§8.4 拟合优度检验
在前面的讨论中,我们总假定总体的分 布形式是已知的。例如,假设总体分布为正
态分布 N(, 2), 总体分布为区间 (a, b) 上的
均匀分布,等等。
然而,在实际问题中,我们所遇到的总 体服从何种分布往往并不知道。需要我们先 对总体的分布形式提出假设,如:总体分布
是正态分布N( , 2),总体分布是区间(a, b)
(3). 计算各子区间 Ii 上的实际频数 fi 。
fi =﹟{ X1, X2, …, Xn ∈ Ii } , i=1, 2, …, k .
计数符号,取集 合中元素的个数
(4). 计算理论频数与实际频数的偏差平方和。
2
k
[
i1
fi
npi (ˆ)]2 npi (ˆ)
,
( 2)
每一项用npi (ˆ) 去除的其目的是:缩小理论
由度为 k-r-1=7。由
22.15 2 k2r1( ) 18.48.
于是,拒绝原假设,即认为棉纱拉力强
度不服从正态分布。
χ 2检验的一个著名应用例子是孟德尔豌豆 实验。奥地利生物学家孟德尔在1865年发表的 论文,事实上提出了基因学说,奠定了现代遗 传学的基础。他的这项伟大发现的过程有力地 证明了统计方法在科学研究中的作用。因此, 我们有必要在这里将这一情况介绍给大家。
孟德尔这个发现的深远意义是他开辟了 遗传学研究的新纪元。下面的例子就是用 χ 2 检验来检验孟德尔提出黄绿颜色豌豆数目之 比为 3:1的论断。
例2:孟德尔豌豆试验中,发现黄色豌豆为25 粒, 绿色豌豆11粒,试在α=0.05下, 检验豌豆 黄绿之比为3:1。
解:定义随机变量 X
X
1, 0,
豌豆为黄色, 豌豆为绿色.