第七章 拟合优度检验
- 格式:ppt
- 大小:335.00 KB
- 文档页数:24
拟合优度检验步骤以拟合优度检验步骤为标题,本文将从拟合优度的概念和意义入手,详细介绍拟合优度检验步骤及其常见方法。
一、拟合优度的概念和意义拟合优度是指统计模型中观测值与模型预测值之间的接近程度,通常用拟合优度系数来衡量。
拟合优度系数越接近于1,说明模型的拟合程度越好;越接近于0,说明模型的拟合程度越差。
拟合优度检验的意义在于对于一个给定的数据集,评估模型的拟合程度,进而判断模型是否可信。
如果拟合优度系数很低,说明模型不适合该数据集,需要重新调整模型;如果拟合优度系数很高,说明模型能够很好地描述数据,可信度较高。
1. 提出假设拟合优度检验的假设是:H0:该模型和数据集拟合较好;H1:该模型和数据集拟合较差。
2. 计算拟合优度系数拟合优度系数的计算方法根据不同的模型而异。
例如,对于线性回归模型,可以使用R平方值来计算拟合优度系数;对于逻辑回归模型,可以使用ROC曲线下面积(AUC)来计算拟合优度系数。
3. 确定显著性水平显著性水平决定了判断拟合优度系数是否足够显著的标准。
通常显著性水平被设定为0.05或0.01,意味着只有当拟合优度系数的概率小于0.05或0.01时,才能拒绝原假设。
4. 计算p值p值是指在原假设成立的情况下,观测到当前拟合优度系数或更极端情况的概率。
如果p值小于显著性水平,就可以拒绝原假设,认为模型拟合程度较差。
5. 判断结果根据p值的大小和显著性水平的设定,判断拟合优度系数是否显著。
如果p值小于显著性水平,就拒绝原假设,认为模型拟合程度较差;如果p值大于显著性水平,就接受原假设,认为模型拟合程度较好。
三、常见的拟合优度检验方法1. R平方R平方是线性回归模型中最常用的拟合优度系数之一,其值介于0和1之间。
R平方越接近于1,说明模型的拟合程度越好。
但是R 平方只适用于线性回归模型,对于其他类型的模型不适用。
2. 残差分析残差分析是一种通过分析模型残差的方法来评估模型拟合程度的方法。
拟合优度检验样本数据与理论分布的拟合程度判别拟合优度检验是统计学中常用的一种分析方法,用于评估样本数据与理论分布之间的拟合程度。
在许多实际应用中,我们需要确定样本数据是否符合某种理论分布,以便更好地理解和解释数据的特征和规律。
本文将介绍拟合优度检验的概念、常用方法以及应用实例。
一、拟合优度检验的概念和目的拟合优度检验是一种用于评估样本数据与理论分布之间的差异程度的统计方法。
其基本思想是比较样本数据的经验分布与理论分布之间的差异,通过计算适当的统计量来评估二者之间的拟合程度。
拟合优度检验的目的是判定样本数据是否与理论分布一致,进而评估理论模型的适用性和准确性。
二、拟合优度检验方法的选择对于不同的样本数据和理论分布,可以选择不同的拟合优度检验方法。
常见的方法包括卡方检验、Kolmogorov-Smirnov检验、Anderson-Darling检验等。
下面将分别介绍几种常用方法的基本原理和适用场景。
1. 卡方检验卡方检验是一种比较观察频数和期望频数之间差异的方法。
其基本原理是通过计算观察频数与理论分布的差异,进而推断样本数据是否来自于所假设的理论分布。
卡方检验适用于样本数据为分类变量的情况,且理论分布是已知的离散概率分布。
2. Kolmogorov-Smirnov检验Kolmogorov-Smirnov检验是一种基于累积分布函数的拟合优度检验方法。
其基本原理是通过比较样本数据的经验分布函数与理论分布的累积分布函数之间的差异,来评估二者之间的拟合程度。
Kolmogorov-Smirnov检验适用于样本数据为连续变量的情况,且理论分布可以是任意已知连续概率分布。
3. Anderson-Darling检验Anderson-Darling检验是一种基于累积分布函数的改进型拟合优度检验方法。
与Kolmogorov-Smirnov检验相比,Anderson-Darling检验更加敏感,尤其适用于较小样本量和尾部分布的拟合程度判断。
第七章拟合优度检验7.12000年在5 760 295名成年人群中和1 596 734名儿童群体中严重CDH(先天性心脏病)和其他程度CDH的流行病学患者数如下表[36]:尚存活的成年人 2 205 21 358 23 563尚存活的儿童 2 316 16 663 18 979 合计 4 521 38 021 42 542检验在尚存活的成年人和儿童中受损害的程度,差异是否显著?答:这是2×2列联表χ2检验,使用程序如下:options linesize=76 nodate;data;do a=1 to 2;do b=1 to 2;input case @@;output;end;end;cards;2205 213582316 16663;proc freq formchar(1,2,7)='|-+';weight case;tables a*b/cellchi2 expected nocol norow nopercent chisq;title '2*2 Contingency Table Test';run;程序运行结果见下表:2*2 Contingency Table TestTABLE OF A BY BA BFrequency |Expected |Cell Chi-Square| 1| 2| Total---------------+--------+--------+1 | 2205 | 21358 | 23563| 2504.1 | 21059 || 35.72 | 4.2474 |---------------+--------+--------+2 | 2316 | 16663 | 18979| 2016.9 | 16962 || 44.347 | 5.2733 |---------------+--------+--------+Total 4521 38021 42542STATISTICS FOR TABLE OF A BY BStatistic DF Value Prob------------------------------------------------------Chi-Square 1 89.588 0.001Likelihood Ratio Chi-Square 1 89.070 0.001Continuity Adj. Chi-Square 1 89.289 0.001Mantel-Haenszel Chi-Square 1 89.586 0.001Fisher's Exact Test (Left) 2.21E-21(Right) 1.000(2-Tail) 4.20E-21Phi Coefficient -0.046Contingency Coefficient 0.046Cramer's V -0.046Sample Size = 42542从“A×B列联表的统计量”部分可以得出,连续性矫正的χ2显著性概率P=0.001,P <0.01,故拒绝H0,在尚存活的成年人和儿童中受损害的程度差异极显著。