完全弹性碰撞,向相反方向运动后的速度分别为v1'和v2'。
根据动量守恒定律,我们可以得到以下式子:m1v1 + m2v2 = m1v1' + m2v2'对于给定的初始条件,求解碰撞后物体的速度。
练习题2:能量转化问题一物体从高处自由下落,其高度为h,质量为m。
忽略空气阻力的影响,我们可以应用能量守恒定律,得到以下式子:mgh = 1/2mv^2其中,g是重力加速度,v是物体的速度。
根据这个式子,给定初始条件,可以求解物体在到达地面时的速度v。
练习题3:弹簧振动问题一质量为m的物体挂在一个弹簧上,弹簧的劲度系数为k。
当物体受到外力F推动后,它绕平衡位置做简谐振动。
根据动量守恒和能量守恒定律,我们可以得到以下式子:mω^2A^2 = F^2其中,A是振幅,ω是振动的角频率。
根据这个式子,可以求解物体的运动参数。
练习题4:线性势能转化为动能一个弹簧压缩到长度为x,劲度系数为k。
当弹簧释放时,它将能量转化为物体的动能。
根据能量守恒定律,可以得到以下式子:1/2kx^2 = 1/2mv^2其中,x是弹簧的长度,v是物体的速度。
根据这个式子,可以求解物体的速度。
练习题5:球体滚动问题一个质量为m的球体从斜面上方的高度h滚动下来,斜面的倾角为θ。
忽略摩擦的影响,根据能量守恒定律,我们可以得到以下式子:mgh = 1/2mv^2 + 1/2Iω^2其中,g是重力加速度,v是球体的速度,I是球体关于通过球心的转动轴的转动惯量,ω是球体的角速度。
根据这个式子,可以求解球体在到达底部时的速度。
大学物理练习题3:“力学—(角)动量与能量守恒定律”一、填空题1、一个质量为10kg 的物体以4m/s 的速度落到砂地后经停下来,则在这一过程中物体对砂地的平均作用力大小为 。
2、t F x 430+=(式中x F 的单位为N ,t 的单位为s )的合外力作用在质量为kg m 10=的物体上,则:(1)在开始s 2内,力x F 的冲量大小为: ;(2)若物体的初速度1110-⋅=s m v ,方向与x F 相同,则当力x F 的冲量s N I ⋅=300时,物体的速度大小为: 。
3、一质量为kg 1、长为m 0.1的均匀细棒,支点在棒的上端点,开始时棒自由悬挂。
现以100N 的力打击它的下端点,打击时间为时。
若打击前棒是静止的,则打击时棒的角动量大小变化为 ,打击后瞬间棒的角速度为 。
4、某质点最初静止,受到外力作用后开始运动,该力的冲量是100.4-⋅⋅s m kg ,同时间内该力作功,则该质点的质量是 ,力撤走后其速率为 。
5、设一质量为kg 1的小球,沿x 轴正向运动,其运动方程为122-=t x ,则在时间s t 11=到s t 32=内,合外力对小球的功为 ;合外力对小球作用的冲量大小为 。
6、一个力F ϖ作用在质量为 1.0 kg 的质点上,使之沿x 轴运动。
已知在此力作用下质点的运动学方程为3243t t t x +-= (SI)。
则在0到4 s 的时间间隔内,力F ϖ的冲量大小I = ,力F ϖ对质点所作的功W = 。
7、设作用在质量为 2 kg 上的物体上的力x F x 6=(式中x F 的单位为N ,x 的单位为m )。
若物体由静止出发沿直线运动,则物体从0=x 运动到m x 2=过程中该力作的功=W ,m x 2=时物体的速率=v 。
8、已知质量kg 2=m 物体在一光滑路面上作直线运动,且0=t 时,0=x ,0=ν。
若该物体受力为x F 43+=(式中F 的单位为N ,x 的单位为m ),则该物体速率ν随 x 的函数关系=)(x ν ;物体从0=x 运动到2=x m 过程中该力作的功=W 。
三大守恒练习题守恒定律是物理学中的重要概念,它描述了在封闭系统中某些物理量的守恒特性。
常见的守恒定律有能量守恒定律、动量守恒定律和角动量守恒定律。
这些守恒定律在解决物理问题时起着至关重要的作用。
为了更好地理解和应用守恒定律,下面将针对每个定律提出三道练习题。
一、能量守恒练习题1. 一个弹簧恢复力常数为k的弹簧,一端固定在墙上,另一端系有质量为m的物体。
初始时刻,物体与弹簧静止。
当把物体沿着弹簧的方向拉开距离l并释放时,求物体在压缩到弹簧原长时的速度。
解析:根据能量守恒定律,系统的机械能在运动过程中保持不变。
在初始时刻,物体的机械能只有重力势能;在物体压缩到弹簧原长时,机械能只有弹性势能。
因此,有重力势能转化为弹性势能,即mgL = (1/2)kL^2,解得物体在压缩到弹簧原长时的速度为v = √(2gL)。
2. 一个质量为m的物体从高度为h处自由下落,下落过程中与地面发生完全弹性碰撞,反弹后的高度为h'。
求弹性碰撞过程中物体与地面的动量变化。
解析:根据动量守恒定律,碰撞过程中系统的动量保持不变。
在自由下落阶段,物体的动量为mv,碰撞后竖直方向上的速度反向,动量为-mv。
因此,第一阶段动量变化量为Δp1 = -mv,第二阶段动量变化量为Δp2 = -(-mv) = mv。
整个弹性碰撞过程中,物体与地面的动量变化为Δp = Δp1 + Δp2 = 0。
3. 一个质量为m的火箭,以速度v0燃烧燃料喷出。
喷出速度为v,燃料的质量为m',燃烧时间为Δt。
求火箭燃烧过程中的平均推力。
解析:根据牛顿第二定律和动量守恒定律,火箭燃烧过程中的平均推力可以表示为火箭的质量变化率与喷出速度之积的相反数,即F = -Δ(mv)/Δt = v dm/Δt。
由质量守恒定律可知,燃烧过程中的质量变化率为dm/Δt = -m'/Δt。
因此,火箭燃烧过程中的平均推力为F = -v(m'/Δt)。
二、动量守恒练习题1. 一个质量为m1的小球在静止的水平面上,与一个质量为m2的小球发生碰撞,碰撞后两球的速度分别为v1'和v2'。
弹性碰撞练习题研究物体之间的动量守恒和动能守恒在物理学中,碰撞是研究物体之间相互作用的重要概念。
在许多碰撞问题中,动量守恒和动能守恒是常用的方法。
本文将通过几道弹性碰撞练习题,探讨物体间碰撞时动量和能量守恒的应用。
练习题一:两个物体A和B,质量分别为mA和mB,以速度vA和vB相对运动,它们碰撞后分别以v'A和v'B的速度继续运动。
假设碰撞为完全弹性碰撞,请计算碰撞前后物体的动量和能量。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*vA + mB*vB = mA*v'A + mB*v'B。
根据动能守恒定律,碰撞前后物体的总动能保持不变,即0.5*mA*vA² + 0.5*mB*vB² = 0.5*mA*v'A² + 0.5*mB*v'B²。
通过以上两个方程,我们可以解得碰撞后物体的速度v'A和v'B。
通过动量和能量的计算,我们可以得到碰撞前后物体的状态。
练习题二:一个静止的物体A质量为mA,与一个运动物体B质量为mB发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B,请计算碰撞前物体B的速度vB。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*0 + mB*vB = mA*v'A + mB*v'B。
根据以上方程,我们可以解得物体B的速度vB。
通过动量守恒定律,我们可以计算出碰撞前物体B的速度。
练习题三:两个相同质量的物体A和B以相反的方向以相同的速度v运动,它们发生完全弹性碰撞,碰撞后A和B的速度分别为v'A和v'B。
请计算碰撞前后系统的总动量和总动能。
解析:根据动量守恒定律,碰撞前后物体的总动量保持不变,即mA*v + mB*(-v) = mA*v'A + mB*v'B,即0 = mA*(v'A - v) + mB*(v'B + v)。
《大学物理》动量守恒定律和能量守恒定律练习题及答案解析一、选择题1.对动量和冲量,正确的是(B )(A)动量和冲量的方向均与物体运动速度方向相同。
(B)质点系总动量的改变与内力无关。
(C)动量是过程量,冲量是状态量。
(D)质点系动量守恒的必要条件是每个质点所受到的力均为0。
2如图所示,子弹入射在水平光滑地面上静止的木块后而穿出,以地面为参考系,下列说法中正确的是( C )(A)子弹减少的动能转变成木块的动能(B)子弹—木块系统的机械能守恒(C)子弹动能的减少等于子弹克服木块阻力所做的功(D)子弹克服木块阻力所做的功等于这一过程中产生的热。
3.对质点组有下列几种说法:(1)质点组总动量的改变与内力无关(2)质点组总动能的改变与内力无关(3)质点组机械能的改变与内力无关(4)质点组机械能的改变与保守内力无关正确的是( C )(A)(1)和(3)正确(B)(2)和(3)正确(C)(1)和(4)正确(D)(2)和(4)正确4.对于保守力,下列说法错误的是(C)(A)保守力做功与路径无关(B)保守力沿一闭合路径做功为零(C)保守力做正功,其相应的势能增加(D)只有保守力才有势能,非保守力没有势能。
5.对功的概念有以下几种说法:(1)保守力作正功时系统内相应的势能增加.(2) 质点运动经一闭合路径,保守力对质点作的功为零.(3)作用力与反作用力大小相等、方向相反,所以两者所作的功的代数合必为零.在上述说法中:(4)摩擦力一定做负功( C )(A) (1) 、(2)、(4)是正确的.(B) (2) 、(3) 、(4)是正确的.(C)只有(2)是正确的.(D)只有(3)是正确的.6.当重物减速下降时,合外力对它做的功( B )(A)为正值(B)为负值(C)为零(D)无法确定。
7、考虑下列四个实例,你认为哪一个实例中物体和地球构成的系统的机械能不守恒?(A)(A)物体在拉力作用下沿光滑斜面匀速上升(B)物体作圆锥摆运动(C)抛出的铁饼作斜抛运动(不计空气阻力)(D)物体在光滑斜面上自由滑下8.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,判断下列说法中正确的是( A )(A)重力和绳子的张力对小球都不作功。
大学物理练习题第三章动量守恒定律和能量守恒定律一、选择题1. 质量m=2kg的质点在力F⃗=12ti⃗ (SI)的作用下,从静止出发沿X轴正方向作直线运动,求它在3秒末的动量( )A. −54i⃗ kg∙m/sB. 54i⃗ kg∙m/sC.−27i⃗ kg∙m/sD. 27i⃗ kg∙m/s2. 一个质点同时在几个力作用下的位移为:∆r⃗=4i⃗−5j⃗+6k⃗⃗ (SI)其中一个力为恒力F⃗=−3i⃗−5j⃗+9k⃗⃗,则此力在该位移过程中所作的功为( )A. 67JB. 91JC. 17JD. -67J3. 对质点组有以下几种说法①质点组总动量的改变与内力无关②质点组总动能的改变与内力无关③质点组机械能的改变与保守内力无关在上述说法中( )A. 只有①是正确的B. ①、③是正确的C. ①、②是正确的D. ②、是正确的4. 质点系的内力可以改变( )A. 系统的总质量B. 系统的总动量C. 系统的总动能D. 系统的总角动量5. 质量为m的质点在外力作用下,其运动方程为r⃗=Acosωti⃗+bsinωtj⃗其中A,B,ω都是正的常数,则在t1=0到t2=π(2ω)⁄这段时间内所作的功( )A.mω2(A2+B2)2⁄B. mω2(A2+B2)C. mω2(A2−B2)2⁄D.mω2(B2−A2)2⁄6. 如图,一劲度系数为k的轻弹簧水平放置,左端固定,右端与桌面上一质量为m的木块相连,用一水平力F向右拉木块而使其处于静止状态。
若木块与桌面间的静摩擦系数为μ,弹簧的弹性势能为E,则下列关系中正确的是( )A. E=(F−μmg)22kB.E=(F+μmg)22kC. E=F22kD. (F−μmg)22k ≤E≤(F+μmg)22k二、填空题1. 设作用在质量为M=1kg的物体上的力F=6t+3 (SI)。
如果物体在这个力的作用下,由静止开始沿直线运动,在0到2.0s的时间间隔内,这个力作用在物体上的冲量大小I= 。
三大守恒练习题三大守恒练习题在物理学中,有三个重要的守恒定律,分别是能量守恒定律、动量守恒定律和角动量守恒定律。
这三个定律是描述自然界中物质和能量守恒的基本原理,对于理解和解释各种物理现象具有重要意义。
下面我们来看几个与这三大守恒定律相关的练习题。
练习题一:能量守恒定律小明站在高楼上,手中持有一个质量为1kg的物体,以1m/s的速度向下抛出。
高楼的高度为10m。
求物体抛出后,当它落地时的速度。
解析:根据能量守恒定律,物体在自由落体过程中,机械能守恒。
在这个问题中,物体在高楼上具有势能,抛出后具有动能。
当物体落地时,势能转化为动能。
由于没有考虑空气阻力,机械能守恒成立。
根据能量守恒定律,势能转化为动能的公式为:mgh = 1/2mv²其中,m为物体的质量,g为重力加速度,h为物体的高度,v为物体的速度。
代入已知条件,可得:1 * 10 * 9.8 = 1/2 * 1 * v²解方程,可得物体落地时的速度v ≈ 14m/s。
练习题二:动量守恒定律小红和小明分别站在光滑水平地面上,两人面对面,小红手中持有一个质量为2kg的物体,速度为2m/s,小明手中持有一个质量为3kg的物体,速度为-1m/s。
两人将物体交给对方,求交接后两人的速度。
解析:根据动量守恒定律,当两个物体发生碰撞时,总动量守恒。
在这个问题中,小红和小明分别持有物体,发生交接后,两人的速度发生变化,但总动量保持不变。
根据动量守恒定律,总动量不变的公式为:m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'其中,m₁、m₂分别为两个物体的质量,v₁、v₂为两个物体的速度,v₁'、v₂'为交接后两个物体的速度。
代入已知条件,可得:2 * 2 +3 * (-1) = 2 * v₁' + 3 * v₂'解方程,可得交接后小红的速度v₁' ≈ -0.2m/s,小明的速度v₂' ≈ 0.8m/s。
动量守恒与能量守恒复习 1.质量为1m 的物体以速度1v 与质量为物体2m 发生弹性碰撞,求碰撞后它们的速度分别是多少?2.质量为M 的楔形物块上有圆弧轨道,静止在水平面上。
质量为m 的小球以速度v 0向物块运动。
不计一切摩擦,圆弧小于90°且足够长。
求:(1)小球能上升到的最大高度H 是多少 ?(2)小球与物块最终速度1v 和2v 是多少?3.如图所示,位于光滑水平桌面上的小滑块P 和Q 都可视做质点,质量分别为2m 和m .Q 与轻质弹簧相连(弹簧处于原长).设开始时P 和Q 分别以2v 和v 初速度向右匀速运动,当小滑块P 追上小滑块Q 与弹簧发生相互作用,在以后运动过程中,求:(1)弹簧具有的最大弹性势能?(2)小滑块Q 的最大速度?4.如图所示,质量M 的小车B 静止光滑的水平轨道上,一个质量m 的物体A 以初速度0v 冲上小车B 后经一段时间t 从小车的右端以速度1v 滑下。
物体A 与小车板面间的动摩擦因数为μ,(取g=10m/s 2)(1)对物体A 动量定理: (4)对物体A 动能定理:(2)对车B 动量定理: (5)对车B 动能定理:(3)系统动量守恒: (6)系统能量守恒:5.如图所示,一质量M =3.0 kg 的长方形木板B 放在光滑水平地面上,在其右端放一个质量m =1.0 kg 的小木块A (可视为质点),同时给A 和B 以大小均为2.0 m/s ,方向相反的初速度,使A 开始向左运动,B 开始向右运动,要使小木块A 不滑离长木板B 板,已知小木块与长木板之间的动摩擦因数为0.6,求长木板B 的最小长度L=?6.如图所示,质量为3m 、长度为L 的木块静止放置在光滑的水平面上。
质量为m 的子弹(可视为质点)以初速度v 0水平向右射入木块,穿出木块速度变为025v 。
试求:子弹穿透木块的过程中,所受到平均阻力的大小。
7.如图,长木板a b 的b 端固定一档板,木板连同档板的质量为M=4.0kg ,a 、b 间距离s=2.0m 。
高考物理动量守恒定律题20套(带答案)一、高考物理精讲专题动量守恒定律1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以02v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ;(4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能.【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)201532mv E ∆=【解析】 【详解】(1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有:mv 0=m2v +2mv B 解得v B =4v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量222000111()2()22224v v mgL mv m m μ⨯=--解得20516v gLμ=(3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有:2mv +mv B =2mv A 、C 系统机械能守恒:22200111()()222242v v mgR m m mv +-⨯=解得264v R g= (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒0024A C mv mv mv mv +=+ A 、C 系统初、末状态机械能守恒,2222001111()()222422A C m m m m +=+v v v v 解得v A =4v . 所以从开始滑上B 到最后滑离C 的过程中A 损失的机械能为:2220015112232A mv E mv mv ∆=-=【点睛】该题是一个板块的问题,关键是要理清A 、B 、C 运动的物理过程,灵活选择物理规律,能够熟练运用动量守恒定律和能量守恒定律列出等式求解.2.如图甲所示,物块A 、B 的质量分别是 m A =4.0kg 和m B =3.0kg .用轻弹簧拴接,放在光滑的水平地面上,物块B 右侧与竖直墙相接触.另有一物块C 从t =0时以一定速度向右运动,在t =4s 时与物块A 相碰,并立即与A 粘在一起不再分开,物块C 的v -t 图象如图乙所示.求:①物块C 的质量?②B 离开墙后的运动过程中弹簧具有的最大弹性势能E P ? 【答案】(1)2kg (2)9J 【解析】试题分析:①由图知,C 与A 碰前速度为v 1=9 m/s ,碰后速度为v 2=3 m/s ,C 与A 碰撞过程动量守恒.m c v 1=(m A +m C )v 2 即m c =2 kg②12 s 时B 离开墙壁,之后A 、B 、C 及弹簧组成的系统动量和机械能守恒,且当A 、C 与B 的速度相等时,弹簧弹性势能最大 (m A +m C )v 3=(m A +m B +m C )v 4得E p =9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.3.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv= 【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mvv v M=-车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mvv v M=-⋅同理,车上的人第n 次将小球抛出后,有02n mvv v n M=-⋅ 由题意v n =0, 得:02Mv m nv=考点:动量守恒定律4.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<【解析】⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =-解得:v ==4m/s在Q 点,不妨假设轨道对物块A 的弹力F 方向竖直向下,根据向心力公式有:mg +F =解得:F =-mg =22N ,为正值,说明方向与假设方向相同。
第三章动量守恒定律与能量守恒定律1)一.选择题:1.一质量为M的斜面原来静止于水平光滑平面上,将一质量为m的木块轻轻放于斜面上,如图.如果此后木块能静止于斜面上,则斜面将(A)保持静止.(B)向右加速运动.(C)向右匀速运动.(D)向左加速运动.2.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A)动量不守恒,动能守恒.(B)动量守恒,动能不守恒.(C)对地心的角动量守恒,动能不守恒.(D)对地心的角动量不守恒,动能守恒.[3.人造地球卫星绕地球作椭圆轨道运动,卫星轨道近地点和远地点分别为A和B,用L和E K分别表示卫星对地心的角动量及其动能的瞬时值,则应有(A)L A>L B,E KA>E KB. (B)L A=L B,E KA V E KB.(C)L A=L B,E KA>E KB.(D)L A V L B,E KA V E KB.[]二.填空题:1.一质量为5kg的物体,其所受的作用力F随时间的变化关系如图所示.设物体从静止开始沿直线运动,则20秒末物体的速率v=.2.一物体质:量M=2kg,在合外力F=(3+2t)i(SI)的作用下,从静止开始运动,式中「为方向一定的单位矢量,则当t=1s时物体的速度v:=三.计算题:如图所示,质量为M的滑块正沿着光滑水平地面向右滑动.一质量为m的小球水平向右飞行,以速度v i(对地)与滑块斜面相碰,碰后竖直向上弹起,速率为V2(对地).若碰撞时间为&,试计算此过程中滑块对地的平均作用力和滑块速度增量的大小.答案:一.选择题ACC二.填空题15m/s22m/s三.计算题:解:(1)小球m在与M碰撞过程中给M的竖直方向冲力在数值上应等于球的竖直冲力.而此冲力应等于小球在竖直方向的动量变化率即:一mv2f2.:t由牛顿第三定律,小球以此力作用于M,其方向向下.对M,由牛顿第二定律,在竖直方向上N—Mg—f=0,又由牛顿第三定律,M给地面的平均作用力也为mv2F=fMg=Mg方向竖直向下.(2)同理,M受到小球的水平方向冲力大小应为7'=——.:t方向与m原运动方向一致根据牛顿第二定律,对M有f'=M包,_寸利用上式的「,即可得Av=mv1/M第三章动量守恒定律与能量守恒定律(2)一 .选择题:3分3分M对小2分1分1分1分1分1.质量为20g的子弹沿X轴正向以500m/s的速率射入一木块后,与木块一起仍沿X轴正向以50m/s的速率前进,在此过程中木块所受冲量的大小为(A)9Ns-.(B)-9Ns•.(C)10Ns.(D)-10Ns•.[2.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是(A)甲先到达.(B)乙先到达.(C)同时到达.(D)谁先到达不能确定.[3.一质点作匀速率圆周运动时,(A)它的动量不变,对圆心的角动量也不变.(B)它的动量不变,对圆心的角动量不断改变.(C)它的动量不断改变,对圆心的角动量不变.(D)它的动量不断改变,对圆心的角动量也不断改变.[二 .填空题:1.质量为M的车以速度V0沿光滑水平地面直线前进,车上的人将一质量为m的物体相对于车以速度u竖直上抛,则此时车的速度v=2.如图所示,流水以初速度V I进入弯管,流出时的速度为V2,且V1=V2=V.设每秒流入的水质量为q,则在管子转弯处,水对管壁的平均冲力大小是,方向A:(管内水受到的重力不考虑)三 .计算题:1.有一水平运动的皮带将砂子从一处运到另一处,砂子经一竖直的静止漏斗落到皮带上,皮带以恒定的速率v水平地运动.忽略机件各部位的摩擦及皮带另一端的其它影响,试问:(1)若每秒有质量为q m=dM/dt的砂子落到皮带上,要维持皮带以恒定速率v运动,需要多大的功率?(2)若q m=20kg/s,v=1.5m/s,水平牵引力多大?所需功率多大?2.人造地球卫星绕地球中心做椭圆轨道运动,若不计空气阻力和其它星球的作用,在卫星运行过程中,卫星的动量和它对地心的角动量都守恒吗?为什么?答案一.选择题ACC二.填空题1V03分2qv2分竖直向下1分三.计算题:1.解:(1)设t时刻落到皮带上的砂子质量为M,速率为v,t+dt时刻,皮带上的砂子质量为M+dM,速率也是v,根据动量定理,皮带作用在砂子上的力F的冲量为:Fdt=(M+dM)v—(Mv+dM-0)=dMv2分F=vdM/dt=vq m1分由第三定律,此力等于砂子对皮带的作用力F,即F=F.由于皮带匀速运动,动力源对皮带的牵引力F〃=F,1分因而,F"=F,F”与v同向,啰力源所供给的功率为:P=Fv=vvdM/dt=v2q m2分(2)当q m=dM/dt=20kg/s,v=1.5m/s时,水平牵引力F"=vq m=30N2分所需功率P=v2q m=45W2分2.答:人造卫星的动量不守恒,因为它总是受到外力——地球引力的作用.2分人造卫星对地心的角动量守恒,因为它所受的地球引力通过地心,而此力对地心的力矩为零.3分一 .选择题:1.用一根细线吊一重物,重物质量为5kg,重物下面再系一根同样的细线,细线只能经受70N的拉力.现在突然向下拉一下下面的线.设力最大值为50N,则(A)下面的线先断.(B)上面的线先断.(C)两根线一起断.(D)两根线都不断.[]2.质量分别为m A和m B(m A>m B)、速度分别为V A和V B(V A>V B)的两质点A和B,受到相同的冲量作用,则(A)A的动量增量的绝对值比B的小.(B)A的动量增量的绝对值比B的大.(C)A、B的动量增量相等.(D)A、B的速度增量相等.[]3.如图所示,砂子从h=0.8m高处下落到以3m/s的速率水平向右运动的传送带上.取重力加速度g=10m/s2.传送带给予刚落到传送带上的砂子的作用力的方向为(A)与水平夹角530向下.(B)与水平夹角530向上.(C)与水平夹角370向上.(D)与水平夹角37°向下.二 .填空题:1.一质量为m的典点沿着二条曲线运动,其位置矢量在空间直角座标系中的表达式为r=acosccti+bsin«tj,其中a、b、e皆为常量,则此质点对原点的角动量L=;此质点所受又t原点的力矩M=.2.地球的质量为m,太阳的质量为M,地心与日心的距离为R,引力常量为G,则地球绕太阳作圆周运动的轨道角动量为L=.3.质量为m的质点以速度—沿一直线运动,则它对该直线上任一点的角动量为.三 .计算题:一炮弹发射后在其运行轨道上的最高点h=19.6m处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S I=1000m,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g=9.8m/s2)。
动量守恒、能量守恒、机械能守衡一冲量1.定义:力与力的作用时间的乘积叫做力的冲量。
2.公式:Ft I =3.矢量,方向与作用力方向一致二、动量定理:物体所受合外力的冲量等于它的动量的改变量,这叫做动量定理。
(1)公式:o t mv mv t F -=合三动量守恒:四、弹性碰撞:'22'112211v m v m v m v m +=+2'222'1122221121212121v m v m v m v m +=+()2112122'12m m v m m v m v +-+= ()2121211'22m m v m m v m v +-+=练习一:1.如图,质量为3 kg 的木板放在光滑的水平地面上,质量为1 kg 的木块放在木板上,它们之间有摩擦,木板足够长,两者都以4 m/s 的初速度向相反方向运动.当木板的速度为2.4 m/s 时,木块( A )A.处于匀速运动阶段B.处于减速运动阶段C.处于加速运动阶段 D.静止不动2(多选).如图所示,位于光滑水平桌面,质量相等的小滑块P 和Q 都可以视作质点,Q 与轻质弹簧相连,设Q 静止,P 以某一初动能E 0水平向Q 运动并与弹簧发生相互作用,若整个作用过程中无机械能损失,用E 1表示弹簧具有的最大弹性势能,用E2表示Q 具有的最大动能,则( AD )A .201E E = B .01E E = C .202E E = D .02E E = 3(多选).光滑水平桌面上有两个相同的静止木块(不是紧捱着),枪沿两个木块连线方向以一定的初速度发射一颗子弹,子弹分别穿过两个木块。
假设子弹穿过两个木块时受到的阻力大小相同,且子弹进入木块前两木块的速度都为零。
忽略重力和空气阻力的影响,那么子弹先后穿过两个木块的过程中( CD )22112211v m v m v m v m '+'=+Pv QA.子弹两次损失的动能相同B.每个木块增加的动能相同C.因摩擦而产生的热量相同D.每个木块移动的距离不相同4.如图所示,一个木箱原来静止在光滑水平面上,木箱内粗糙的底板上放着一个小木块。
【物理】物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求:(1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v;②23v 【解析】试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v =②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223v v =考点:动量守恒定律2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答4.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左) 设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.5.如图所示,在光滑的水平面上放置一个质量为2m 的木板B ,B 的左端放置一个质量为m 的物块A ,已知A 、B 之间的动摩擦因数为μ,现有质量为m 的小球以水平速度0υ飞来与A 物块碰撞后立即粘住,在整个运动过程中物块A 始终未滑离木板B ,且物块A 和小球均可视为质点(重力加速度g).求:①物块A 相对B 静止后的速度大小; ②木板B 至少多长.【答案】①0.25v 0.②2016v L gμ=【解析】试题分析:(1)设小球和物体A 碰撞后二者的速度为v 1,三者相对静止后速度为v 2,规定向右为正方向,根据动量守恒得, mv 0=2mv 1,① (2分) 2mv 1=4mv 2② (2分)联立①②得,v 2=0.25v 0. (1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.6.一列火车总质量为M ,在平直轨道上以速度v 匀速行驶,突然最后一节质量为m 的车厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时,前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒. 取列车原来速度方向为正方向.由动量守恒定律,可得()0Mv M m v m =-'+⨯ 解得,前面列车的速度为Mvv M m'=-;7.如图所示,在光滑水平面上有一个长为L 的木板B ,上表面粗糙,在其左端有一个光滑的14圆弧槽C 与长木板接触但不连接,圆弧槽的下端与木板的上表面相平,B 、C 静止在水平面上,现有滑块A 以初速度v 0从右端滑上B 并以02v滑离B ,恰好能到达C 的最高点.A 、B 、C 的质量均为m ,试求:(1)滑块与木板B 上表面间的动摩擦因数μ; (2)14圆弧槽C 的半径R 【答案】(1)20516v gL μ=;(2)2064v R g=【解析】由于水平面光滑,A 与B 、C 组成的系统动量守恒和能量守恒,有:mv 0=m (12v 0)+2mv 1 ① μmgL =12mv 02-12m (12v 0) 2-12×2mv 12 ②联立①②解得:μ=2516v gL.②当A 滑上C ,B 与C 分离,A 、C 间发生相互作用.A 到达最高点时两者的速度相等.A 、C 组成的系统水平方向动量守恒和系统机械能守恒: m (12v 0)+mv 1=(m +m )v 2 ③ 12m (12v 0)2+12mv 12=12(2m )v 22+mgR ④ 联立①③④解得:R =264v g点睛:该题考查动量守恒定律的应用,要求同学们能正确分析物体的运动情况,列出动量守恒以及能量转化的方程;注意使用动量守恒定律解题时要规定正方向.8.如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .求男演员落地点C 与O 点的水平距离s .已知男演员质量m 1和女演员质量m 2之比m 1∶m 2=2,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .【答案】8R 【解析】 【分析】 【详解】两演员一起从从A 点摆到B 点,只有重力做功,机械能守恒定律,设总质量为m ,则212mgR mv =女演员刚好能回到高处,机械能依然守恒:222112m gR m v =女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒:122112m m v m v m v +=-+()③根据题意:12:2m m = 有以上四式解得:222v gR =接下来男演员做平抛运动:由2142R gt =,得8 t g R 因而:28s v t R ==; 【点睛】两演员一起从从A 点摆到B 点,只有重力做功,根据机械能守恒定律求出最低点速度;女演员在极短时间内将男演员沿水平方向推出,两演员系统动量守恒,由于女演员刚好能回到高处,可先根据机械能守恒定律求出女演员的返回速度,再根据动量守恒定律求出男演员平抛的初速度,然后根据平抛运动的知识求解男演员的水平分位移;本题关键分析求出两个演员的运动情况,然后对各个过程分别运用动量守恒定律和机械能守恒定律列式求解.9.如图所示,质量为m A =3kg 的小车A 以v 0=4m/s 的速度沿光滑水平面匀速运动,小车左端固定的支架通过不可伸长的轻绳悬挂质量为m B =1kg 的小球B (可看作质点),小球距离车面h =0.8m .某一时刻,小车与静止在光滑水平面上的质量为m C =1kg 的物块C 发生碰撞并粘连在一起(碰撞时间可忽略),此时轻绳突然断裂.此后,小球刚好落入小车右端固定的砂桶中(小桶的尺寸可忽略),不计空气阻力,重力加速度g =10m/s 2.求:(1)小车系统的最终速度大小v 共; (2)绳未断前小球与砂桶的水平距离L ; (3)整个过程中系统损失的机械能△E 机损. 【答案】(1)3.2m/s (2)0.4m (3)14.4J 【解析】试题分析:根据动量守恒求出系统最终速度;小球做平抛运动,根据平抛运动公式和运动学公式求出水平距离;由功能关系即可求出系统损失的机械能. (1)设系统最终速度为v 共,由水平方向动量守恒: (m A +m B ) v 0=(m A +m B +m C ) v 共 带入数据解得:v 共=3.2m/s(2)A 与C 的碰撞动量守恒:m A v 0=(m A +m C )v 1 解得:v 1=3m/s设小球下落时间为t ,则: 212h gt = 带入数据解得:t =0.4s 所以距离为:01()L v v =- 带入数据解得:L =0.4m(3)由能量守恒得:()()2201122B A B A B E m gh m m v m m m v ∆=++-++共损 带入数据解得:14.4E J ∆=损点睛:本题主要考查了动量守恒和能量守恒定律的应用,要注意正确选择研究对象,并分析系统是否满足动量守恒以及机械能守恒;然后才能列式求解.10.如图所示,一轻质弹簧的一端固定在滑块B 上,另一端与滑块C 接触但未连接,该整体静止放在离地面高为H 的光滑水平桌面上.现有一滑块A 从光滑曲面上离桌面h 高处由静止开始滑下,与滑块B 发生碰撞并粘在一起压缩弹簧推动滑块C 向前运动,经一段时间,滑块C 脱离弹簧,继续在水平桌面上匀速运动一段后从桌面边缘飞出.已知,2,3A B C m m m m m m ===,求:(1)滑块A 与滑块B 碰撞结束瞬间的速度v ; (2)被压缩弹簧的最大弹性势能E Pmax ; (3)滑块C 落地点与桌面边缘的水平距离 s. 【答案】(1)111233v v gh ==(2)6mgh (323Hh 【解析】 【详解】解:(1)滑块A 从光滑曲面上h 高处由静止开始滑下的过程,机械能守恒,设其滑到底面的速度为1v ,由机械能守恒定律有:2112=A A m gh m v 解之得:12v gh =滑块A 与B 碰撞的过程,A 、B 系统的动量守恒,碰撞结束瞬间具有共同速度设为v ,由动量守恒定律有:()1A A B m v m m v =+ 解之得:111233v v gh ==(2)滑块A 、B 发生碰撞后与滑块C 一起压缩弹簧,压缩的过程机械能守恒,被压缩弹簧的弹性势能最大时,滑块A 、B 、C 速度相等,设为速度2v 由动量守恒定律有: ()12A A B C m v m m m v =++ 由机械能守恒定律有: ()22max 21()2A A CB B P m v m m m m E v -++=+ 解得被压缩弹簧的最大弹性势能:max 16P E mgh =(3)被压缩弹簧再次恢复自然长度时,滑块C 脱离弹簧,设滑块A 、B 的速度为3v ,滑块C 的速度为4v ,分别由动量守恒定律和机械能守恒定律有:()()34A B A B C m m v m m v m v +=++()()22234111222A B A B C m m v m m v m v +=++ 解之得:30=v ,4123v gh =滑块C 从桌面边缘飞出后做平抛运动:4 s v t =212H gt =解之得滑块C 落地点与桌面边缘的水平距离:23s Hh =11.如图所示,在水平面上有一弹簧,其左端与墙壁相连,O 点为弹簧原长位置,O 点左侧水平面光滑,水平段OP 长L=1m ,P 点右侧一与水平方向成的足够长的传送带与水平面在P 点平滑连接,皮带轮逆时针转动速率为3m/s ,一质量为1kg 可视为质点的物块A 压缩弹簧(与弹簧不栓接),使弹簧获得弹性势能,物块与OP 段动摩擦因数,另一与A 完全相同的物块B 停在P 点,B 与传送带的动摩擦因数,传送带足够长,A 与B 的碰撞时间不计,碰后A .B 交换速度,重力加速度,现释放A ,求:(1)物块A .B 第一次碰撞前瞬间,A 的速度(2)从A .B 第一次碰撞后到第二次碰撞前,B 与传送带之间由于摩擦而产生的热量 (3)A .B 能够碰撞的总次数 【答案】(1)(2)(3)6次【解析】试题分析:(1)设物块质量为m ,A 与B 第一次碰前的速度为,则:解得:(2)设A.B 第一次碰撞后的速度分别为,则,碰后B 沿传送带向上匀减速运动直至速度为零,加速度大小设为, 则:,解得:运动的时间,位移此过程相对运动路程此后B反向加速,加速度仍为,与传送带共速后匀速运动直至与A再次碰撞,加速时间为位移为此过程相对运动路程全过程生热(3)B与A第二次碰撞,两者速度再次互换,此后A向左运动再返回与B碰撞,B沿传送带向上运动再次返回,每次碰后到再次碰前速率相等,重复这一过程直至两者不再碰撞.则对A.B和弹簧组成的系统,从第二次碰撞后到不再碰撞:解得第二次碰撞后重复的过程数为n=2.25,所以碰撞总次数为N=2+2n=6.5=6次(取整数)考点:动能定理;匀变速直线运动的速度与时间的关系;牛顿第二定律【名师点睛】本题首先要理清物体的运动过程,其次要准确把握每个过程所遵守的物理规律,特别要掌握弹性碰撞过程,动量和机械能均守恒,两物体质量相等时交换速度12.如图所示,物块质量m=4kg,以速度v=2m/s水平滑上一静止的平板车上,平板车质量M=16kg,物块与平板车之间的动摩擦因数μ=0.2,其他摩擦不计(g=10m/s2),求:(1)物块相对平板车静止时,物块的速度;(2)物块在平板车上滑行的时间;(3)物块在平板车上滑行的距离,要使物块在平板车上不滑下,平板车至少多长?【答案】(1)0.4m/s(2)(3)【解析】解:物块滑下平板车后,在车对它的摩擦力作用下开始减速,车在物块对它的摩擦力作用下开始加速,当二者速度相等时,物块相对平板车静止,不再发生相对滑动。
《大学物理学》动量守恒和能量守恒定律部分练习题一、选择题1. 用铁锤把质量很小的钉子敲入木板,设木板对钉子的阻力与钉子进入木板的深度成正比。
在铁锤敲打第一次时,能把钉子敲入 1.00cm 。
如果铁锤第二次敲打的速度与第一次完全相同,那么第二次敲入多深为 ( )(A ) 0.41cm ; (B ) 0.50cm ; (C ) 0.73cm ; (D ) 1.00cm 。
【提示:首先设阻力为f k x =,第一次敲入的深度为x 0,第二次为∆x ,考虑到两次敲入所用的功相等,则0000x x x x kxd x kxd x +∆=⎰⎰】 2.一质量为0.02 kg 的子弹以200m/s 的速率射入一固定墙壁内,设子弹所受阻力与其进入墙壁的深度x 的关系如图所示,则该子弹能进入墙壁的深度为 ( )(A )0.02m ; (B ) 0.04 m ; (C ) 0.21m ; (D )0 .23m 。
【提示:先写出阻力与深度的关系53100.022100.02x x F x ⎧≤=⎨⨯>⎩,利用212W m v =有0.0253200.021102100.02(200)2x xd x d x +⨯=⨯⨯⎰⎰,求得0.21x m =】 3.对于质点组有以下几种说法:(1)质点组总动量的改变与内力无关; (2)质点组总动能的改变与内力无关;(3)质点组机械能的改变与保守内力无关。
对上述说法判断正确的是 ( )(A ) 只有(1)是正确的; (B )(1)、(2)是正确的;(C )(1)、(3)是正确的; (D )(2)、(3)是正确的。
【提示:(1)见书P55,只有外力才对系统的动量变化有贡献;(2)见书P74,质点系动能的增量等于作用于质点系的一切外力作的功与一切内力作的功之和;(3)见书P75,质点系机械能的增量等于外力与非保守内力作功之和】4.有两个倾角不同、高度相同、质量一样的斜面放在光滑的水平面上,斜面是光滑的,有两个一样的物块分别从这两个斜面的顶点由静止开始滑下,则 ( )(A )物块到达斜面底端时的动量相等; (B ) 物块到达斜面底端时的动能相等;(C )物块和斜面(以及地球)组成的系统,机械能不守恒;(D )物块和斜面组成的系统水平方向上动量守恒。
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
物理三大守恒定律练习题一、质量守恒定律2. 10克水与5克酒精混合后,混合物的总质量是多少?3. 在一个密闭容器中进行化学反应,反应前后容器内气体的质量是否发生变化?4. 下列哪个现象可以用质量守恒定律解释?A. 烧杯中的水蒸发后,质量减少B. 铁钉在潮湿空气中生锈,质量增加C. 水和酒精混合后,体积减小D. 铅笔在纸上写字,纸上质量增加二、能量守恒定律1. 下列哪种现象符合能量守恒定律?A. 灯泡发光,电能转化为光能B. 水从高处流向低处,势能转化为动能C. 电池充电,电能转化为化学能2. 一辆汽车在下坡过程中,其动能和势能如何变化?3. 在一个封闭系统中,能量可以从一种形式转化为另一种形式,但总的能量是否发生变化?4. 下列哪个过程违反了能量守恒定律?A. 太阳能电池将太阳能转化为电能B. 电风扇工作时,电能转化为机械能C. 水蒸气凝结成水,内能转化为热能D. 燃料在发动机中燃烧,化学能转化为动能三、动量守恒定律2. 一颗子弹以一定速度射入静止的木块,子弹和木块组成的系统在碰撞过程中的总动量是否发生变化?3. 两个质量相同的小球,一个静止,另一个以一定速度向静止小球碰撞,碰撞后两球的速度如何?4. 下列哪种情况符合动量守恒定律?A. 滑冰运动员在冰面上相互推开,两人速度都增大B. 篮球运动员投篮,篮球速度减小C. 火车在水平轨道上行驶,速度保持不变5. 在一个弹性碰撞过程中,除了动量守恒外,还有哪个物理量守恒?A. 动量B. 能量C. 速度D. 质量A. 动量B. 能量C. 速度D. 质量8. 两个小球在光滑水平面上相互碰撞,碰撞前后小球的速度和方向如何变化?9. 一颗炸弹在空中爆炸,爆炸前后系统的总动量是否发生变化?10. 在一个封闭系统中,两个物体发生碰撞,碰撞后系统的总动量是否等于碰撞前的总动量?四、综合应用题1. 一个物体从高处自由落下,不考虑空气阻力,物体的重力势能如何转化为动能?2. 在一个封闭系统中,两个小球发生弹性碰撞,碰撞前后两球的速度和动量如何变化?3. 一个物体在水平面上受到一个恒力的作用,其动能和势能如何随时间变化?4. 一辆汽车在水平路面上行驶,突然关闭发动机,汽车的速度和动能如何变化?5. 一个电路中的电阻丝通电后发热,这个过程中电能转化为什么能量?6. 一个物体在水平面上做匀速直线运动,其动量和动能是否发生变化?7. 一个物体在竖直方向上做上抛运动,到达最高点时,物体的动能和势能各是多少?8. 在一个热力学过程中,系统的内能发生变化,这是否违反了能量守恒定律?9. 一个物体在光滑水平面上受到一个恒力作用,其动量随时间如何变化?10. 一个气球在空中爆炸,爆炸前后系统的总动量是否发生变化?五、判断题1. 质量守恒定律适用于所有物理和化学变化。
第三章 动量守恒定律和能量守恒定律(一)教材外习题1 功与能习题一、选择题:1.一质点受力i x F 23 (SI )作用,沿X 轴正方向运动。
从x = 0到x = 2m 过程中,力F 作功为(A )8J. (B )12J. (C )16J. (D )24J.( )2.如图所示,圆锥摆的小球在水平面内作匀速率圆周运动,下列说法正确的是(A )重力和绳子的张力对小球都不作功.(B )重力和绳子的张力对小球都作功.(C )重力对小球作功,绳子张力对小球不作功.(D )重力对小球不作功,绳子张力对小球作功.( )3.已知两个物体A 和B 的质量以及它们的速率都不相同,B 的大,则A 的动能E KA 与B 的动能E KB 之间的关系为(A )E KB 一定大于E KA . (B )E KB 一定小于E KA(C )E KB =E KA(D )不能判定谁大谁小 ( )4.如图所示,一个小球先后两次从P 点由静止开始,分别沿着光滑的固定斜面l 1和圆弧面l 2下滑,则小球滑到两面的底端Q 时的(A )动量相同,动能也相同(B )动量相同,动能不同(C )动量不同,动能也不同(D )动量不同,动能相同 ( )5.一质点在外力作用下运动时,下述哪种说法正确?(A )质点的动量改变时,质点的动能一定改变(B )质点的动能不变时,质点的动量也一定不变(C )外力的冲量是零,外力的功一定为零(D )外力的功为零,外力的冲量一定为零( )二、填空题: 1.某质点在力F =(4+5x )i (SI )的作用下沿x 轴作直线运动,在从x =0移动到x =10m 的过程中,力F 所作功为___________________。
QP l 2 l 12.如图所示,一斜面倾角为θ,用与斜面成α角的恒力F 将一质量为m 的物体沿斜面拉升了高度h ,物体与斜面间的摩擦系数为μ,摩擦力在此过程中所作的功W f =____________________________。
3.一质点在二恒力作用下,位移为j i r 83+=∆(SI );在此过程中,动能增量为24J ,已知其中一恒力j i F 3121-=(SI ),则另一恒力所作的功为______________________。
三、计算题:1.一人从10m 深的井中提水,起始时桶中装有10kg 的水,桶的质量为1kg ,由于水桶漏水,每升高1m 要漏去0.2kg 的水。
求水桶匀速地从井中提到井口,人所作的功。
2.质量m=2kg 的物体沿x 轴作直线运动,所受合外力F=10+6x 2(SI )。
如果在x 0=0处时速度V 0=0;试求该物体运动到x =4m 处时速度的大小。
2 动量、冲量质点角动量习题一、选择题:1.动能为E K 的A 物体与静止的B 物体碰撞,设A 物体的质量为B 物体的二倍,m A =2m B 。
若碰撞为完全非弹性的,则碰撞后两物体总动能为(A )E K (B )E K /2 (C )E K /3 (D )2E K /3( )2.在水平冰面上以一定速度向东行驶的炮车,向东南(斜向上)方向发射一炮弹,对于炮车和炮弹这一系统,在此过程中(忽略冰面摩擦力及空气阻力)(A )总动量守恒(B )总动量在炮身前进的方向上的分量守恒,其它方向动量不守恒(C )总动量在水平面上任意方向的分量守恒,竖直方向分量不守恒(D )总动量在任何方向的分量均不守恒( )3.质量为m 的铁锤竖直落下,打在木桩上并停下,设打击时间为∆t ,打击前铁锤速率为v ,则在打击木桩的时间内,铁锤所受平均合外力的大小为(A )t mv ∆ (B )mg t mv -∆ (C )mg t mv +∆ (D )tmv ∆2 ( )4.人造地球卫星,绕地球作椭圆轨道运动,地球在椭圆的一个焦点上,则卫星的(A )动量不守恒 ,动能守恒 (B )动量守恒,动能不守恒(C )角动量守恒,动能不守恒 (D )角动量不守恒,动能守恒( )二、填空题:1.一质量m=10g 的子弹,以速率v 0=500m/s 沿水平方向射穿一物体。
穿出时,子弹的速率为v=30m/s ,仍是水平方向。
则子弹在穿透过程中所受的冲量的大小为______________,方向为__________________________。
2.设作用在质量为1kg 的物体上的力F=6t+3(SI )。
如果物体在这一力的作用下,由静止开始沿直线运动,在0到2.0s 的时间间隔内,这个力作用在物体上的冲量大小I=_________。
3.一颗子弹在枪筒里前进时所受的合力大小为 t F 31044005⨯-=(SI ) 子弹从枪口射出时的速率为300m ·s -1,假设子弹离开枪口时合力刚好为零,则(1)子弹走完枪筒全长所用的时间t=_______________________,(2)子弹在枪筒中所受力的冲量I=_________________________,(3)子弹的质量m=_______________________。
4.如图所示,X 轴沿水平方向,Y 轴竖直向下,在t=0时刻将质量为m 的质点由a 处静止释放,让它自由下落,则在任意时刻t ,质点所受的对原点O 的力矩M =____________,在任意时刻t ,质点对原点O 的角动量L =______________________。
三、计算题: 1.静水中停着两个质量均为M 的小船,当第一只船中的一个质量为m 的人以水平速度V (相对于地面)跳上第二只船后,两只船的运动速度各多大?(忽略水对船的阻力)2.质量为M=1.5kg 的物体,用一根长为l =1.25m 的细绳悬挂在天花板上,今有一质量为m=10g 的子弹以v 0=500m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v=30m/s ,设穿透时间极短,求:(1)子弹刚穿出时绳中张力的大小;(2)子弹在穿透过程中所受的冲量。
3 质点力学综一、选择题:1.一圆锥摆的摆球在一水平面内作匀速圆周运动。
细悬线长为l ,与竖直方向夹角为θ ,线的张力为T , 小球的质量为m ,忽略空气阻力,则下述结论中正确的是:(A )Tcos θ = mg (B )小球动量不变v(C )Tsin θ = mv 2/l (D )T=mv 2/l( )2.竖直上抛一小球,若空气阻力的大小不变,则球上升到最高点所需用的时间,与从最高点下降到原位置所需用的时间相比(A )前者长 (B )前者短(C )两者相等 (D )无法判断其长短( )3.如图所示,在光滑平面上有一个运动物体P ,在P 的正前方有一个连有弹簧和挡板M 的a b l静止物体Q ,弹簧和挡板M 的质量均不计,P 与Q 的质量相同,物体P 与Q 碰撞后P 停止,Q 以碰前P 的速度运动,在此碰撞过程中,弹簧压缩量最大的时刻是(A )P 的速度正好变为零时(B )P 与Q 的速度相等时(C )Q 正好开始运动时(D )Q 正好达到原来P 的速度时( )4.一质量为m 的质点,自半径为R 的光滑半球形碗口由静止下滑,质点在碗内某处的速率为v ,则质点对该处的压力数值为(A )R mv 2(B )R mv 232 (C )R mv 22 (D )Rmv 252 ( )5.一光滑的圆弧形槽M 置于光滑水平面上,一滑块m 自槽的顶部由静止释放后沿槽滑下,不计空气阻力。
对于这一过程,以下哪种分析是对的?(A )由m 和M 组成的系统动量守恒(B )由m 和M 组成的系统机械能守恒(C )由m 、M 和地球组成的系统机械能守恒(D )M 对m 的正压力恒不作功( )6.一质子轰击一α 粒子时因未对准而发生轨迹偏转。
假设附近没有其它带电粒子,则在这一过程中,由此质子和α 粒子组成的系统(A )动量守恒,能量不守恒 (B )能量守恒,动量不守恒(C )动量和能量都不守恒 (D )动量和能量都守恒( )二、填空题:1.在半径为R 的定滑轮上跨一细绳,绳的两端分别挂着质量为m 1和m 2的物体,且m 1>m 2。
若滑轮的角加速度为β,则两侧绳中的张力分别为T 1=________________,T 2=___________。
2.质量为m 1和m 2的两个物体,具有相同的动量。
欲使它们停下来,则外力对它们做的功之比W 1∶W 2=___________;若它们具有相同的动能,欲使它们停下来,则外力的冲量之比为I 1∶I 2=_____________。
3.A 、B 两个小球放在水平光滑平面上,质量m A =2m B ,两球用一轻绳联结(如图),都绕绳上的某点以相同的角速度作匀速率圆周运动,A 球与B 球的运动半径之比r A ∶r B 为_________,动能之比E KA ∶E KB 为__________,动量大小之经P A ∶P B 为_______________。
三、计算题:1.一细绳两端分别拴着质量m 1=1kg ,m 2=2kg 的物体A 和B ,这两个物体分别放在两水平桌面上,与桌面间的摩擦系数都是μ=0.1,绳子分别跨过桌边的两个定滑轮吊着一个动滑轮,动滑轮下吊着质量m 3=1kg 的物体C ,如图所示。
设整个绳子在同一平面内,吊着动滑轮的两段绳子相互平行。
如绳子与滑轮的质量以及滑轮轴上的摩擦可以略去不计,绳子不可伸长,A求A 、B 、C 相对地面加速度1a 、2a 、3a 的大小。
(取g=10m/s 2)2.如图所示,A 点是一单摆的悬点,摆长为l ,B 点是一固定的钉子,在A 点的铅直下方距A 为d 处,为使摆球从水平位置由静止释放后,摆球能够以钉子为中心绕一圆周轨道旋转,则d 至少应等于多少?3.如图,光滑斜面与水平面的夹角α =30︒,轻质弹簧上端固定,今在弹簧的另一端轻轻地挂上质量为M=1.0 kg 的木块,则木块沿斜面向下滑动。
当木块向下滑x = 30厘米时,恰好有一质量m=0.01kg 的子弹,沿水平方向以速度v=200m/s 射中木块并陷在其中。
设弹簧的倔强系数为k=N/m 。
求子弹打入木块后它们的共同速度。
(二)教材外习题3-2 质量为m 的物体,由水平面上点O 以初速为v 0抛出,v 0与水平面成仰角α. 若不计空气阻力,求:(1)物体从发射点O 到最高点的过程中,重力的冲量;(2)物体从发射点到落回至同一水平面的过程中,重力的冲量.3-3 质量为m 的质点作圆锥摆运动,质点的速率为v ,圆半径为R . 圆锥母线与轴线之间的夹角为α,计算拉力在一周内的冲量.3-5 如图所示,在水平地面上,有一横截面S=0.20m 2的直角弯管,管中有流速为v =3.0m ·s-1的水通过,求弯管所受力的大小和方向. m m3-8 质量为m'的人手里拿着一个质量为m的物体,此人用与水平面成α角的速率v0向前跳去. 当他达到最高点时,他将物体以相对于人为u的水平速率向后抛出. 问:由于人抛出物体,他跳跃的距离增加了多少?(假设人可视为质点).3-9 一质量均匀柔软的绳竖直的悬挂着,绳的下端刚好触到水平桌面上. 如果把绳的上端放开,绳将落到桌面上. 试证明:在绳下落的过程中的任意时刻,作用于桌面上的压力等于已落到桌面上绳的重量的三倍.3-14 一物体在介质中按规律x=ct3作直线运动,c为一常量. 设介质对物体的阻力正比于速度的平方. 试求物体由x0 = 0运动到x 0= l时,阻力所作的功. (已知阻力系数为k)3-15 一人从10.0m深的井中提水,起始桶中装有10.0kg的水,由于水桶漏水,每升高1.00m要漏去0.20kg的水. 求水桶被匀速地从井中提到井口,人所作的功.3-18 设两个粒子之间的相互作用力是排斥力,并随它们之间的距离r按F=k/r3的规律而变化,其中k为常量. 试求两粒子相距为r时的势能. (设力为零的地方势能为零. )3-22 如图所示,有一自动卸货矿车,满载时的质量为m',从与水平成倾角α=30.0︒斜面上的点A由静止下滑. 设斜面对车的阻力为车重的0.25倍,矿车下滑距离l时,矿车与缓冲弹簧一道沿斜面运动. 当矿车使弹簧产生最大压缩形变时,矿车自动卸货,然后矿车借助弹簧的弹性力作用,使之返回原位置A再装货. 试问要完成这一过程,空载时与满载时车的质量之比应为多大?3-23 用铁锤把钉子敲入墙面木板. 设木板对钉子的阻力与钉子进入木板的深度成正比. 若第一次敲击,能把钉子钉入木板1.00⨯10-2m. 第二次敲击时,保持第一次敲击钉子的速度,那么第二次能把钉子钉入多深?3-27 如图所示,质量为m、速度为v的钢球,射向质量为m'的靶,靶中心有一小孔,内有劲度系数为k的弹簧,此靶最初处于静止状态,但可在水平面作无摩擦滑动. 求子弹射入靶内弹簧后,弹簧的最大压缩距离.3-30 质量为7.2⨯10-23kg ,速率为6.0⨯107m ·s -1的粒子A ,与另一个质量为其一半而静止的粒子B 发生二维完全弹性碰撞,碰撞后粒子A 的速率为5.0⨯107m ·s -1. 求:(1)粒子B 的速率及相对粒子A 原来速度方向的偏角;(2)粒子A 的偏转角.3-31 有两个带电粒子,它们的质量均为m ,电荷均为q ,其中一个处于静止,另一个以初速v 0由无限远处向其运动. 问这两个粒子最接近的距离是多少?在这瞬时,每个粒子的速率是多少?你能知道这两个粒子的速度将如何变化吗?⎪⎭⎫ ⎝⎛=221r q q k F 已知库仑定律为 3-32 如图所示,一质量为m '的物块放置在斜面的最底端A 处,斜面的倾角为α,高度为h ,物块与斜面的滑动摩擦因数为μ,今有一质量为m 的子弹以v 0速度沿水平方向射入物块并留在其中,且使物块沿斜面向上滑动,求物块滑出顶端时的速度大小.3-33 如图所示,一个质量为m 的小球,从内壁为半球形的容器边缘点A 滑下. 设容器质量为m ',半径为R ,内壁光滑,并放置在摩擦可以忽略的水平桌面上. 开始时小球和容器都处于静止状态. 当小球沿内壁滑到容器底部的点B 时,受到向上的支持力为多大?。