数字系统抖动测试技术
- 格式:pdf
- 大小:2.68 MB
- 文档页数:78
抖动的概念及其测量方法摘要:在数字通信系统,特别是同步系统中,随着系统时钟频率的不断提高,时间抖动成为影响通信质量的关键因素。
本文介绍了时间抖动(jitter)的概念及其分析方法。
关键字:时间抖动、jitter、相位噪声、测量一、引言随着通信系统中的时钟速率迈入GHz级,抖动这个在模拟设计中十分关键的因素,也开始在数字设计领域中日益得到人们的重视。
在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。
不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。
有资料表明在3GHz 以上的系统中,时间抖动(jitter)会导致码间干扰(ISI),造成传输误码率上升。
在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。
本文向数字设计师们介绍了抖动的基本概念,分析了它对系统性能的影响,并给出了能够将相位抖动降至最低的常用电路技术。
二、时间抖动的概念在理想情况下,一个频率固定的完美的脉冲信号(以1MHz为例)的持续时间应该恰好是1us,每500ns有一个跳变沿。
但不幸的是,这种信号并不存在。
如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。
这种不确定就是抖动。
抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。
在绝大多数文献和规范中,时间抖动(jitter)被定义为高速串行信号边沿到来时刻与理想时刻的偏差,所不同的是某些规范中将这种偏差中缓慢变化的成分称为时间游走(wander),而将变化较快的成分定义为时间抖(jitter)。
图1 时间抖动示意图1.时间抖动的分类抖动有两种主要类型:确定性抖动和随机性抖动。
确定性抖动是由可识别的干扰信号造成的,这种抖动通常幅度有限,具备特定的(而非随机的)产生原因,而且不能进行统计分析。
随机抖动是指由较难预测的因素导致的时序变化。
例如,能够影响半导体晶体材料迁移率的温度因素,就可能造成载子流的随机变化。
测试技术与信号分析汇总一、测试技术的方法:1.传统测试方法:包括模拟测试和数字测试。
模拟测试主要通过模拟信号发生器、示波器等设备来测试信号,用于测试模拟电路和系统的性能。
数字测试则是利用数字信号处理和评估技术进行测试,包括用于测试和评估数字电路、数字系统和数字通信等方面的技术。
2.自动测试方法:自动测试系统是利用计算机和测试设备进行测试的一种技术。
通过编程和控制设备来实现自动化测试,提高测试效率和准确性。
自动测试方法被广泛应用于电子制造业和通信领域。
3.无线测试方法:用于测试和评估无线通信系统的性能和质量。
包括对无线信号的频谱分析、功率分析、调制解调分析等方面的技术。
无线测试方法在无线通信和无线电监测等领域有广泛的应用。
4.嵌入式测试方法:用于测试和评估嵌入式系统的性能和功能。
嵌入式测试方法主要包括对嵌入式软件和硬件的测试,包括对芯片、传感器、控制器等的测试。
二、信号分析的方法:1.时域分析:通过对信号的波形进行观察和分析,了解信号的振幅、频率、相位等特征。
常用的时域分析方法包括傅里叶变换、功率谱密度分析等。
2.频域分析:通过将信号转换到频域,分析信号的频率成分和幅度谱。
常用的频域分析方法包括快速傅里叶变换、频谱分析等。
3.谱分析:通过对信号进行频谱分析,了解信号的频率特性及其分布。
常用的谱分析方法包括功率谱密度估计、自相关函数估计等。
4.小波分析:通过小波变换将信号分解到多个不同频率尺度上,分析信号的时频特性。
小波分析方法在非平稳信号处理和信号检测等领域有着广泛的应用。
三、应用领域:1.通信系统:测试技术与信号分析在通信系统中广泛应用,例如利用频谱分析对通信信号进行分析,评估通信系统的性能和故障诊断。
2.电子制造业:测试技术是电子制造业中不可或缺的环节,通过测试技术对电子产品进行性能检测和质量控制,提高产品的可靠性和稳定性。
3.无线电监测:利用无线测试和信号分析技术对无线电频谱进行监测和分析,用于无线电干扰的监测和定位。
Agilent——眼图、抖动、相噪随着数据速率超过Gb/s水平,工程师必须能够识别和解决抖动问题。
抖动是在高速数据传输线中导致误码的定时噪声。
如果系统的数据速率提高,在几秒内测得的抖动幅度会大体不变,但在位周期的几分之一时间内测量时,它会随着数据速率成比例提高,进而导致误码。
新兴技术要求误码率(BER),亦即误码数量与传输的总码数之比,低于一万亿分之一(10-12)。
随着数据通信、总线和底板的数据速率提高,市场上已经出现许多不同的抖动检定技术,这些技术采用各种不同的实验室设备,包括实时数字示波器、取样时间间隔分析仪(TIA)、等时取样示波器、模拟相位检波器和误码率测试仪(BERT)。
为解决高数据速率上难以解决的抖动问题,工程师必需理解同步和异步网络中使用的各种抖动分析技术本文重点介绍3 Gb/s以上新兴技术的数据速率。
低于3 Gb/s的实时示波器可以捕获连续的数据流,可以同时在时域和频域中分析数据流;在更高的数据速率上,抖动分析要更具挑战性。
本文将从数字工程师的角度,介绍应对SONET/SDH挑战的各种经验。
抖动分析基本上包括比较抖动时钟信号和参考时钟信号。
参考时钟是一种单独的黄金标准时钟,或从数据中重建的时钟。
在高数据速率时,分析每个时钟的唯一技术是位检测和误码率测试;其它技术则采用某种取样技术。
如图1所示,眼图是逻辑脉冲的重叠。
它为测量信号质量提供了一种有用的工具,即使在极高的数据速率时,也可以在等时取样示波器上简便生成。
边沿由‘1’到‘0’转换和‘0’到‘1’转换组成,样点位于眼图的中心。
如果电压(或功率)高于样点,则码被标为逻辑‘1’;如果低于样点,则标为‘0’。
系统时钟决定着各个位的样点水平位置。
图1: 具有各项定义的眼图E1是逻辑‘1’的平均电压或功率电平,E0是逻辑‘0’的平均电压或功率电平。
参考点t = 0在左边的交点进行选择,右边的交点及其后是位周期TB。
Eye Crossing Point: 眼图交点Left Edge: 左沿Right Edge: 右沿Nominal Sampling Point: 标称样点幅度噪声可能会导致逻辑‘1’的电压或功率电平垂直波动,低于样点,导致逻辑‘1’码错误地标为逻辑‘0’码,即误码。
TDR测试原理评价频率响应的最普通的方法是在频域中解Ma某well方程。
这个过程能够把系统所有的物理和电气特性都考虑进去,包括传输线。
因而已经有很多基于此原理的测量方法来帮助电气工程师分析信号完整性。
当和其他测试方法比较时,时域反射(TDR:TimeDomainReflector)可以提供更加直观观察DUT的特性。
TDR使用阶跃信号发生仪和示波器,在被测得传输线上发送一个快速的上升沿,再特定的点上用示波器观察反射电压波形。
这种技术可以测出传输显得特性阻抗,并显示出每个阻抗不连续点的位置和特性(阻抗、感抗和容抗)。
所有这些信息都是示波器上实时显示。
相对于其他技术,TDR能够给出更多的关于系统宽带相应的信息。
图1时域反射计工作原理阶跃信号发生器向被测系统产生一个正向的阶跃信号。
该信号沿着传输线向前传输。
如果负载组抗等于传输线的特性阻抗,将没有信号反射,示波器上能看到的只有发送的阶跃信号。
假如负载存在失配,将有部分的输入信号被反射,示波器上将出现反射信号和输入信号的叠加。
图2是一个传输线的测试波形,由此可以看出,对于非连续的阻抗,示波器对应位置将出现变化的波形,由此我们就能够分析每个中断点的特性。
图2时域反射计测试结果·A:50Ohm电缆·B:微波传输带开始·C:50Ohm微波传输带·D:75Ohm微波传输带·E:50Ohm微波传输带·F:开路与其他测试方法的比较最常用的测量传输线和负载的方法是向系统发送一个正弦波,并观察线上不连续点的波形。
这种测试方法中,我们要计算SWR(驻波比)并将它看作系统的参数。
当系统有数个阻抗不连续点时,SWR测试往往不能分开这些点。
另外,当系统拥有很宽的带宽时,必须测量很多频点的SWR,测试很枯燥并且耗费时间。
另一个常见的测量传输线的仪器是矢量网络分析仪(VNA)。
这时,信号源产生一个连续扫频的正弦波来激励DUT。
PAGE 068定位导航与授时Positioning,Navigation and Timing时钟抖动度量指标和测试方法概述■ 龙丹(海军工程大学 430033)数字通信系统中,时钟抖动是影响通信质量的因素之一,在系统设计、设备研制、工程验收等各环节抖动指标是必须考虑的。
本文介绍了通信中常用的抖动概念、分类、度量指标和测试方法,并对时钟设备抖动指标测试进行了描述。
最后对抖动测试的发展方向进行了展望。
In digital communication systems, clock jitter is one of the factors that affect communication quality, and jitter indicators must be considered in various links such as system design, equipment development, and engineering acceptance. This article introduces the jitter concepts, classifications, metrics and test methods commonly used in communications, and describes the jitter index test of clock equipment. Finally, the development direction of jitter test is prospected.时钟抖动 高速时钟同步Clock jitter; high-speed clock synchronizationDoi:10.3969/j.issn.1673-5137.2021.02.010摘 要Abstract关键词Key Words1. 背景ITU-T G.810标准中抖动的定义是“数字信号的各个有效瞬时相对其当时的理想位置(相位)的短期性偏离”,相位偏离的频率称为抖动频率,“短期”指变化的频率大于或等于10Hz(这里是通信领域传统的定义,其他领域对抖动可能有不同的定义)[1]。
时间抖动(jitter)的概念及其分析方法随着通信系统中的时钟速率迈入GH z级,抖动这个在模拟设计中十分关键的因素,也开始在数字设计领域中日益得到人们的重视。
在高速系统中,时钟或振荡器波形的时序误差会限制一个数字I/O接口的最大速率。
不仅如此,它还会导致通信链路的误码率增大,甚至限制A/D转换器的动态范围。
有资料表明在3GH z以上的系统中,时间抖动(jitter)会导致码间干扰(ISI),造成传输误码率上升。
在此趋势下,高速数字设备的设计师们也开始更多地关注时序因素。
本文向数字设计师们介绍了抖动的基本概念,分析了它对系统性能的影响,并给出了能够将相位抖动降至最低的常用电路技术。
本文介绍了时间抖动(jitter)的概念及其分析方法。
在数字通信系统,特别是同步系统中,随着系统时钟频率的不断提高,时间抖动成为影响通信质量的关键因素。
关键字:时间抖动、jitter、相位噪声、测量时间抖动的概念在理想情况下,一个频率固定的完美的脉冲信号(以1MHz为例)的持续时间应该恰好是1us,每500ns 有一个跳变沿。
但不幸的是,这种信号并不存在。
如图1所示,信号周期的长度总会有一定变化,从而导致下一个沿的到来时间不确定。
这种不确定就是抖动。
抖动是对信号时域变化的测量结果,它从本质上描述了信号周期距离其理想值偏离了多少。
在绝大多数文献和规范中,时间抖动(jitter)被定义为高速串行信号边沿到来时刻与理想时刻的偏差,所不同的是某些规范中将这种偏差中缓慢变化的成分称为时间游走(wander),而将变化较快的成分定义为时间抖动(jitter)。
图1 时间抖动示意图1.时间抖动的分类抖动有两种主要类型:确定性抖动和随机性抖动。
抖动测量三种有效方法只要测试数据通信IC或测试电信网络,就需要测试抖动。
抖动是应该呈现的数字信号沿与实际存在沿之间的差。
时钟抖动可导致电和光数据流中的偏差位,引起误码。
测量时钟抖动和数据信号就可揭示误码源。
测量和分析抖动可借助三种仪器:误码率(BER)测试仪,抖动分析仪和示波器(数字示波器和取样示波器)。
选用哪种仪器取决于应用,即电或光、数据通信以及位率。
因为抖动是误码的主要原因,所以,首先需要测量的是BER。
若网络、网络元件、子系统或IC的BER超过可接受的限制,则必须找到误差源。
大多数工程技术人员希望用仪器组合来跟踪抖动问题,先用BER测试仪、然后用抖动分析仪或示波器来隔离误差源。
BER测试仪制造商需要测量其产品的BER,以保证产品符合电信标准。
当需要表征数据通信元件和系统时,BER测试对于测试高速串行数据通信设备也是主要的。
BER测试仪发送一个称之为伪随机位序列(PRBS)的预定义数据流到被测系统或器件。
然后,取样接收数据流中的每一位,并对照所希望的PRBS图形检查输入位。
因此,BER 测试仪可以进行严格的BER测量,有些是抖动分析仪或示波器不可能做到的。
尽管BER测试仪可进行精确的BER测量,但是,对于10-12BER(每1012位为1位误差)精度的网络或器件测试需数小时。
为了把测试时间从数小时缩短为几分钟,BER测试仪采用“BERT scan”技术,此技术用统计技术来预测BER。
可以编程BER测试仪在位时间(称之为“单位间隔”或“UI”)的任何点取样输入位。
“澡盆”曲线表示BER是取样位置的函数。
若BER测试仪检测位周期(0.5UI)中心的位,则抖动引起位误差的概率是小的。
若BER测试仪检测位于靠近眼相交点上的位,则将增大获得抖动引起位误差的似然性。
抖动分析仪BER测试仪不能提供有关抖动持性或抖动源的足够信息。
抖动分析仪(往往称之为定时时间分析仪或信号完整性分析仪)可以测量任何时钟信号的抖动,并提供故障诊断抖动的信息。
SDH测试要求1、对测试人员的要求(1)避免光接收机过载:将光发送机与光接收机直接相连时,测试人员必须注意避免光接收机过载。
ITU-T建议G.957中规定了不同类型接收机的过载电平,见表1。
当接收电平远大于过载电平时,有可能会导致接收机损坏,因此,如果光发送机功率比期望值高,则要插入光衰减器。
这对于与带有光放的长途大功率发射机相连接时极为重要。
表1:G.957光接收机规范(2)建立同步与PDH测试不同,在SDH测试中必须建立SDH测试设备与被测网元或系统的同步,以确保测试中没有失控指针调整,影响正常测试。
所以测试人员在进行涉及到SDH的测试项目,如指针调整抖动或去映射抖动测试时,必须建立SDH测试设备与被测网络单元间的同步,以免测试结果不准确。
2、对测试项目的要求。
SDH线路系统(设备)测试项目及其要求见表2。
其中只列出与工程技术人员日常维护相关的项目。
表2:SDH线路系统(设备)测试项目推荐注1:符号说明:# --表示必须要测;O --表示选择,可测可不测;/ --表示不需要测。
注2:缩略语说明:厂验—表示出厂验收;安装—表示工程安装;工程—表示工程验收;维护—表示维护使用。
以上测试要求只是一调查统计结果,并不是规定,仅作为推荐参考,具体使用过程中应根据具体情况具体要求进行测试。
但由表2可以看出各个测试参数在不同环节的重要程度。
3、对测试仪表的要求测试设备的要求见ITU-T建议 O.150、O.151、O.152、O.171及O.172,其中O.150是对测试设备一般要求,O.151、O.152、O.181为各级速率及SDH网络接口的误码测试性能要求,而O.172建议取代原来的O.17S规范了SDH数字传输系统的抖动和漂移测试设备。
(1)测试功能要求:* 所支持的信号结构:随着SDH技术的广泛应用,原有的纯PDH测试设备已不能用于SDH网络测试,现在的SDH测试设备应具有各级STM-N信号接口(包括STM-1电,1310nm及1550nm双波长STM-1、4、16、64光);能将PDH各速率信号映射并复用进各级STM-N结构;同时具有各级PDH接口( 2Mbit/s、34Mbit/s、140Mbit/s)。
高速信号抖动测试解决方案
概述
在高速传输的数字系统或是通讯系统当中,将信号完整无缺地从传送到
目的地为其首要目标。
信号在传输的过程当中因为传输线的损失、系统的噪声,以及不可避免的人为因素,常使得信号失真,而传输抖动之现象,乃是今日研
究之重要课题。
在大都会之骨干网络当中,为了提升传输系统误码率之质量,
通常会以低噪声的前置放大器作为降低噪声以及抖动的方法之一。
通常随着抖
动量之增加,系统误码率便会提升。
所以如何从正确地分析抖动之特性以及对
传输系统所造成之影响为本文所讨论之重点。
安捷伦提供了一系列之抖动测试
解决方案,使得用户能在准确而快速的状况下取得适合的数据,亦能提供详细
之报表以作分析之用。
本文将以眼
定义
任何数字传输系统必定存在两种构成要素,一是本质数字信号( Deterministic Digital Signal),另一则是时钟信号( Clock Signal)。
时钟信号又分为标准时钟信号(Standard Clock)及依附时钟信号(Embedded C lock)。
所谓的抖动现象,乃是指本质数字信号与时钟信号所产生的一种相位差,亦可看做是一
种相位调变信号。
而在这时候,时钟信号所扮演的是一种标准之参考信号。
这
种时间差的相位变化,经过了一段时间可能形成一种周期性的正弦调变现象,
而将其称之为时域抖动现象,如
抖动的形成通常我们会使用取样示波器(Sampling Scope)来撷取其眼
所以通常通讯规范组织会定义出一种屏蔽(Mask)来判定此通讯系统是否。