求阴影部分的面积大全
- 格式:doc
- 大小:296.50 KB
- 文档页数:4
(苏科版)九年级上册数学《第2章对称图形---圆》专题求阴影部分的面积---四种方法【典例一】(2023•锦州)如图,点A ,B ,C 在⊙O 上,∠ABC =40°,连接OA ,OC .若⊙O 的半径为3,则扇形AOC (阴影部分)的面积为( )A .23πB .πC .43πD .2π【分析】先由圆周角定理可得∠AOC 的度数,再由扇形的面积公式求解即可.【解答】解:∵∠ABC =40°,∴∠AOC =2∠ABC =80°,∴扇形AOC 的面积为80×π×32360=2π,故选:D .【点评】此题主要是考查了扇形的面积公式,圆周角定理,能够求得∠AOC 的度数是解答此题的关键.【变式1-1】(2023•新抚区模拟)如图,正五边形ABCDE 边长为6,以A 为圆心,AB 为半径画圆,图中阴影部分的面积为( )A .185πB .4πC .545πD .12π【分析】首先确定扇形的圆心角的度数,然后利用扇形的面积公式计算即可.【解答】解:∵正五边形的外角和为360°,解题技巧提炼所求阴影部分是规则图形,直接用几何图形的面积公式求解.∴每一个外角的度数为360°÷5=72°,∴正五边形的每个内角为180°﹣72°=108°,∵正五边形的边长为6,∴S阴影=108⋅π×62360=545π,故选:C.【点评】考查了正多边形和圆及扇形的面积的计算的知识,解题的关键是求得正五边形的内角的度数并牢记扇形的面积计算公式,难度不大.【变式1-2】(2023•大武口区模拟)如图,在矩形ABCD中,AD=1,AB=A为圆心,AB长为半径画弧交CD于点E,则阴影部分的面积为 .【分析】根据矩形的性质得出∠D=∠DAB=90°,AB=AE DE,即可证得∠DAE=45°,进而求得∠BAE=45°,再求出扇形ABE的面积,即可得出答案.【解答】解:∵在矩形ABCD中,AD=1,AB∴∠D=∠DAB=90°,∵AE=AB,∴DE1,∴AD=DE,∴∠DAE=45°,∴∠BAE=45°,∴阴影部分的面积S=S扇形ABE=π4.故答案为:π4.【点评】本题考查了矩形的性质、扇形的面积公式和勾股定理等知识点,能求出∠EAB 的度数是解此题的关键.【变式1-3】如图,有公共顶点O 的两个边长为3的正五边形(不重叠),以O 点为圆心,半径为3作圆,构成一个“蘑菇”形图案,则这个“蘑菇”形图案(阴影部分)的面积为( )A .4πB .185πC .3πD .52π【分析】利用扇形的面积公式计算即可.【解答】解:S 阴=(360108×2)⋅π⋅32360=18π5,故选:B .【点评】本题考查正多边形与圆,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式1-4】(2022•二道区一模)如图,在△ABC 中,∠ACB =90°,∠A =60°,以点A 为圆心,AC 长为半径画弧,交边AB 于点D ,以点B 为圆心,BD 长为半径画圆弧,交边BC 于点E ,若AC =2,则图中阴影部分图形的面积和为 (结果保留π).【分析】根据题意和图形可知阴影部分的面积S =S 扇形BDE +S 扇形ACD .【解答】解:在Rt △ABC ,∠C =90°,∠A =60°,AC =2,∴∠B =30°,AB =2AC =4,∴BC =∴阴影部分的面积S =S 扇形BDE +S 扇形ACD =30π×22360+60π×22360=π,故答案为:π.【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式1-5】(2023•三台县模拟)如图,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为( )A.2πB.3πC D【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,∠ABC=∠BAF=120°,进而求出∠BAC =30°,∠CAE=60°,过B作BH⊥AC于H,由等腰三角形的性质和含30°直角三角形的性质得到AH=CH,BH=1,在Rt△ABH中,由勾股定理求得AH=AC=可得到阴影部分的面积.【解答】解:∵正六边形ABCDEF的边长为2,∴AB=BC=2,∠ABC=∠BAF=(62)×180°6=120°,∵∠ABC+∠BAC+∠BCA=180°,∴∠BAC=12(180°﹣∠ABC)=12×(180°﹣120°)=30°,过B作BH⊥AC于H,∴AH=CH,BH=12AB=12×2=1,在Rt△ABH中,AH=∴AC=同理可证,∠EAF=30°,∴∠CAE=∠BAF﹣∠BAC﹣∠EAF=120°﹣30°﹣30°=60°,∴S扇形CAE=2π,∴图中阴影部分的面积为2π,故选:A .【点评】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键.【典例二】(2022秋•恩施市期末)如图,在△ABC 中,∠ACB =90°,点D 为边AB 的中点,以点A 为圆心,线段AD 的长为半径画弧,与AC 边交于点E ;以点B 为圆心,线段BD 的长为半径画弧,与BC 边交于点F .若BC =6,AC =8,则图中阴影部分的面积为( )A .48―25π2B .48―25π4C .24―25π2D .24―25π4【分析】根据勾股定理得到AB=10,根据线段中点的定义得到AD =BD =5,根据扇形和解题技巧提炼将不规则阴影部分看成是以规则图形为载体的一部分,其他部分空白且为规则图形,此时采用整体作差法求解.三角形的面积公式即可得到结论.【解答】解:∵∠ACB=90°,BC=6,AC=8,∴AB==10,∠A+∠B=90°,∵点D为边AB的中点,∴AD=BD=5,∴图中阴影部分的面积=12×6×8―90⋅π×52360=24―25π4,故选:D.【点评】本题考查了扇形面积的计算,三角形的面积公式,勾股定理,熟练掌握扇形的面积公式是解题的关键.【变式2-1】(2023•北京模拟)如图,以O为圆心AB为直径的圆过点C,C为弧AB的中点,若AB=4,则阴影部分面积是( )A.πB.2+2πC.2πD.2+π【分析】求出∠AOC=∠BOC=90°,OA=OC=OB=2,求出阴影部分的面积=S扇形AOC,再根据扇形的面积公式求出答案即可.【解答】解:∵AB是⊙O的直径,C为AB的中点,∴∠AOC=∠BOC=90°,∵AB=4,∴OA=OC=OB=2,∴S△AOC =S△BOC=12×2×2=2,∴阴影部分的面积S=S△COB +S扇形AOC﹣S△AOC=S扇形AOC =90π×22360=π,故选:A.【点评】本题考查了垂径定理,扇形的面积计算等知识点,能把求不规则图形的面积转化成求规则图形的面积是解此题的关键,注意:已知扇形的圆心角是n °,半径是r ,那么这个扇形的面积=nπr 2360.【变式2-2】(2023•蜀山区校级三模)如图是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角∠O =120°形成的扇面,若OA =4m ,OB =2m ,则阴影部分的面积是( )A .43πB .83πC .4πD .163π【分析】利用扇形面积公式,根据S 阴影=S 扇形AOD ﹣S 扇形BOC 即可求解.【解答】解:S 阴影=S 扇形AOD ﹣S 扇形BOC=120π⋅OA 2360―120π⋅OB 2360=120π(OA 2OB 2)360=π(4222)3=4π(m 2),故选:C .【点评】本题考查了求扇形面积,熟练掌握扇形面积公式是解题的关键.【变式2-3】(2022秋•松滋市期末)如图,点A 、B 、C 在⊙O 上,若∠BAC =30°,OB =2,则图中阴影部分的面积为( )A .π3―B .2π3―C .2π3―D .π3―【分析】根据S 阴=S 扇形OBC ﹣S △OBC ,计算即可.【解答】解:∵∠BAC =30°,∴∠BOC =2∠BAC =60°,∴△BOC 是等边三角形,∴S 阴=S 扇形OBC ﹣S △OBC =60⋅π×22360―12×2×=23π―故选:B .【点评】本题考查扇形的面积,圆周角定理,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式2-4】(2022秋•鄞州区期末)如图,扇形AOB 圆心角为直角,OA =10,点C 在AB 上,以OA ,CA 为邻边构造▱ACDO ,边CD 交OB 于点E ,若OE =8,则图中两块阴影部分的面积和为( )A .10π﹣8B .5π﹣8C .25π﹣64D .50π﹣64【分析】连接OC .利用勾股定理求出EC ,根据S 阴=S 扇形AOB ﹣S 梯形AOEC ,计算即可.【解答】解:连接OC .∵四边形OACD 是平行四边形,∴OA ∥CD ,∴∠OEC +∠EOA =180°,∵∠AOB =90°,∴∠OEC =90°,∴EC =6,∴S 阴=S 扇形AOB ﹣S 梯形OECA =90π×102360―12×(6+10)×8=25π﹣64.故选:C .【点评】本题考查扇形的面积的计算,平行四边形的性质,勾股定理等知识,解题的关键是掌握割补法求阴影部分的面积.【变式2-5】(2023•双柏县模拟)如图,在菱形ABCD 中,点E 是AB 的中点,以B 为圆心,BE 为半径作弧,交BC 于点F ,连接DE 、DF ,若AB =2,∠A =60°,则图中阴影部分的面积为( )A .π3B π3C π3D ―2π3【分析】连接AC ,根据菱形的性质求出∠BCD 和BC =AB =2,求出AE 长,再根据三角形的面积和扇形的面积求出即可.【解答】解:∵四边形ABCD 是菱形,AB =2,∠A =60°,点E 是AB 的中点,∴△ABD 是等边三角形,DE ⊥AB ,∠ABC =120°,BE =1,∴DE BF =1,DF =DF ⊥BC ,∴阴影部分的面积S =S △BDE +S △BDF ﹣S 扇形BEF =2―120π×12360=π3,故选:B .【点评】本题考查了等边三角形的性质和判定,菱形的性质,扇形的面积计算等知识点,能求出△AEC 、△AFC 和扇形ECF 的面积是解此题的关键.【变式2-6】(2022秋•余杭区校级月考)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连结AC ,BC .(1)求证:∠ACO =∠BCD ;(2)若CD =6,∠A =30°,求阴影部分的面积.【分析】(1)根据垂径定理得到BC=BD,根据圆周角定理证明结论;(2)根据等边三角形的判定定理得到△BOC为等边三角形,求出∠AOC,根据正弦的定义求出OC,利用扇形面积公式计算即可.【解答】(1)证明:∵AB是⊙O的直径,弦CD⊥AB,∴BC=BD,∴∠A=∠BCD,∵OA=OC,∴∠A=∠ACO,∴∠ACO=∠BCD;(2)解:∵∠A=30°,∴∠BOC=60°,∴∠AOC=120°,∵AB是⊙O的直径,弦CD⊥AB,∴CE=12CD=3,在Rt△COE中,OC=CEsin60°=∴扇形OAC(阴影部分)的面积=4π,答:阴影部分的面积为4π.【点评】本题考查的是扇形面积计算、垂径定理、圆周角定理,掌握扇形面积公式是解题的关键.【典例三】(2023•大同模拟)如图,在扇形AOB 中,∠AOB =90°,半径OA =3,将扇形AOB 沿过点B 的直线折叠,使点O 恰好落在AB 上的点D 处,折痕为BC ,则阴影部分的面积为( )AB .9π4―C .π34D .3π34【分析】连接OD ,可得△OBD 为等边三角形,再求出∠COD 以及OC ,得到三角形BOC 的面积,又因为△BOC 与△BDC 面积相等,最后利用S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC 求解即可.【解答】解:如图,连接OD ,根据折叠的性质,CD =CO ,BD =BO ,∠DBC=∠OBC ,∴OB =BD =OD,解题技巧提炼先将不规则阴影部分与空白部分组合,构造规则图形或分割后为规则图形,再进行面积和差计算.∴△OBD 为等边三角形,∴∠DBO =60°.∵∠CBO =12∠DBO =30°,∵∠AOB =90°,∴OC =OB •tan ∠CBO =3=∴S △BOC =12OB •OC =∵△BOC 与△BDC 面积相等,∴S 阴影=S 扇形AOB ﹣S △BOC ﹣S △BDC=14π×32=9π4―故选:B .【点评】本题考查与扇形有关的不规则图形的面积求法,掌握割补法求面积是解题的关键.【变式3-1】(2023•乡宁县二模)如图,AB 是⊙O 的直径,AC 是弦,∠BAC =30°,在直径AB 上截取AD =AC ,延长CD 交⊙O 于点E ,若CE =2,则图中阴影部分的面积为( )A B .π2―1C .π﹣2D .π2【分析】连接OE ,OC ,BC ,推出△EOC 是等腰直角三角形,根据扇形面积减三角形面积计算即可.【解答】解:连接OE ,OC ,BC ,由旋转知AC =AD ,∠CAD =30°,∴∠BOC =60°,∠ACE =(180°﹣30°)÷2=75°,∴∠BCE =90°﹣∠ACE =15°,∴∠BOE =2∠BCE =30°,∴∠EOC =90°,即△EOC 为等腰直角三角形,∵CE =2,∴OE =OC =∴S 阴影=S 扇形OEC ﹣S △OEC ―12×=π2―1,故选:B .【点评】本题主要考查旋转的性质及扇形面积的计算,熟练掌握扇形面积的计算是解题的关键.【变式3-2】(2022秋•合川区期末)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接BC .若BO =BC =2 .【分析】证明△OBD 是等边三角形,根据S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )求解即可.【解答】解:连接BD .∵OC =OB =BC =∴△OBC 是等边三角形,∵CD ⊥AB ,AB 是直径,∴BC =BD ,∴BC =BD =OB =OD ,∴△OBD 是等边三角形,∵DE ⊥OB ,∴OE =EB∴DE =∴S 阴=S △DEB +(S 扇形DOB ﹣S △BOD )=12×(2=4π﹣故答案为:4π﹣【点评】本题考查了扇形面积的计算以及垂径定理、等边三角形的判定和性质,解答本题的关键是理解性质和定理,注意掌握扇形的面积公式.【变式3-4】(2023•如皋市一模)如图,⊙O 的直径AB =8,C 为⊙O 上一点,在AB 的延长线上取一点P ,连接PC 交⊙O 于点D ,PO =OPC =30°.(1)求CD 的长;(2)计算图中阴影部分的面积.【分析】(1)作OE ⊥CD 于点E ,连接OC ,OD ,根据垂径定理得CE =DE ,再根据PO =OPC=30°,得OE =(2)根据阴影部分的面积为扇形COD 的面积减去△COD 的面积即可.【解答】解:(1)作OE ⊥CD 于点E ,连接OC ,OD ,∴CE =DE ,∵PO =OPC =30°,∴OE =12PO =∵直径AB =8,∴OD =4,∴DE ==2,∴CD =2DE =4;(2)∵OD =2DE ,∴∠DOE =30°,∴∠COD =60°,∴阴影部分的面积为60π×42360―12×4×=8π3―【点评】本题考查了垂径定理,扇形面积的计算,含30°的直角三角形的性质等知识,解题的关键是熟练掌握扇形的面积公式.【变式3-5】(2023•蒙阴县一模)已知AB 是圆O 的直径,半径OD ⊥BC 于点E ,BD 的度数为60°.(1)求证:OE =DE ;(2)若OE =1,求图中阴影部分的面积.【分析】(1)连接BD ,证明△OBD 是等边三角形,可得结论;(2)根据S 阴=S 扇形AOC +S △COE ,求解即可.【解答】(1)证明:连接BD ,∵BD 的度数是60°,∴∠BOD =60°,∵OB =OD ,∴△OBD 是等边三角形,∵OD ⊥BC ,∴OE =DE ;(2)解:连接OC .∵OD ⊥BC ,OC =OB ,∴∠COE =∠BOE =60°,∴∠OCE =30°,∴OC =2OE =2,∴CE =∴S 阴=S 扇形AOC +S △COE =60π⋅22360+12×1=2π3【点评】本题考查了扇形面积、三角形的面积的计算,正确证明△BOD 是等边三角形是关键.【变式3-6】(2023•长沙模拟)如图,已知AB 为⊙O 的直径,CD 是弦,AB ⊥CD ,垂足为点E ,OF ⊥AC ,垂足为点F ,BE =OF .(1)求证:AC =CD ;(2)若BE =4,CD =【分析】(1)根据AAS 证明△AFO ≌△CEB 即可判断;(2)根据S 阴=S 扇形OCD ﹣S △OCD 计算即可.【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,CE =12CD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,AF =12AC ,∵BE =OF ,∴△AFO ≌△CEB (AAS ),∴AF =CE ,∴AC =CD ;(2)∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设OC =r ,则OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8,连接OD ,如图,在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120π×82360―12×4=643π﹣【点评】本题主要考查了垂径定理,勾股定理,以及扇形的面积的计算,正确求得∠COE 的度数是解决本题的关键.【典例四】(2023•凤台县校级三模)如图,点B 在半圆O 上,直径AC =10,∠BAC =36°,则图中阴影部分的面积为( )A .5πB .52πC .10πD .54π【分析】先根据三角形的中线把三角形分成面积相等的两个三角形得到△AOB 的面积与△COB的面积相解题技巧提炼通过对图形的变换,为利用公式法或和差法求解创造条件.有两种方法:(1)直接等面积转化法(2)平移转化法(3)对称转化法(4)旋转转化法等,从而把阴影部分的面积转化为扇形OBC 的面积,再根据扇形面积计算公式求出即可.【解答】解:∵点O 是AC 的中点,∴线段BO 是△ABC 的中线,∴S △AOB =S △COB ,∴S 阴影=S 扇形OBC ,∵∠BAC =36°,∴∠BOC =2∠BAC =72°,∵直径AC =10,∴OC =5,∴S 扇形OBC =72π×52360=5π,∴S 阴影=5π,故选:A .【点评】本题考查了扇形的面积,圆周角定理,三角形的中线的性质,熟练掌握扇形的面积公式是解题的关键.【变式4-1】(2023•孝义市三模)如图,AB 为半圆O 的直径,CD 垂直平分半径OA ,EF 垂直平分半径OB ,若AB =4,则图中阴影部分的面积等于( )A .4π3B .2π3C .16π3D .8π3【分析】根据图形可得,阴影部分的面积=S 半圆﹣2S 扇形 ACO ,根据扇形面积公式计算即可.【解答】解:如图所示:连接OC ,∵CD 垂直平分半径OA ,∴AC =OC ,∵OC =OA ,∴OA =OC =AC ,∴△AOC 是等边三角形,∴∠A =60°,∴S 阴影=12S ⊙O ﹣2S 扇形ACO =12×(AB 2)2π―2×60×(AB 2)2π360 =12×4π﹣2×16×4π=2π―43π=23π.故选:B .【点评】本题考查了扇形的面积计算,掌握垂直平分线的性质,等边三角形的判定与性质,扇形的面积公式是解题的关键.【变式4-2】(2023•锦州二模)如图,在△ABC 中,AB =AC ,以AC 为直径的⊙O 与AB ,BC 分别交于点D ,E ,连接AE ,DE ,若∠BED =45°,AB =2,则阴影部分的面积为( )A .π4B .π3C .2π3D .π【分析】根据直径所对的圆周角是直角得到∠AEC =90°,再根据等腰三角形三线合一得出点E 是BC 的中点,从而得出OE 是△ABC 的中位线,于是OE ∥AB ,根据同底等高得到△AOD 和△AED 的面积相等,从而阴影部分的面积转化为扇形AOD 的面积,根据扇形面积公式计算出扇形AOD 的面积即可得出阴影部分的面积.【解答】解:连接OE,OD,∵AC为⊙O的直径,∴∠AEC=90°,∵AB=AC,∴BE=CE,即点E是BC的中点,∵点O是AC的中点,∴OE是△ABC的中位线,∴OE∥AB,∴S△AOD =S△AED,∴S阴影=S扇形OAD,∵∠AEC=90°,∴∠AEB=90°,∵∠BED=45°,∴∠AED=45°,∴∠AOD=90°,∴S扇形OAD=90π×12360=π4,∴S阴影=π4,故选:A.【点评】本题主要考查了扇形的面积,圆周角定理,中位线定理,平行线间的距离相等,等腰三角形的三线合一,不规则图形的面积求法,把不规则图形转化为规则图形计算面积是解题的关键.【变式4-3】(2023•东兴区校级二模)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕点A逆时针旋转30°后得到△ADE,点B经过的路径为BD,则图中阴影部分的面积为( )A .512πB .43πC .34πD .2512π【分析】根据AB =5,AC =3,BC =4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED 的面积=△ABC 的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB =5,AC =3,BC =4,∴△ABC 为直角三角形,由题意得,△AED 的面积=△ABC 的面积,由图形可知,阴影部分的面积=△AED 的面积+扇形ADB 的面积﹣△ABC 的面积,∴阴影部分的面积=扇形ADB 的面积=30π×52360=2512π,故选:D .【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB 的面积是解题的关键.【变式4-4】(2023•郸城县模拟)如图,扇形ABC 圆心角为90°,将扇形ABC 沿着射线BC 方向平移,当点B 落到线段BC 中点E 时平移停止,若AC 的长为2π,则图中阴影部分的面积是 .【分析】根据S 阴影=S 扇形DEF +S 矩形ABED ﹣S 扇形BAC =S 矩形ABED 求解即可.【解答】解:∵扇形ABC 圆心角为90°,AC 的长为2π,∴2π=90π⋅r 180,∴r =4,∴AB =BC =4,∵点E 是BC 的中点,∴BE =2,∴S阴影=S扇形DEF+S矩形ABED﹣S扇形BAC=S矩形ABED=2×4=8.故答案为:8.【点评】本题考查平移性质,扇形面积,熟练掌握求不规则图形面积,通过转化成规则图形面积的和差求解是解题的关键.【变式4-5】如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.求:(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.【解答】解:(1)阴影部分的周长是:2×12×2π×6+60π×12180=12π+4π=16π(厘米),答:阴影部分的周长为16π厘米;(2)∵阴影部分的面积是:S半圆+S扇形BAC﹣S半圆=S扇形BAC,∴阴影部分的面积=60×π×144360=24π(平方厘米).答:阴影部分的面积为24π平方厘米.【点评】本题考查了旋转的性质,弧长公式,扇形面积公式,掌握计算公式是解题的关键.【变式4-6】如图,AB 为⊙O 的直径,CD 是弦,AB ⊥CD 于点E ,OF ⊥AC 于点F ,BE =OF .(1)求证:△AFO ≌△CEB ;(2)若BE =4,CD =①⊙O 的半径;②求图中阴影部分的面积.【分析】(1)根据AAS 即可判断;(2)①设 OC =r ,则 OE =r ﹣4,在Rt △OCE 中,利用勾股定理构建方程即可解决问题;②根据S 阴=S 扇形OCD ﹣S △OCD 计算即可;【解答】(1)证明:∵AB 为⊙O 的直径,AB ⊥CD ,∴BC =BD ,∴∠A =∠DCB ,∴OF ⊥AC ,∴∠AFO =∠CEB ,∵BE =OF ,∴△AFO ≌△CEB (AAS ).(2)①∵AB 为⊙O 的直径,AB ⊥CD ,∴CE =12CD =设 OC =r ,则 OE =r ﹣4,∴r 2=(r ﹣4)2+(2∴r =8.②连接 OD .∵在Rt △OEC 中,OE =4=12OC ,∴∠OCE =30°,∠COB =60°,∴∠COD =120°,∵△AFO ≌△CEB ,∴S △AFO =S △BCE ,∴S 阴=S 扇形OCD ﹣S △OCD=120⋅π⋅82360―12××4=643π﹣【点评】本题考查扇形的面积,全等三角形的判定和性质,勾股定理,垂径定理,圆周角定理等知识,解题的关键是正确寻找全等三角形解决问题,学会用转化的思想思考问题.【典例五】(2022秋•潼南区期末)如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =2,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是 .解题技巧提炼有的阴影部分是由两个基本图形互相重叠得到的.常用的方法是:两个基本图形的面积-被重叠图形的面积=组合图形的面积.【分析】根据题意和图形可知阴影部分的面积是扇形BCE 与扇形ACD 的面积之和与Rt △ABC 的面积之差.【解答】解:在Rt △ABC ,∠C =90°,∠B =30°,AB =2,∴∠A =60°,AC =12AB =1,BC∴阴影部分的面积S =S 扇形BCE +S 扇形ACD ﹣S △ACB 60π×12360―12×1×=5π12―故答案为:5π12【点评】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.【变式5-1】(2022秋•北碚区校级期末)如图,正方形ABCD 的边长为1,以A 为圆心,AB 为半径画弧,连接AC ,以A 为圆心,AC 为半径画弧交AD 的延长线于点E ,则图中阴影部分的面积是 .【分析】根据正方形的性质和扇形的面积公式即可得到结论.【解答】解:∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°,∠DAC =45°,∴AC =∴图中阴影部分的面积=12×1×1]+(1×1―90π×12360)=12,故答案为12.【点评】本题考查了正方形的性质,扇形的面积的计算,正确的识别图形是解题的关键.【变式5-2】(2023•平遥县二模)如图,在Rt △ACB 中,∠ACB =90°,AC =1,∠A =60°,将Rt △ACB 绕点C 顺时针旋转90°后得到Rt △DCE ,点B 经过的路径为BE ,将线段AB 绕点A 顺时针旋转60°后,点B 恰好落在CE 上的点F 处,点B 经过的路径为BF ,则图中阴影部分的面积是( )A π12B π12C +π12D ―π12【分析】根据S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF 计算即可.【解答】解:S 阴=S △ACB +S 扇形CBE ﹣S 扇形ABF=12×1×60⋅π⋅22360+π12,故选:A .【点评】本题考查扇形的面积公式,旋转变换等知识,解题的关键是学会用分割法求阴影部分的面积.【变式5-3】如图,在边长为4的正方形ABCD 中,以AB 为直径的半圆交对角线AC 于点E ,以C 为圆心、BC 长为半径画弧交AC 于点F ,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和三角形面积公式即可得到结论.【解答】解:连接BE ,∵AB 为直径,∴BE⊥AC,∵AB=BC=4,∠ABC=90°,∴BE=AE=CE,∴S弓形AE =S弓形BE,∴图中阴影部分的面积=S半圆―12(S半圆﹣S△ABE)﹣(S△ABC﹣S扇形CBF)=12π×22―12(12π×22―12×12×4×4)﹣(12×4×4―45π×42360)=3π﹣6,故答案为3π﹣6.【点评】本题考查了扇形面积的计算,正方形的性质,正确的识别图形是解题的关键.【变式5-4】(2022•射洪市模拟)如图,在矩形ABCD中,AB=6,BC=4,以A为圆心,AD长为半径画弧交AB于点E,以C为圆心,CD长为半径画弧交CB的延长线于点F,则图中阴影部分的面积是 .【分析】根据扇形的面积公式和矩形的性质即可得到结论.【解答】解:∵在矩形ABCD中,AB=6,BC=4,∠A=∠C=90°,∴CD=AB=6,AD=BC=4,∴图中阴影部分的面积=S扇形FCD ﹣(S矩形ABCD﹣S扇形DAE)=90π×62360―(6×4―90π×42360)=13π﹣24,故答案为:13π﹣24.【点评】本题考查了扇形面积的计算,矩形的性质,正确的识别图形是解题的关键.。
外方内圆求阴影部分面积的公式外方内圆的阴影部分面积可以通过以下公式进行计算:
阴影部分面积=外圆面积-内圆面积
其中,外圆面积的公式为:
外圆面积= π *外圆半径²
内圆面积的公式为:
内圆面积= π *内圆半径²
所以,阴影部分面积的公式可以简化为:
阴影部分面积= π * (外圆半径² -内圆半径²)
在拓展方面,如果我们考虑不规则形状的外方内圆,由于没有确定的数学公式,我们可能需要使用数值方法,如数值积分或数值逼近方法来近似计算阴影部分面积。
这种方法可以将阴影部分的形状划分成小的区域,并对每个区域进行面积的计算,然后将这些小区域的面积相加来得到总面积。
这种方法非常灵活,适用于各种形状的阴影部
分的计算。
不过,这也意味着计算的精度会受到划分区域的大小和数量的影响。
小学数学图形求阴影部分面积十大方法总结(附例题)_2023.9小学阶段的学生通常在学习上存在着总结归纳能力欠缺等问题,为了很好地帮助孩子系统地掌握小学阶段的数学知识,老师把小学求图形面积的十大方法给大家做了总结,各位家长,快给孩子收藏起来吧!我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算。
如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。
一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米。
解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。
所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。
例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法01相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积02相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差. 例如:下图,求阴影部分的面积。
和圆联系的阴影部分面积求法举例 求阴影部分面积解:这是最基本的方法: 圆面积减去等腰直角三角形的面积, ×-2×1=1.14(平方厘米)解:这也是一种最基本的方法用正方形的面积减去 圆的面积。
设圆的半径为 r ,因为正方形的面积为7平方厘米,所以 =7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个 圆组成一个圆,用正方形的面积减去圆的面积, 所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积, 16-π()=16-4π=3.44平方厘米 例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为"叶形",是用两个圆减去一个正方形, π()×2-16=8π-16=9.12平方厘米 另外:此题还能够看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分) π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:例8.求阴影部分的面积。
(单厘米)解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都能够直接用图形的差来求,无需割、补、增、减变形) 位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
(单位:厘米)解:把右面的正方形平移至左边的正方形部分,则阴影部分合成一个长方形,所以阴影部分面积为:2×3=6平方厘米例10.求阴影部分的面积。
求阴影面积例题长方形面积:3*2=6平方厘米四分之一小圆面积:2*2*3.14÷4=3.14平方厘米右上面大空白面积:长方形面积-四分之一小圆面积=6-3.14=2.86平方厘米四分之一大圆面积:3*3*3.14÷4=7.065平方厘米阴影面积=四分之一大圆面积-右上面大空白面积=7.065-2.86=4.205平方厘米如有帮助,请采纳。
谢谢方法1:圆心角45度的扇形面积:4*4*3.14*45/360=6.28空白面积=四分之一小扇形面积+三角形面积=2*2*3.14÷4+2*2÷2=5.14左上面积的小阴影面积=圆心角45度的扇形面积-空白面积=6.28-5.14=1.14 右边阴影面积=四分之一小扇形面积-三角形面积=2*2*3.14÷4-2*2÷2=1.14阴影面积=左上面积的小阴影面积+右边阴影面积=1.14+1.14=2.28方法2:用割补法,将右边阴影割下补到左边,阴影面积=大扇形面积-三角形面积=4*4*3.14*45/360 – 4*2÷2=6.28-4=2.28小朋友,如有帮助,请采纳。
谢谢!设圆半径为r阴影部分的面积=4*半圆的面积(即2*圆形的面积)-正方形的面积;=2*π*r²-2r*2r*=2*r²(π-2)=8π-16解法:连接大扇形的两个半径作为辅助线,用大扇形的面积减去扇形内部的空白部分6×6×3.14×1/4-(6-4)×4-〔4×4-4×4×3.14×1/4〕=28.26-8-3.44=16.82小学六年级数学求阴影面积与周长例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:1/4 圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
解题公式、方法1、几何图形计算公式:1)正方形:周长=边长×4C=4a面积 = 边长×边长S=a×a2)正方体:表面积 = 棱长×棱长×6S 表 = a×a×6体积 = 棱长×棱长×棱长V=a×a×a3) 长方形:周长 =(长 + 宽)×2C=2(a+b)面积 = 长×宽S=ab4)长方体:表面积 =(长× 宽 + 长× 高 + 宽× 高)×2 S=2(ab+ah+bh)体积 = 长×宽×高V=abh5)三角形:面积 = 底×高÷2s=ah÷26)平行四边形:面积 = 底×高s=ah7) 梯形:面积 =(上底 + 下底)×高÷2s=(a+b)×h÷28)圆形:周长 = 直径×Π=2×Π×半径C=Πd=2Πr面积 = 半径× 半径×Π9)圆柱体:侧面积 = 底面周长× 高表面积 = 侧面积 + 底面积×2体积 = 底面积× 高10)圆锥体:体积 = 底面积× 高÷32、面积求解大致分为以下几类:Ø从整体图形中减去局部;割补法:将不规则图形通过割补,转化成规则图形。
重难点:观察图形的特点,根据图形特点选择合适的方法求解图形的面积。
能灵活运用所学过的基本的平面图形的面积求阴影部分的面积。
练习题参考答案例 21. 解:把中间部分分成四等分,分别放在上面圆的四个角上,补成一个正方形,边长为 2 厘米,所以面积为:2×2=4 平方厘米例 22 解法一: 将左边上面一块移至右边上面, 补上空白, 则左边为一三角形, 右边一个半圆.阴影部分为一个三角形和一个半圆面积之和. π()÷2+4×4=8 π+16=41.12 平方厘米解法二: 补上两个空白为一个完整的圆.所以阴影部分面积为一个圆减去一个叶形, 叶形面积为:π()÷2-4×4=8π-16。
求阴影面积的几种常用方法1、直接用公式法例1、如图1,在Rt △ABC 中,∠A=90°,BC=4,点D 是BC 的中点,将△ABD 绕点A 按逆时针旋转90°,得△AB ’D ’,那么AD 在平面上扫过的区域(图中阴影部分)的面积是( )A. 4πB. 2π C.π D. 2π 分析:△ABD 绕点A 按逆时针旋转90°后,形成扇形ADD ’,且扇形的圆心角为90°,故可用扇形的面积公式直接求其面积。
解:∵∠A=90°, 点D 是BC 的中点,∴AD=21BC=2, ∴S 阴影=S 'ADD 扇形=3602902⨯π=π. 故选C.2、加减法.例2、如图2,正方形ABCD 的边长为a,那么阴影部分的面积为( ) A. 21πa 2 B. 41πa 2 C. 81πa 2 D. 161πa 2 分析:阴影部分的面积可以看作是扇形BCD 的面积减去半圆CD 的面积。
解:S 阴影=S CBD 扇形-S CD 半圆=360902a π-21π(2a )2 =41πa 2-81πa 2 =81πa 2. 所以本题答案选C.3、割补法例3、如图3,以BC 为直径,在半径为2且圆心角为90°的扇形内做半圆,交弦AB 于点D ,连接CD ,则阴影部分的面积是( )A. π-1B. π-2C. 21π-1D. 21π-2 分析:因为BC 为半圆的直径,所以CD ⊥AB ,CD=BD ,所以S CD 弓形= S BD 弓形,即S 阴影=S CAB 扇形-S ADC ∆.解:∵SCD 弓形= S BD 弓形∴S 阴影=S CAB 扇形-S ADC ∆⎪⎩⎪⎨⎧=+=+364423y x 22y x π⎪⎪⎨⎧-=-=918929ππyx =3602902⨯π-21×2×2 =π-1.故选A.4、等积变形法例4、如图4,已知半圆的直径AB=4cm ,点C 、D 是这个半圆的三等分点,则弦AC 、AD 和弧CD 围成的的阴影部分的面积为 cm 2.分析:因为C 、D 是半圆的三等分点,所以能够论证CD ∥AB ,所以S ACD ∆= S OCD ∆,所以S 阴影=S OCD 扇形解:连接OC 、OC 、CD∵C 、D 是半圆的三等分点,∴CD ∥AB∴S ACD ∆= S OCD ∆(同底等高),∴S 阴影=S OCD 扇形=3602602⨯π=32π. 5、覆盖法例5、如图5所示,正方形的边长为a ,分别以对角顶点为圆心,边长为半径画弧,则图中阴影部分的面积是多少?分析:阴影部分的面积可以看作是两个扇形的重叠部分。
图形中阴影部分的面积1.求阴影部分的面积。
(π取3.14)2.求下图中阴影部分的面积。
3.如图池塘的周长是31.4米,池塘周围(阴影)是一条2米宽的水泥路,在路的外侧围一围栏杆。
(1)水泥路的面积是多少?(2)栏杆长多少米?4.小杰在边长10cm的正方形中画了一个最大的圆(如下图),求图中阴影部分的面积。
(π取3.14 )5.求下图阴影部分的面积。
6.求图中阴影部分的面积.(单位:厘米)7.求阴影部分的面积。
(单位:厘米)8.求下图阴影部分的面积。
(单位:分米)9.求下图中阴影部分的面积。
(单位:米)10.如下图,求阴影部分的面积。
11.求下图阴影部分的面积.(单位:厘米)12.求出下图阴影部分的面积。
13.下图中三个圆的周长都是25.12厘米,不用测量。
计算图中阴影部分的总面积。
14.计算图中阴影部分的面积.(单位:厘米)15.求各图中阴影部分的面积.(单位:cm)(1)(2)16.求阴影部分的面积。
17.求下列图形阴影部分的面积。
(单位:厘米,π≈3.14)(1)(2)18.求下面图形阴影部分的周长和面积。
19.计算如图中阴影部分的面积.20.甲、乙两图中正方形的面积都是40cm2,阴影部分的面积哪一块大?大多少?21.求下图中阴影部分的面积。
(单位:m)(1)(2)22.求阴影部分的面积。
(1)(2)23.求阴影部分的面积。
24.求阴影部分的面积。
25.如图:圆的直径是6dm,阴影部分的面积是多少?26.计算阴影部分的周长和面积27.求下图中阴影部分的面积。
(1)R=10cm,r=4cm (2)28.计算阴影部分的周长和面积29.求阴影部分的周长。
(单位:cm)30.下图中,正方形的边长是4cm,求阴影部分的面积。
31.在半径为4厘米的圆中有两条直线垂直相交(如图),比较该图中阴影部分的面积与空白部分面积的大小,谁大?大多少?32.分别以直角三角形ABC的三条边为直径画了三个半圆,得到下图。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,下图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,下图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2、高是4的三角形,其面积直接可求为|:四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求下图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如下图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如下图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如下图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求下图(1)中阴影部分的面积,可将左半图形绕B 点逆时针方向旋转180°,使A与C 重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求下图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。